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Abstract

Capital ages and must eventually be replaced. We propose a theory of financing

in which firms finance new capital with debt and deleverage optimally to free up debt

capacity as their capital ages, thereby generating debt cycles. Concurrently, firms

shorten the maturity of their debt to match the remaining life of their capital, gener-

ating maturity cycles. These firm-level financing cycles drive aggregate leverage and

maturity dynamics when capital age is correlated across firms. We provide time series

and cross-sectional evidence that strongly supports these independent predictions and

highlights the key roles of capital age and asset life in financing cycles.
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Capital ages and must eventually be replaced (Feldstein and Rothschild, 1974). As an

example, in 2011 American Airlines ordered 460 airplanes to replace its ageing fleet.1 Large,

planned replacement investments are not exclusive to airlines, but are a hallmark of real-

world business operations. For instance, the aggregate replacement investments of U.S.

public firms amounted to $1.27tn in 2019—representing around 21% of their capital stock.

In this paper, we argue that planned replacement investments are an important driver of

financing choices that lead to debt and maturity cycles at the firm level and spill over to

aggregate debt dynamics when capital age is correlated across firms.

To demonstrate how planned replacement investments fundamentally affects firm financ-

ing, we proceed in two steps. We first develop a dynamic model of investment and financing

in which capital ages and firms can choose not only how much debt to issue but also the

maturity of this debt. In this model, firms borrow to finance investment and optimally

deleverage to free up debt capacity as capital ages, allowing them to issue new debt when

old capital needs to be replaced. To achieve these dynamics, firms issue debt with a maturity

that matches the useful life of new assets and a repayment schedule that reflects the need to

free up debt capacity as capital ages. These dynamics lead to firm-level debt cycles (Denis

and McKeon, 2012; DeAngelo, Gonçalves, and Stulz, 2018) and to a matching between debt

maturity and asset life (Stohs and Mauer, 1996) and spill over to aggregate debt dynamics

when capital age is correlated across firms. They also imply that both leverage and debt

maturity should be negatively related to capital age while debt maturity and the length

of debt cycles should be positively related to the useful life of assets. We then test these

independent predictions on a large sample of listed U.S. firms over the 1975–2018 period

and, as hinted by Figure 1, find strong support for all these predictions in the data.

Our model builds on prior dynamic models of firm investment and financing (Gomes,

2001; Hennessy and Whited, 2005; DeAngelo, DeAngelo, and Whited, 2011). But it differs

in that capital has a finite useful life, as in e.g. Arrow (1964), Rogerson (2008), Rampini

(2019), or Livdan and Nezlobin (2021), instead of being geometrically depreciated. Just

1See the Financial Times of July 7 2012, Procurement: Dependent on vision and strategy.
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Figure 1: Debt financing, capital age, and capital’s useful life. The top panels control
for firm fixed effects. Each dot corresponds to 1/20th of the sample firms. The sample period
is from 1975 to 2018. Variables are defined in Table A.1.

as any non-geometric form of depreciation, a finite useful life makes capital age relevant for

investment and financing decisions.2 A finite useful life means that the productivity of capital

(but not its value) remains constant over its lifespan after which it needs to be replaced—a

good approximation for many forms of capital. As an example, consider two airlines with the

same number of airplanes. One airline utilizes airplanes which are, on average, older than

2The standard assumption of geometric depreciation makes capital age irrelevant for the firm’s problem
since a capital’s future productivity (and value) can be perfectly described by its current productivity.
Subsection I.D shows that our results are robust to alternative forms of depreciation. The key force underlying
our results and predictions is that the firm replaces ageing capital via large, planned investments. As a result,
similar financing dynamics would arise in a model with fixed investment costs; see Subsection I.E.
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the airplanes of the other airline. Geometric depreciation of the airplanes would imply that

the airline with younger airplanes should fly more passengers, as its capital is younger and

therefore more productive. However, since the airlines have the same number of airplanes,

they roughly fly the same number of passengers. In our model, as in the airline example, the

firm knows it needs to make replacement investments in the future as its capital ages due to

the finite life of assets (airplanes). That is, the firm faces large, planned investments.

In the model, the firm has an incentive to finance investment with debt because creditors

are more patient than shareholders, which is equivalent to debt providing tax benefits. But

since the firm faces a collateral constraint (Holmstrom and Tirole, 1997; Lian and Ma, 2021),

it manages its leverage keeping in mind future funding needs. Therefore, the firm initially

levers up when buying new capital. However, as capital ages, it progressively reduces its net

debt to free up debt capacity that will be used to finance future replacement investments.

These net debt dynamics generate firm-level debt cycles, imply that firms have inherently

unstable leverage, consistent with the findings of DeAngelo and Roll (2015), and rationalize

the pro-active leverage declines documented in Denis and McKeon (2012) and DeAngelo

et al. (2018).3 They also imply a negative relation between capital age and leverage and a

positive relation between the length of debt cycles and the useful life of capital, in line with

the patterns highlighted in Figure 1. Leverage dynamics in our model arise from the fact

that capital ageing leads the firm to predictably replace existing capital in lumps. As we

show in the paper, these leverage dynamics arise with any form of capital depreciation that

leads to investment spikes (without requiring, e.g., fixed adjustment costs).

In our baseline model, debt issuance is costless and the firm issues and rolls-over one-

period debt. With debt issuance costs (Altınkılıç and Hansen, 2000; Yasuda, 2005), the firm

implements the same net debt dynamics as in the baseline model but only issues debt when

buying capital in order to minimize issuance costs. To do so, the firm issues debt with a

maturity that approximately matches the useful life of new assets and with a repayment

schedule that progressively frees up debt capacity. By doing so, the firm ensures that the

3Notably, DeAngelo et al. (2018) find that this deleveraging reflects decisions to repay debt and retain
earnings as opposed to exogenous shocks that drive stock-market prices up and leverage ratios down.
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repayment of maturing debt provides enough financial slack to finance replacement invest-

ments. Therefore, capital ageing leads to a matching theory of debt maturity (Stohs and

Mauer, 1996) and to firm-level maturity cycles. Notably, our model predicts that debt ma-

turity should increase with the useful life of assets but decrease with capital age, in line with

the empirical patterns highlighted by the right panels of Figure 1.

To examine whether firm-level debt and maturity cycles spillover into aggregate dynamics,

we embed our single-firm model into an industry equilibrium with debt. We show that the

correlation of capital age across firms determines whether debt and maturity cycles spillover

into the aggregate. That is, if capital age is uncorrelated across firms, then firm-level debt

and maturity cycles get smoothed out and, therefore, do not spillover into the aggregate.

