-
Employee Profile

Fabian Andsem Harang

Professor - Department of Economics

Biography

I am working as a professor in mathematics at BI Norwegian Business School. I hold a Ph.D in Mathematics from the University of Oslo, where I specialized in stochastic analysis and financial mathematics.

My research is mostly focused around various topics in the field of stochastic analysis and rough path theory, and the application of these theories towards financial modelling and data science.

In the acameic year of 2023/2024 I am leading the Signatures for Images project at the Centre of Advanced Studies (CAS) together with Prof. Kurusch Ebrahimi-Fard (NTNU). See here for more information. I will therefore be located at The Norwegian Academy of Sciences and Letters during this year.

I am very interested in discussing applications of mathematical theory towards real cases arising in the financial industry, be it related to risk and portfolio management or trading. Please do not hestiate to get in touch if you are wondering about anything related to financial mathamtics or risk management.

See my personal homepage for more information fabianharang.xyz

Area of Expertise

Publications

Mork, Knut Anton; Harang, Fabian Andsem, Trønnes, Haakon Andreas & Bjerketvedt, Vegard Skonseng (2023)

Dynamic spending and portfolio decisions with a soft social norm

Journal of Economic Dynamics and Control, 151 Doi: 10.1016/j.jedc.2023.104667 - Full text in research archive

Harang, Fabian Andsem; Wang, Xiaohua & Tindel, Samy (2023)

Volterra Equations Driven by Rough Signals 3: Probabilistic Construction of the Volterra Rough Path for Fractional Brownian Motions

Journal of theoretical probability Doi: 10.1007/s10959-023-01251-y - Full text in research archive

Harang, Fabian Andsem; Bechtold, Florian & Rana, Nimit (2023)

Non-linear Young equations in the plane and pathwise regularization by noise for the stochastic wave equation

Stochastics and Partial Differential Equations: Analysis and Computations Doi: 10.1007/s40072-023-00295-9 - Full text in research archive

Harang, Fabian Andsem & Mayorcas, Avi (2023)

Pathwise regularisation of singular interacting particle systems and their mean field limits

Stochastic Processes and their Applications, 159, s. 499- 540. Doi: 10.1016/j.spa.2023.02.005

Galeati, Lucio; Harang, Fabian Andsem & Mayorcas, Avi (2022)

Distribution dependent SDEs driven by additive fractional Brownian motion

Probability theory and related fields, s. 1- 59. Doi: 10.1007/s00440-022-01145-w - Full text in research archive

Harang, Fabian Andsem; Tindel, Samy & Wang, Xiaohua (2022)

Volterra equations driven by rough signals 2: higher order expansions

Stochastics and Dynamics Doi: 10.1142/S0219493723500028 - Full text in research archive

Galeati, Lucio; Harang, Fabian Andsem & Mayorcas, Avi (2022)

Distribution dependent SDEs driven by additive continuous noise

Electronic Journal of Probability (EJP), 27, s. 1- 38. Doi: 10.1214/22-EJP756 - Full text in research archive

Harang, Fabian Andsem; Nilssen, Torstein & Proske, Frank Norbert (2022)

GIRSANOV THEOREM FOR MULTIFRACTIONAL BROWNIAN PROCESSES

Stochastics: An International Journal of Probability and Stochastic Processes Doi: 10.1080/17442508.2022.2027948 - Full text in research archive

Galeati, Lucio & Harang, Fabian Andsem (2022)

Regularization of multiplicative SDEs through additive noise

The Annals of Applied Probability, 32(5), s. 3930- 3963. Doi: 10.1214/21-AAP1778 - Full text in research archive

Harang, Fabian Andsem & Perkowski, Nicolas (2021)

C ∞ - regularization of ODEs perturbed by noise

Stochastics and Dynamics, 21(8) Doi: 10.1142/S0219493721400104 - Full text in research archive

Harang, Fabian Andsem & Ling, Chengcheng (2021)

Regularity of Local Times Associated with Volterra–Lévy Processes and Path-Wise Regularization of Stochastic Differential Equations

Journal of theoretical probability Doi: 10.1007/s10959-021-01114-4 - Full text in research archive

Harang, Fabian Andsem & Catellier, Rémi (2021)

Pathwise regularization of the stochastic heat equation with multiplicative noise through irregular perturbation

arXiv.org

Harang, Fabian Andsem & Tindel, Samy (2021)

Volterra Equations Driven by Rough Signals

Stochastic Processes and their Applications, 142, s. 34- 78. Doi: 10.1016/j.spa.2021.08.001 - Full text in research archive

This article is devoted to the extension of the theory of rough paths in the context of Volterra equations with possibly singular kernels. We begin to describe a class of two parameter functions defined on the simplex called Volterra paths. These paths are used to construct a so-called Volterra-signature, analogously to the signature used in Lyon’s theory of rough paths. We provide a detailed algebraic and analytic description of this object. Interestingly, the Volterra signature does not have a multiplicative property similar to the classical signature, and we introduce an integral product behaving like a convolution extending the classical tensor product. We show that this convolution product is well defined for a large class of Volterra paths, and we provide an analogue of the extension theorem from the theory of rough paths (which guarantees in particular the existence of a Volterra signature). Moreover the concept of convolution product is essential in the construction of Volterra controlled paths, which is the natural class of processes to be integrated with respect to the driving noise in our situation. This leads to a rough integral given as a functional of the Volterra signature and the Volterra controlled paths, combined through the convolution product. The rough integral is then used in the construction of unique solutions to Volterra equations driven by Hölder noises with singular kernels. An example concerning Brownian noises and a singular kernel is treated.