Instead, if capital age is correlated across firms, then so is investment, leading to aggregate

debt and maturity cycles. Thus our model predicts that industries with greater (lower) within

industry heterogeneity of capital age will have reduced (greater) aggregate cycles. It is well

known that shocks to firm level investment can spillover into aggregate investment (Cooper

and Haltiwanger, 1993; Caballero and Engel, 1999; Cooper, Haltiwanger, and Power, 1999;

Winberry, 2021). Our results show that these investment shocks—due to capital ageing in

the context of our study—can also impact aggregate financing.

The mechanism in our model produces three independent set of predictions, i.e. firm-

level time-series predictions, cross-sectional predictions, and aggregate predictions. We test

these predictions using data on U.S. public firms and various measures of capital age and

useful life of assets. Our empirical analysis delivers three main results. First, we find that

capital age is a significant predictor of both leverage and debt maturity at the firm-level,

even after conditioning on a standard set of leverage and maturity controls, including firm

age. In addition, when examining the importance of different factors in explaining leverage

ratios as in Frank and Goyal (2009), we find that capital age is the factor with the most

explanatory power. In separate tests aimed at exploring the mechanism, we show that the

effects of capital age on leverage and debt maturity are weaker for R&D intensive firms

or firms with greater intangible capital and stronger for firms in which investment is more
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lumpy, as measured by the firm-specific investment skewness or kurtosis. We also show

that the effect of capital age on leverage is stronger in sub-samples of firms that rely less on

leasing, and can become insignificant when firms rely almost exclusively on leasing to finance

investment, in line with economic intuition.

Second, we find in cross-sectional tests that the useful life of assets is a significant pre-

dictor of both the length of debt cycles and average debt maturity. Notably, firms with

longer-lived assets follow longer debt cycles and have a higher average debt maturity, in

line with our predictions. Third, we test the model’s aggregate predictions by examining

whether industries with greater cross-sectional dispersion in capital age have lower debt and

maturity cyclicality, as measured by the standard deviation of the annual industry observa-

tions. Consistent with the model predictions, we find that industries with higher capital age

dispersion have lower leverage and maturity cyclicality. We also perform various robustness

checks to confirm the validity of our results, including using alternative proxies for capital age

and the useful life of assets, alternative measures of debt maturity, and alternative industry

definitions. All these robustness tests confirm our findings.

Our paper makes several contributions. First, we develop a framework in which invest-

ment cycles lead to endogenous debt and maturity cycles. From a modeling perspective,

this framework brings together the literature on vintage capital (Arrow, 1964; Ramey and

Shapiro, 2001; Rogerson, 2008; Rampini, 2019; Livdan and Nezlobin, 2021; Ma, Murfin, and

Pratt, 2021) and the literature on lumpy investment (Cooper and Haltiwanger, 1993; Ca-

ballero and Engel, 1999; Cooper et al., 1999; Winberry, 2021). While existing papers focus on

investment dynamics, our paper instead articulates the effects of vintage capital and lumpy

investment on financing decisions. Notably, our paper is the first to outline the consequences

of the investment cycles associated with lumpy investment for financing cycles and to shed

light on the implications of capital age for firm-level and aggregate debt dynamics.

Second, our paper contributes to the literature studying dynamic financing and invest-

ment decisions (Gomes, 2001; Hennessy and Whited, 2005; Clementi and Hopenhayn, 2006;

Nikolov, Schmid, and Steri, 2019) by highlighting the role of capital age and asset life in
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determining not only leverage dynamics but also debt maturity choices. In this literature,

our model shares several features with DeAngelo et al. (2011) in that investment spikes are

accompanied by leverage spikes and firms deleverage progressively to free up debt capac-

ity. However, our analysis is distinctive for i) the roles it assigns to the useful life of assets

and capital age, ii) the associated implications it derives for firm-level and aggregate debt

cycles, and iii) its analysis of debt maturity. Our model is also closely related to Eisfeldt

and Rampini (2007) and Rampini (2019). In these studies, the market for physical capital is

frictionless so that capital only affects the firm’s future through its residual value. Our paper

instead allows for frictions in the market for physical capital. As a result, firms retain and

eventually replace their capital, which drives their financing decisions. In our model, capital

ageing leads to firm-level debt cycles, consistent with the leverage dynamics documented by

Denis and McKeon (2012) and DeAngelo et al. (2018), and has important implications for

firm-level debt maturity choices and aggregate debt dynamics.

Third, our paper also contributes to the literature on debt maturity choice (Myers, 1977;

Flannery, 1986; Diamond, 1991; He and Milbradt, 2016; Huang, Oehmke, and Zhong, 2019)

by proposing a theory in which firms match the maturity of their assets and debt liabilities.

We show that the maturity structure linkage emerges naturally in worlds in which i) firms

borrow to meet funding needs for immediate investment and ii) subsequently deleverage

because they want to have debt capacity when assets in place reach the end of their useful

life. Because of our focus on leverage, debt maturity, and investment, our paper is most

closely related to Myers (1977). While Myers (1977) suggests that firms with more growth

options should shorten their debt maturity to reduce debt overhang, our theory specifically

ties the choice of debt maturity to the useful life of assets in place.4 This allows us to show

that optimal financing is characterized by cycles and to generate unique predictions relating

capital age and the useful life of assets to leverage and debt maturity choices.

4Myers (1977)’s conjecture has been recently challenged by Diamond and He (2014) who show that debt
overhang may increase or decrease with debt maturity. Consistently, empirical work on debt maturity based
on the hypothesis of reduced overhang of shorter term debt has had mixed success. Barclay and Smith (1995)
and Guedes and Opler (1996) document a negative relation between maturity and growth opportunities, while
Stohs and Mauer (1996) and Johnson (2003) find a positive relation after controlling for leverage.
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Lastly, we leverage our theoretical analysis to contribute to the large empirical literatures

on leverage (see e.g., Leary and Roberts, 2005; Lemmon, Roberts, and Zender, 2008; Frank

and Goyal, 2009) and debt maturity (see e.g., Custódio, Ferreira, and Laureano, 2013; Choi,

Hackbarth, and Zechner, 2018). We do so by showing that our mechanism for the formation

of debt cycles (DeAngelo et al., 2018) is consistent with the dynamics of leverage around

investment peaks (Bargeron, Denis, and Lehn, 2018) and the incidence of large, proactive

increases in leverage (Denis and McKeon, 2012; DeAngelo and Roll, 2015). Our analysis

additionally brings out the key roles of capital age and asset life in the dynamics of leverage

and debt maturity and provides cross-sectional and time series evidence that is strongly

supportive of the proposed mechanism. Finally, we find empirical evidence consistent with

our mechanism generating not only debt cycles but also maturity cycles and show that the

aggregate dynamics of both leverage and debt maturity can be better understood when

taking into account capital age.

I Single-Firm Model

A Assumptions

Time is discrete and indexed by t ∈ {0, 1, 2, ...}. We consider a representative firm owned

by a risk-neutral entrepreneur who discounts cash flows at a rate r > 0. At time 0, the

entrepreneur creates the firm with an endowment of C0 in cash.

Each period, the firm can use one unit of capital to produce one unit of the final good in

the next period, which yields a profit of π > 0. The firm can acquire a unit of new capital,

which is delivered immediately, for a price K. Capital cannot be sold—i.e. investment is

irreversible—and has a finite useful life. Notably, we consider that capital has a constant

productive capacity over a finite number n of periods after which it needs to be replaced.5

5In this respect, we depart from most existing work, which relies on geometric depreciation of capital
following Hayashi (1982). There exists ample empirical evidence that geometric depreciation does not fully
reflect reality (Feldstein and Rothschild, 1974; Harper, 1982; Ramey and Shapiro, 2001; Rogerson, 2008) and
that depreciation is backloaded (Giandrea, Kornfeld, Meyer, and Powers, 2021). See also Subsection I.D.

7



That is, capital has a constant productivity over its lifespan but a declining value. This type

of capital depreciation is also known as one-hoss-shay depreciation (see Arrow, 1964; Laffont

and Tirole, 2001; Rampini, 2019; Livdan and Nezlobin, 2021) and is largely used in practice.

Livdan and Nezlobin (2021) note for example that firm-level data on capital goods, such as

property, plant, and equipment (PP&E), is prepared in practice almost exclusively under

the assumption that the efficiency of capital goods is constant over a finite useful life.

As an example, consider two airlines with the same number of airplanes. One airline uti-

lizes airplanes which are, on average, older than the airplanes of the other airline. Geometric

depreciation of the airplanes (as in e.g. Hayashi, 1982) would imply that the airline with

younger airplanes should fly more passengers, as its capital is younger and therefore more

productive. However, since the airlines have the same number of airplanes, they roughly fly

the same number of passengers. In this case, using a finite useful life better reflects their

productivity.6 While the use of one-hoss-shay depreciation depreciation makes our results

and empirical predictions particularly crisp, Subsection I.D shows that they are robust to

other forms of depreciation. As will become clear, our results also go through if profits π

depend on capital age, for example due to increasing maintenance costs.

Figure 2 shows the cash flows of a firm that produces each period and replaces capital at

the end of its useful life. Capital replacement leads to investment spikes, as observed in the

data (Doms and Dunne, 1998; Cooper and Haltiwanger, 2006; Whited, 2006). In addition,

the likelihood of observing an investment spike is increasing in the time since the previous

spike (i.e. capital age), in line with the empirical evidence (see Cooper et al., 1999).

We assume that the purchase price of capital K is sufficiently small that investment is

positive net present value (NPV). (Appendix A provides the exact parameter restriction.)

We also note that in our setting depreciation of capital can take the form of physical depreciation and/or
(expected) technological obsolescence.

6One could argue that firms purchase many different types of capital and therefore geometric depre-
ciation is a good approximation of their actual productive capacity. But as in the example given, there
exists substantial within-firm variation in capital age in the data, and therefore depreciation of capital
productivity6=depreciation of capital value inside the firm, which is required to use geometric depreciation.
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Figure 2: Firm cash flows. Each period, the firm produces and capital generates a profit
of π the next period. Each n periods, new capital is bought at a price K.

The present value of the cash flows of a firm that always produces goods is given by

∞∑
t=1

1

(1 + r)t
π −

∞∑
i=0

1

(1 + r)i∗n
K =

π

r
− (1 + rn)K

rn
,

where rn = (1 + r)n − 1 is the n-period discount rate.

As in Rampini and Viswanathan (2010) and Rampini (2019), the firm finances investment

with cash (retained earnings) or one-period debt.7 Creditors are more patient than the

entrepreneur and discount cash flows at a rate ρD < r, which generates an incentive for

the firm to issue debt. This assumption is standard in discrete time dynamic financing and

investment models (e.g., DeAngelo et al., 2011), and is equivalent to the existence of tax

benefits of debt ρD = (1− τ)r < r, where τ ∈ (0, 1) is the corporate tax rate.

When the firm produces the final good at time t, we consider that it can issue debt up

to a cash flow-based collateral constraint (Stiglitz and Weiss, 1981; Holmstrom and Tirole,

1997; Clementi and Hopenhayn, 2006):

Dt ≤ φ× π,

where Dt is total debt at time t and φ is the multiple of per period profits that can be pledged.

This assumption reflects the finding in Lian and Ma (2021) that 80% of debt contracts are

associated with cash-flow-based collateral constraints. We assume that φ ∈ [φ, φ̄) is bounded.

7Section II introduces proportional debt issuance costs, allows the firm to issue multi-period debt, and
derives the optimal debt maturity structure. The model can also be extended to incorporate costly equity
issuance. With proportional or convex equity issuance costs, leverage and debt maturity will follow the same
patterns as in the current model. For large enough equity issuance costs, the firm will finance investment
exclusively with debt and financing dynamics will be exactly as in the baseline model. For low enough
issuance costs, the firm will partly rely on equity to finance investment, leading to dampened debt cycles.
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The upper bound φ̄ ensures that debt is risk-free. The lower bound φ ensures that the firm

can initially purchase the asset. Appendix A provides the exact parameter restrictions.

Subsection I.F shows that an asset-based collateral constraint only strengthens our result

that firms lower net debt as capital ages since the collateral value declines as capital ages.

The firm earns a return ρC ∈ (0, ρD) on its cash holdings, implying that the firm never

holds both cash and debt (as in Hennessy and Whited (2005) or DeAngelo et al. (2011)). In

addition, since this return is below the discount rate r, the firm has no incentives to retain

more cash than is needed to fund investment.

B Equity Value

At time t, the firm has cash reserves Ct and invests It in new capital (if at all). Dividends

are then given by the budget constraint

Divt = πI{firm produces} − It + Ct−1(1 + ρC)− Ct +Dt −Dt−1(1 + ρD) (1)

= πI{firm produces} − It +NDt −NDt−1

(
1 + ρDI{NDt−1≥0} + I{NDt−1<0}ρC

)
≥ 0,

where NDt = Dt − Ct is the firm’s net debt, which summarizes its financing policy, and

I{x≥y} is the indicator function of the event x ≥ y.

The problem of management is to maximize the present value of future dividends by

choosing the firm’s investment It and financing NDt policies. That is, equity value solves

E0 = sup
{It,NDt}t∈{0,1,2,...}

∞∑
t≥0

Divt
(1 + r)t

, (2)

where dividends follow from the budget constraint in equation (1) and are non-negative, and

net debt satisfies the collateral constraint NDt ≤ φ× π.
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C Financing and Investment

We solve management’s optimization problem in steps, starting with investment policy. A

first result, summarized in Proposition 1, is that the firm optimally invests when capital

reaches the end of its useful life and never before:

Proposition 1 (Firm Investment). The firm replaces capital when it reaches the end of its

useful life and never before.