Harang, Fabian Andsem & Benth, Fred Espen (2021)

Infinite Dimensional Pathwise Volterra Processes Driven by Gaussian Noise - Probabilistic Properties and Applications

Electronic Journal of Probability (EJP), 26 Doi: 10.1214/21-EJP683 - Full text in research archive

Bayer, Christian; Harang, Fabian Andsem & Pigato, Paolo (2021)

Log-modulated rough stochastic volatility models

SIAM Journal on Financial Mathematics, 12(3), s. 1257- 1284. Doi: 10.1137/20M135902X - Full text in research archive

Harang, Fabian Andsem; Lagunas, Marc & Ortiz-Latorre, Salvador (2021)

Self-Exciting Multifractional Processes

Journal of Applied Probability, 58(1), s. 22- 41. Doi: 10.1017/jpr.2020.88 - Full text in research archive

Amine, Oussama; Coffie, Emmanuel, Harang, Fabian Andsem & Proske, Frank Norbert (2020)

Bismut–Elworthy–Li formula, singular SDEs, fractional Brownian motion, Malliavin calculus, stochastic flows, stochastic volatility

Communications in Mathematical Sciences, 18(7), s. 1863- 1890. Doi: 10.4310/CMS.2020.v18.n7.a3

Harang, Fabian Andsem (2020)

An extension of the sewing lemma to hyper-cubes and hyperbolic equations driven by multi-parameter Young fields

Stochastics and Partial Differential Equations: Analysis and Computations Doi: 10.1007/s40072-020-00184-5

Harang, Fabian Andsem (2019)

Differential Equations Driven by Variable Order Hölder Noise, and the Regularizing Effect of Delay

Stochastics: An International Journal of Probability and Stochastic Processes Doi: 10.1080/17442508.2019.1602130

Amine, Oussama; Coffie, Emmanuel, Harang, Fabian Andsem & Proske, Frank Norbert (2018)

A Bismut-Elworthy-Li Formula for Singular SDE's Driven by a Fractional Brownian Motion and Applications to Rough Volatility Modeling

arXiv.org

Harang, Fabian Andsem (2022)

Pathwise regularization by noise for SDEs and SPDEs with multiplicative noise.

[Academic lecture]. XIV Brazilian Workshop on Mathematics.

Harang, Fabian Andsem (2021)

Pathwise regularization by noise for SDEs and SPDEs with multiplicative noise

[Academic lecture]. DNA Seminar.

Harang, Fabian Andsem (2021)

Log-modulated fractional Brownian motion and super rough volatility.

[Academic lecture]. 6th Berlin Workshop for Young Researchers on Mathematical Finance: 23-25.Aug.2021.

Harang, Fabian Andsem (2020)

Infinitely regularizing paths, and regularization by noise

[Academic lecture]. DNA seminar, Mathematics department, NTNU Trondheim.

Harang, Fabian Andsem (2020)

C^\infty regularization of ODEs perturbed by noise

[Academic lecture]. Young researchers between geometry and stochastic analysis.

Harang, Fabian Andsem (2020)

Volterra Equations driven by Rough Noise

[Academic lecture]. Seminar for Probability group at Université Nice-Sophia-Antipolis.

Harang, Fabian Andsem (2020)

Volterra Equations Driven by Rough Signals

[Academic lecture]. Seminar For Berlin Rough Paths Group.

Harang, Fabian Andsem (2020)

Infinitely regularising paths and regularisation by noise

[Academic lecture]. Oxford Stochastic Analysis and Mathematical Finance Seminar.

Harang, Fabian Andsem (2019)

Volterra equations driven by rough signals (2)

[Academic lecture]. CSA2019 - Conference in Stochastic Analysis - Risør.

Harang, Fabian Andsem (2019)

Volterra equations driven by rough signals

[Academic lecture]. Berlin -Oxford meeting, WIAS Berlin.

Harang, Fabian Andsem (2019)

A multi parameter sewing lemma, and applications

[Academic lecture]. Seminar at NTNU Trondhiem.

Harang, Fabian Andsem (2019)

A Multiparameter Sewing Lemma with applications

[Academic lecture]. Seminar at Purdue University, Indiana, USA.

Academic Degrees
Year Academic Department Degree
2018 University of Oslo, Department of mathematics Ph.D.
Work Experience
Year Employer Job Title
2023 - Present BI Norwegian Business School Professor of Mathematics
2021 - 2022 BI Norwegian Business School Associate Professor of Mathematics
2019 - 2021 University of Oslo Postdoctor