The intuition for the result in Proposition 1 is that capital has constant productivity

as long as it has not reached the end of its useful life. Postponing replacement allows the

firm to earn a return ρC on any capital it holds, rendering early replacement suboptimal.

In addition, capital investment is positive NPV. Therefore, the firm always invests in new

capital once existing capital has reached the end of its useful life.

Let us next turn to financing policy. Let a ∈ {0, 1, ..., n − 1} be the age of the firm’s

current capital. With a slight abuse of notation, we also use a as a time index. NDa will

therefore refer to net debt given that the firm has capital with age a. As we show next, the

firm optimally retains earnings to lower its net debt and create financial slack as its capital

ages. This financial slack allows the firm to invest in new capital by issuing new debt when

reaching the useful life of old capital. Notably, we have the following result:

Theorem 1 (Debt Cycles). As capital ages, the firm frees up debt capacity to finance re-

placement investments, in that

NDa+1 ≤ NDa.

Figure 3 shows the optimal dynamics of investment and financing. The firm finances

investment by increasing net debt. It then optimally retains earnings to lower net debt. The

firm thereby frees up debt capacity to be able to finance its replacement investment. These

dynamics generate debt cycles that are driven by the firm’s ageing capital.

The debt cycles depicted in Figure 3 are consistent with several empirical findings: i)

Denis and McKeon (2012) find that firms lever up to finance investment, which occurs in

11
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Figure 3: Profits, investment, financing, and dividends. This figure assumes that
C0 = K and therefore the firm does not pay a dividend at time zero.

our model due to firms financing the replacement of ageing capital with debt; ii) Denis and

McKeon (2012) and DeAngelo et al. (2018) find that firms significantly decrease leverage

after reaching a peak, which occurs in our model because firms retain earnings and lower

leverage to finance the eventual replacement of ageing capital; iii) DeAngelo and Roll (2015)

find that corporate capital structure is inherently unstable, which is consistent with our debt

cycles leading to inherently unstable firm leverage even in the absence of uncertainty; and iv)

Strebulaev and Yang (2013) show that a large fraction of U.S. public firms has zero-leverage,

which occurs in the model when NDa < 0.

In addition to rationalizing prior findings, the model generates unique cross-sectional and

time-series predictions for leverage. Within a firm, the model predicts that

Prediction 1. Capital age and leverage are negatively related.

This negative relation arises because of the need to free up debt capacity as capital ages

(Theorem 1). While across firms, the model predicts that

Prediction 2. The duration of debt cycles is positively related to the useful life of assets.

This positive relation arises because the length of debt cycle is driven by the length of

investment cycles; see Figure 3.
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Our model also allows us to study the impact of lumpiness in investment and asset

(in)tangibility on debt cycles. Notably, for a given level of cash flows π, a greater cost

of physical capital K implies that investment is more lumpy and that the firm uses more

physical capital (i.e. less intangible capital) to generate the same cash flows. The following

proposition formalizes the effects of investment lumpiness and asset tangibility on debt cycles.

Proposition 2 (Debt Cycles, Lumpy Investment, and Tangible Capital). As capital becomes

more expensive K ′ > K the effects of capital age on leverage become more pronounced:

|NDt+1 −NDt| ≤ |ND′t+1 −ND′t|.

The more expensive capital K becomes the more financial slack the firm needs to finance

the replacement investment. As a result, as shown by Proposition 2, the leverage cycles

become more pronounced as the cost of physical capital K increases. This leads to the

following prediction:

Prediction 3. The effects of capital age on leverage are more pronounced in firms with more

lumpy investment and less pronounced in firms with more intangible assets.

D Other Forms of Capital Depreciation

Our model assumes that the efficiency of capital goods follows a one-hoss shay pattern, as in

e.g. Arrow (1964), Rogerson (2008), Rampini (2019), or Livdan and Nezlobin (2021). This

form of capital efficiency keeps the model tractable since capital age a is a sufficient statistic

for the state of the firm when t > 0. This in turn allows us to generate crisp empirical

predictions on financing decisions and debt maturity choices.

An important question is whether this form of capital efficiency or depreciation is neces-

sary for our results. The short answer is no. Debt cycles are generated by large replacement

investments financed with debt. Thus, any form of depreciation that leads to large re-

placement investments in the future suffices (see Proposition 3 below). But what forms of

depreciation have this feature?
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Figure 4: Depreciation and replacement investments. The figure shows the productiv-
ity of capital S(a|β) as it ages and the replacement investment S(a−1|β)−S(a|β) necessary
due to the depreciation of the original capital.

The U.S. Bureau for Labor Statistics (BLS) estimates the productivity of capital in place

relative to the productivity of new capital (or, equivalently, the productivity of capital a

years after it has been installed) using the function

S(a|β) = I{a≤n−1}
n− a
n− βa

,

where β ∈ [0, 1]; see Giandrea et al. (2021). Our model with capital that has a finite

useful life represents the case in which β = 1. The case β = 0 corresponds to a linear

decrease in asset productivity. Figure 4a shows intermediate cases β ∈ (0, 1). A linear

decrease in productivity implies that the replacement investment needed to compensate for

the lost productivity of the original capital is constant, in that S(a−1|0)−S(a|0) = 1
n
I{a≤n}.

By contrast, any form of depreciation with β > 0 back loads the replacement investment

leading to large planned replacement investments in capital, as shown by Figure 4b. The

U.S. Bureau for Labor Statistics uses β = 0.75 for structures and β = 0.5 for equipment (see

Giandrea et al., 2021). With β = 0.75 and n = 4 (respectively n = 5), the firm makes 57.1%

(respectively 50%) of its replacement investments in the last useful year of the asset.
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Under additional restrictions given in Appendix B, we can establish that given an arbi-

trary form of capital depreciation and an arbitrary distribution of the firm’s capital age:

Proposition 3 (Ageing Capital and Leverage with Arbitrary Capital Depreciation). Let

time T > t be the next time that the firm invests. Then for t′ ∈ {t, ..., T − 2}, capital ages

while net debt weakly declines

NDt′+1 ≤ NDt′ .

E Non-Geometric Depreciation Versus Fixed Investment Costs

In our model, financing cycles are driven by the predictable “lumps and bumps” in invest-

ment created by non-geometric depreciation. In practice, other mechanisms/frictions could

lead to predictable lumps and bumps in investment at the firm level, fixed investment costs

being one of them. Indeed, in a standard model with decreasing returns to scale and geo-

metric depreciation, the firm will postpone investment until the associated benefits are large

enough to offset the fixed investment costs. This will happen when capital becomes suffi-

ciently less productive (due to depreciation) that it becomes optimal to replace it (Cooper

and Haltiwanger, 1993; Cooper et al., 1999). This alternative mechanism would lead to pre-

dictable investment cycles, as in our model with non-geometric depreciation. In addition,

and as in our model, the firm would need to free up debt capacity as capital ages to be able

to finance replacement investments, thereby generating financing cycles. Financing cycles

thus arise more generally in the presence of (predictable) investment cycles, independently

of the nature of the technology or friction that drives these cycles.

F Cash-Flow Versus Asset-Based Collateral Constraints

In recent research, Lian and Ma (2021) document that 20% of debt by value is based on con-

straints related to the liquidation value of physical assets (“asset-based lending” in creditor

parlance) in US non-financial firms, whereas 80% is based predominantly on cash flows from
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firms’ operations (as assumed in our baseline model). As we now show, debt cycles would

mechanically be stronger with an asset-based collateral constraint.

Let Va be residual value of capital, which we define as the present value of future cash

flows that capital with age a generates:

Va =
π

1 + r
+ ...+

π

(1 + r)n−a
=

n∑
t=a+1

π

(1 + r)t−a
.

Assuming the firm is producing, an asset-based collateral constraint would restrict debt to

be less than some fraction χ ∈
[
0, 1

1+ρD

]
of the capital’s residual value8

Da < χVa.

Since the residual value of assets Va decreases with capital age, such a constraint can only

strengthen the debt cycles identified in Theorem 1. The reason is that firms are forced to

deleverage because the collateral constraint becomes tighter as capital ages, which does not

happen with a cash-flow based collateral constraint.

II Debt Maturity

A Assumptions

In the baseline model, there is no cost of issuing debt so that there is no cost for the firm of

issuing and rolling over one-period debt. In practice, issuing debt is costly (Altınkılıç and

Hansen, 2000; Yasuda, 2005). In this section, we introduce proportional debt issuance costs

ε > 0 and allow the firm to have multiple debt issues outstanding at the same time with

(possibly) different maturities. Interest on debt is paid each period. We study the situation

in which debt issuance costs become small ε→ 0. To make sure that the firm does not have

permanent debt in its capital structure, we assume that capital investment cannot be fully

8The repayment due next period is Da(1 + ρD).
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financed by debt and current period profits:

K > φπ + π. (3)

All the results presented below hold for the non-permanent part of the firm’s debt in case

this assumption is not verified.

B Optimal Financing

With debt issuance costs, the firm implements the same net debt dynamics as in Section I

but only issues debt when buying capital in order to minimize issuance costs. As a result,

the debt maturity choice has no bearing on the debt cycles. To achieve these debt dynamics,

the firm issues debt with a maturity that approximately matches the useful life of new assets

and with a repayment schedule that progressively frees up debt capacity. This way, the

firm makes sure that by repaying maturing debt it creates enough financial slack to finance

replacement investments. The following theorem formalizes this result.

Theorem 2 (Long-Term Debt Financing). With debt issuance costs, the firm optimally

issues long-term debt with a repayment schedule such that net debt follows the same cycles

as in Theorem 1. Furthermore, the firm only issues (long-term) debt when buying new capital

in order to minimize issuance costs.

Let Ma be the average maturity of outstanding debt given that capital age is a. When

NDa ≤ 0, the firm has no debt outstanding and Ma = 0. When NDa > 0, we have that

Ma =
n−1∑
i=a

I{NDi>0}(i+ 1− a)
NDi −max{NDi+1, 0}

NDa

.

We can then show that capital age and average debt maturity are negatively related.

Proposition 4 (Debt Maturity Cycles). Average debt maturity is decreasing in capital age:

Ma+1 ≤Ma.
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Figure 5 shows how average debt maturity evolves through time when assets have a useful

life of 6 years and the firm implements the optimal debt maturity structure at issuance. The

firm only issues debt when buying new capital. Debt issuance leads to an increase in the

average debt maturity which then decreases as capital ages until the firm invests again.

Therefore, capital ageing not only leads to debt cycles but also to maturity cycles.
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Figure 5: Average debt maturity. This figure considers the case of a firm with assets
that have a useful life of 6 years and shows that average debt maturity given the optimal
debt maturity structure at issuance.

An implication from the optimal financing policy is that the firm can postpone deleverag-

ing when assets have a greater useful life and does so by issuing debt with a longer maturity.

Notably we have that:

Theorem 3 (Maturity Matching). Increasing the useful life of assets increases average debt

maturity in that ∆Ma

∆n
≥ 0.

The model generates both cross-sectional and time-series predictions for debt maturity.

Within a firm, the model predicts that (see Proposition 4)

Prediction 4. Capital age and debt maturity are negatively related.

While cross-sectionally, the model predicts that (see Theorem 3)

Prediction 5. Average debt maturity is positively related to the useful life of a firm’s assets.
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III Industry Equilibrium

This section embeds our single-firm model into a steady state industry equilibrium and

studies the implications of ageing capital for aggregate levels of investment and corporate

debt. To simplify notation, we only use time indices for time-varying quantities.

A Assumptions

There are three types of players: consumers which have demand for the final good, incumbent

firms which produce the final good, and entrepreneurs which can create new firms.

Consumers’ demand for the final good is given by their inverse demand function P (Q) ≥
0, with P ′(Q) < 0 and where Q is the aggregate supply of the final good. The mass of

incumbent firms in the industry is given by S. Each period, each of these firms produces

one unit of the final good using their installed capital and makes financing choices as in the

single-firm model of Section I. Finally, entrepreneurs can pay an entry cost C0 + H with

H > 0 to create a new firm that is endowed with C0 in cash.

B Equilibrium Quantities and Existence

The aggregate supply of the final good is Q = S since a mass S of firms produce the final

good. Given consumers’ inverse demand function, the price for the final good and, thus, the

profits of the firm (ignoring the purchase price of capital) in each period are given by

π = P (S).

Let E0(π) be the value of a new firm when the per period profits are π, as given by equation

(2). In a steady state equilibrium, the free entry condition must hold

E0(π)− (H + C0) = 0, (4)
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ensuring that entrepreneurs are indifferent between entering or staying out of the industry.9

Definition 1 (Steady State Industry Equilibrium). An equilibrium

Ψ∗ = (S∗, Q∗, P ∗, π∗, I∗a , ND
∗
a)

consists of a mass of incumbent firms S∗, an aggregate supply of the final good Q∗, a price for

the final good P ∗, incumbent firms per period profits π∗, and firms’ investment and financing

policies given their capital age (I∗a , ND
∗
a) such that:

1. Incumbents: Given a price P ∗, firms’ profits are π∗ = P ∗ and incumbent firms choose

their investment and financing strategies (I∗a , ND
∗
a) to maximise their equity value.

2. Entrepreneurs: create new firms until they are indifferent between entering or staying

out of the industry:

E0(π∗)− (H + C0) = 0.

3. Consumers: pay the equilibrium price P ∗ for the good given their inverse demand

function and the aggregate supply Q∗ = S∗ of the final good, with

P ∗ = P (S∗).

We assume that consumers’ inverse demand function P (Q) satisfies two conditions. First,

we assume that P (0) ≥ r
(
K
(

1 + 1
r

ρC
(1+ρC)n−1

)
+H

)
, so that entry is profitable if there are

no competitors. Second, we assume that limQ→∞ P (Q) = 0, which implies that there is finite

demand for the final good. Finally, we assume that H > H where H is defined in Appendix

D. This last condition ensures that debt is risk-free in equilibrium. Under these assumptions,

we can establish the following result:

9Equilibria with E0(π)−(H+C0) < 0 could also exist since no firm exits or enters in our equilibrium. We
focus on the case where the free entry condition binds, which would be a situation in which firms sequentially
decide whether to enter or not and so the marginal firm is exactly indifferent between these two choices.
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Proposition 5. A unique industry equilibrium Ψ∗ exists.

C Capital Age Distribution and Aggregate Financing

So far, we have not discussed the capital age distribution within our industry. It turns

out that the equilibrium Ψ∗ is independent of the capital age distribution. However, as we

show below, aggregate investment and financing do depend on it. In the Internet Appendix,

we argue that the nature of the shocks that firms face—aggregate versus idiosyncratic—

determines whether financing cycles spillover to the aggregate. Notably, we show that ag-

gregate shocks—such as shocks to credit supply—can increase the correlation across firms’

capital age, leading to aggregate financing cycles.10

Let the distribution of capital age at time t be given by qt = (q0
t , ..., q

n−1
t ), where qat is

the fraction of firms that have capital that is a years old. In the steady state equilibrium, qt

evolves according to

qat+1 =

q
a−1
t if a > 0,

qn−1
t otherwise,

since capital ages until the end of its useful life (which occurs after n years) at which point

the firm buys new capital. Proposition 6 characterizes aggregate production, financing, net

debt, and maturity dynamics in our steady state industry equilibrium.

Proposition 6. In steady state industry equilibrium:

1. Aggregate production is constant through time Q∗ = S∗.

2. Aggregate investment is S∗ ∗ q0
t .

3. Aggregate net debt is S∗ ∗
∑n−1

a=0 q
a
t ∗ND∗a.

10One way in which can we arrive at steady state equilibria with different capital age distributions in the
model without shocks is if firm entry is restricted in the first n − 1 periods. Let qn−1 = (q1n−1, ..., q

n−1
n−1) be

a probability distribution. At time t ∈ {0, ..., n− 1} only S∗qn−1−tn−1 firms are allowed to enter the industry.
At time n− 1 the capital age distribution would then be qn−1.
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4. Aggregate average debt maturity is 1∑n−1
a=0 q

a
t ∗ND∗a

∑n−1
a=0 q

a
t ∗ND∗a ∗M∗

a , where M∗
a is the

average debt maturity of a firm with capital age a.

Figure 6 shows two different types of capital age distributions and their evolution over

time. Both distributions lead to the same steady state equilibrium Ψ∗ and, therefore, to the

same investment and financing choices by firms given their capital age and aggregate output.

In the top panel, capital age has a smooth distribution and therefore there is no correlation

in capital age across firms. In the bottom panel, all capital has the same age. Therefore, the

distribution is lumpy and there is perfect correlation in capital age across firms.
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Figure 6: Capital age distribution over time. The top panels show a smooth capital
age distribution (no correlation across firms’ capital age) while the bottom panels show a
lumpy capital age distribution (perfect correlation across firms’ capital age).

These patterns have first order implications for aggregate investment and financing. Fig-

ure 7 shows how the smooth and lumpy capital age distributions of Figure 6 translate into

aggregate financing and investment.11 While the firm level financing policies (first panel of

11While we have not explicitly discussed the debt maturity choice in the industry equilibrium section,
Theorem 2 shows how to determine optimal debt maturity given the net debt dynamics.
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Figure 7: Capital age distribution and aggregate investment, net debt, and debt
maturity. The first panel shows the firm level investment and financing policies. The second
panel shows aggregate net debt using the capital age distribution from Figure 6. The third
panel shows aggregate debt maturity using the capital age distribution from Figure 6. The
fourth panel shows aggregate investment using the capital age distribution from Figure 6.
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Figure 7) are independent of the capital age distribution, they lead to markedly different

aggregate financing and investment dynamics (second, third, and fourth panel). Given the

smooth capital age distribution (no correlation in capital age across firms), investment is

constant through time and, as a result, so is financing. The individual firm-level debt cycles

get smoothed out when aggregated. The lumpy capital age distribution (perfect correlation

in capital age across capital firms) yields very different results. Investment is highly cyclical

and financing reflects these investment cycles leading to leverage and maturity cycles at the

aggregate level. The model thus implies that

Prediction 6. A higher dispersion of capital age across firms within an industry implies a

lower dispersion of aggregate leverage and debt maturity in that industry.

These results show that whether firm-level cyclicality in investment and financing trans-

lates into aggregate financing and investment cycles depends on the capital age distribution.

Correlation across firms’ capital age is necessary for the firm level investment, leverage, and

maturity cycles to spillover into the aggregate. It is well known that shocks to firm level in-

vestment can spillover into aggregate investment (Cooper and Haltiwanger, 1993; Caballero

and Engel, 1999; Cooper et al., 1999; Bachmann, Caballero, and Engel, 2013; Winberry,

2021). Our results show that these investment shocks (due to the replacement of ageing

capital) can also impact aggregate financing and lead to leverage and maturity cycles.

IV Empirical Analysis

A Data

Our empirical analysis is based on a sample of listed U.S. firms from annual Compustat

over the period of 1975–2018. We use a sample selection procedure that is similar to that

in Peters and Taylor (2017) and Lin, Palazzo, and Yang (2020). In particular, we exclude

firms whose SIC code is between 4900 and 4999 (utility or regulated firms), between 6000

and 6999 (financial firms), or greater than 9000 (government agencies etc.). We also exclude
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firms operating in R&D–intensive sectors (SIC codes 737, 384, 382, 367, 366, 357, and 283).

We winsorize all variables at 1% and 99% levels to mitigate the impact of potential outliers.

We drop all observations with missing values on one or more variables of interest. We then

remove observations with a market-to-book ratio larger than 20 or with negative book equity.

Our final sample consists of 77,877 firm-year observations with 6,620 unique firms.

B Measuring Capital Age

Our model predicts that debt and maturity should decrease with capital age (a), while the

length of debt cycles and average debt maturity should increase with the useful life of assets

(n). To test these predictions, we need measures of a firm’s capital age and the useful life of

its assets. We construct our measure of capital age as in Lin et al. (2020). In particular, we

first calculate net and gross investment for firm i at time t, respectively, as:

Ineti,t = ppenti,t+1 − ppenti,t and Igrossi,t = δi,t+1ppenti,t + Ineti,t ,

where ppenti,t refers to property, plant, and equipment and δi,t is the BEA-inferred industry

depreciation rate of firm i at time t. We then define the capital age measure CAi,t as:

CAi,t =

(CAi,t−1 + 1)× (1−δi,t)ppenti,t−1

ppenti,t
+

Igrossi,t−1

ppenti,t
if Igrossi,t−1 > 0,

CAi,t−1 + 1 otherwise.

When the firm has positive gross investment in the previous period, capital age is a weighted

average of the old capital, which ages one year, and new capital, which is one year old. The

respective weights of old and new capital,
(1−δi,t)ppenti,t−1

ppenti,t
and

Igrossi,t−1

ppenti,t
, reflect the respective

shares of the old and new capital in this period’s total capital. When gross investment is

negative, we assume that all of capital vintages are disposed of in an equal way so that

capital ages by one year. We initialize the firm–level measure of capital age by calculating

the ratio of accumulated depreciation and amortization (dpact) to current depreciation and
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amortization (dp). Subsection IV.F considers alternative measures of capital age.

To measure the useful life of assets, we follow the empirical literature which relies on

deflating gross property, plant and equipment by current depreciation (Stohs and Mauer,

1996; Custódio et al., 2013; Livdan and Nezlobin, 2021). We proxy for the useful life of firm

i’s assets at time t by

ULi,t =

∥∥∥∥ppegti,t + ppegti,t−1

2dpci,t

∥∥∥∥ ,
where ‖ · ‖ rounds the useful life to the nearest integer. The measure can be interpreted as

the number of years needed to fully depreciate the capital stock, which is time invariant in

the model. As in Livdan and Nezlobin (2021), we cap the measure at 25 years. Subsection

IV.F shows that our results are robust to using alternative measures of useful life.

We test the model predictions on financing using three measures of leverage: net book

leverage, net market leverage, and net lease-adjusted leverage (defined as in Rampini and

Viswanathan (2013)). We test the predictions on debt maturity using the ratios of debt

maturing in more than 3 and 5 years to total debt (as in Custódio et al., 2013) and debt

maturity from Capital IQ (as in Choi et al., 2018), which we refer to as debt maturity in our

analysis. Summary statistics for our measures of capital age and useful life of assets and for

the dependent variables are presented in Table 1. Appendix E provides the definitions and

summary statistics of all the variables used in our empirical analysis.

Panel A of Table 1 shows that average capital age in our sample equals 6.72 years, which is

close to the value of 5.7 years in Lin et al. (2020). Moreover, capital age exhibits substantial

variation across firms with a standard deviation of 3.3 years. The average useful life of assets

is 13 years, similar to the value of 12.6 years in Livdan and Nezlobin (2021), and suggests

that average capital age equals half of the useful life of assets, as in the model. Sample firms

have an average net book leverage ratio of 17.9% (net market leverage ratio of 21.3% and

net lease-adjusted leverage ratio of 31.9%) and, on average, 49.2% (30.8%) of their debt is

maturing in more than 3 (5) years. Debt maturity from Capital IQ is 6.0 years, in line with

26



Panel A: Summary statistics

Capital Useful Net book Net market Net lease-adj. % debt % debt Debt
age life leverage leverage leverage mat.> 3y mat.> 5y mat. (yr.)

Mean 6.724 13.004 0.179 0.213 0.319 6.013 0.308 0.492
Standard deviation 3.289 5.862 0.240 0.276 0.240 4.646 0.303 0.338
Q1 4.271 9.000 0.037 0.029 0.174 3.000 0.000 0.152
Median 6.284 13.000 0.194 0.190 0.336 4.930 0.250 0.550
Q3 8.665 17.000 0.339 0.396 0.486 7.455 0.549 0.784
N 77877 70707 77877 77877 77877 18832 77877 77877

Panel B: Within-firm pairwise correlations

Capital Useful Net book Net market Net lease-adj. % debt % debt Debt
age life leverage leverage leverage mat.> 3y mat.> 5y mat. (yr.)

Capital age 1
Useful life 0.243 1
Net book lev. -0.119 -0.0722 1
Net market lev. -0.103 -0.0562 0.831 1
Net lease-adj. lev. -0.0519 -0.0884 0.891 0.743 1
% debt mat.> 3y -0.112 0.00258 0.131 0.0737 0.0896 1
% debt mat.> 5y -0.126 0.0122 0.0818 0.0468 0.0492 0.645 1
Debt mat. (yr.) -0.0722 0.00221 0.00917 -0.00214 0.00173 0.183 0.227 1

Table 1: Summary statistics: capital age and financing. The table contains the summary statistics of
capital age, the useful life of assets, and the financing variables. These include net book leverage, net market
leverage, net lease-adjusted leverage and three measures of debt maturity: the ratios of debt maturing in more
than 3 or 5 years to total debt as well as the debt maturity from Capital IQ. Panel A contains the summary
statistics and Panel B contains the within-firm pairwise correlations between the respective variables. The sample
period is from 1975 to 2018. All variables are defined in Table A.1.
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prior studies (e.g., Choi et al., 2018) and close to average capital age.

Panel B of Table 1 shows the within-firm correlations between the variables of interest.

As hinted by Figure 1, both net leverage and debt maturity are negatively correlated with

capital age while debt maturity is positively correlated with the useful life of assets.
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Figure 8: Debt cycles: peak to trough. The figure presents the evolution of capital age,
net book leverage, and investment around leverage peaks. Event time t = 0 indicates the
leverage peak. We only include debt cycles which span at least 10 years from peak to trough.
The sample period is from 1975 to 2018. All variables are defined in Table A.1.

Before formally testing the model predictions, we illustrate our mechanism with Figure 8,

which shows the evolution of capital age, net book leverage, and investment around leverage

peaks. Event time t = 0 indicates the peak of the debt cycle, i.e. the time when each firm

attains its highest net book leverage ratio (DeAngelo et al., 2018). The figure shows that

capital age is the lowest after a peak in leverage, indicating that firms have replaced old

capital. Over time, capital age increases while net book leverage decreases. Leverage peaks

occur after investment peaks have led to the replacement of old capital. Figure IA.1 in the

Internet Appendix focuses instead on investment spikes and shows that i) capital age drops

sharply when a firm’s investment rate spikes, ii) investment spikes are mostly financed with

cash and debt, leading to a sharp increase in net book leverage, and iii) following the spike,

capital age increases while net leverage decreases over time, in line with our predictions.
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C Financing Cycles: Within-Firm Evidence

We first test the model’s predictions regarding the within-firm relationship between capital

age and financing. Predictions 1 and 4 suggest that leverage and debt maturity should both

be negatively related to the within-firm evolution of capital age. To formally test these

two predictions, we first estimate fixed-effect leverage regression models while controlling for

standard determinants of leverage. Notably, we run regressions of the form

Levi,j,t+1 = φCAi,t + βXi,t + ηi + γt+1 + κj,t+1 + εi,t+1,

where Levi,j,t+1 is the net leverage of firm i in industry j, and the vector of controls X

includes profitability, size, market-to-book, tangibility, cash flow volatility, R&D, and firm

age (Lemmon et al., 2008). All specifications include firm fixed effects ηi and year fixed

effects γt to account for time-invariant firm heterogeneity and time-varying factors common

to all firms, respectively. Some specifications additionally include industry-year fixed effects

κj,t to control for industry-level shocks that can drive investment and leverage, where we use

the Hoberg-Phillips fixed industry classification with 100 industries (Hoberg and Phillips,

2010, 2016). (Subsection IV.F shows that our results are robust to changing the industry

definition.) Finally, we cluster standard errors at the firm level.

Table 2 presents the resulting estimates for net book leverage (columns 1 to 3), net

market leverage (columns 4 to 6), and net lease-adjusted leverage (columns 7 to 9). The

results confirm the sign of the univariate correlations from Table 1 and suggest that capital

age and leverage are negatively related, even when including standard explanatory variables

and fixed effects. In particular, a one standard deviation increase in capital age is associated

with a 3.4 percentage point lower net book leverage ratio (3.6 percentage point lower net

market leverage ratio and 1.7 percentage point lower net lease-adjusted leverage ratio); a

18.9% reduction in net leverage relative to the mean. This effect is economically significant

and comparable to that of profitability. The inclusion of capital age does not change the signs

of the leverage factors, but does impact the magnitudes of several variables. In unreported
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results, we find that capital age provides economically meaningful incremental explanatory

power, as the adjusted within R2 increases between 5% and 24% when including capital age

in the specification (columns 2, 5 and 8), depending on the leverage measure. In Table IA.2

in the Internet Appendix we carry out an analysis of the importance of different determinants

of leverage similar to Frank and Goyal (2009). We document that capital age is by and large

the most important factor in terms of its explanatory power.

To investigate the relation between debt maturity and capital age, we follow the approach

of Custódio et al. (2013) and Choi et al. (2018) and estimate maturity regressions of the form

Mati,j,t+1 = φCAi,t + βXi,t + ηi + γt+1 + κj,t+1 + εi,t+1,

where Mati,j,t+1 is maturity of debt of firm i in industry j, and the vector of controls X

include size, size squared, market-to-book, asset maturity, abnormal earnings, cash flow

volatility, R&D, net book leverage, and firm age. As in the leverage regressions, ηi, γt, κj,t

are firm, year, and industry-year fixed effects.

Table 3 presents the resulting estimates for the share of debt maturing in more than 3

years (columns 1 to 3), the share of debt maturing in more than 5 years (columns 4 to 6), and

debt maturity from Capital IQ (columns 7 to 9). The results show that capital age and debt

maturity are negatively related, in line with Prediction 4. The negative correlation is robust

to controlling for typical determinants of debt maturity. More specifically, a one standard

deviation increase in capital age is associated with a 0.433 year lower debt maturity and with

a 3.3 (respectively 2.3) percentage point lower share of debt maturing in 3 (respectively 5)

years. Furthermore, the economic effect is significant, as capital age also provides additional

explanatory power: the adjusted within R2 respectively increases by 42%, 57%, and 42%

for debt maturing in more than 3 years, 5 years, and for debt maturity.12 Finally, the fact

that capital age is significant while asset maturity (i.e. the useful life of new capital) is not,

is consistent with our model prediction that asset maturity is mainly a time-invariant firm

characteristic while capital age can predict financing decisions.

12We compare the adjusted R2 when adding capital age to the models in columns 2, 5, and 8 in Table 3.
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Net book leverage Net market leverage Net lease-adjusted lev.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Capital age -0.041∗∗∗ -0.033∗∗∗ -0.034∗∗∗ -0.042∗∗∗ -0.034∗∗∗ -0.036∗∗∗ -0.024∗∗∗ -0.018∗∗∗ -0.017∗∗∗

(-17.15) (-11.61) (-9.69) (-14.81) (-10.19) (-9.32) (-10.71) (-6.41) (-5.03)
Profitability -0.037∗∗∗ -0.029∗∗∗ -0.054∗∗∗ -0.046∗∗∗ -0.038∗∗∗ -0.031∗∗∗

(-16.14) (-10.72) (-20.46) (-14.83) (-17.27) (-11.80)
Size 0.065∗∗∗ 0.084∗∗∗ 0.098∗∗∗ 0.125∗∗∗ 0.065∗∗∗ 0.084∗∗∗

(7.99) (8.68) (10.88) (11.40) (7.80) (8.66)
Market-to-book -0.015∗∗∗ -0.018∗∗∗ -0.033∗∗∗ -0.031∗∗∗ -0.014∗∗∗ -0.017∗∗∗

(-6.42) (-7.10) (-14.27) (-12.52) (-6.13) (-6.98)
Tangibility 0.042∗∗∗ 0.041∗∗∗ 0.053∗∗∗ 0.045∗∗∗ 0.038∗∗∗ 0.037∗∗∗

(8.56) (7.37) (9.63) (7.31) (8.07) (6.97)
Cash flow volatility -0.007∗∗∗ -0.004 -0.010∗∗∗ -0.005∗ -0.004∗∗ -0.001

(-3.81) (-1.55) (-4.58) (-1.78) (-2.11) (-0.47)
R&D -0.008∗∗ -0.007∗ -0.012∗∗∗ -0.008∗ -0.009∗∗∗ -0.008∗

(-2.40) (-1.72) (-3.73) (-1.81) (-2.66) (-1.90)
Firm age -0.048 0.013 -0.034 0.001 -0.027 0.027

(-1.42) (0.46) (-1.01) (0.03) (-0.84) (0.94)

Year FE Yes Yes No Yes Yes No Yes Yes No
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE No No Yes No No Yes No No Yes
Observations 65464 49882 33643 65464 49882 33643 65464 49882 33643
Adj. within R2 0.0252 0.0798 0.0789 0.0176 0.0996 0.0984 0.0102 0.0693 0.0677

Table 2: Capital age and leverage. This table presents estimates from regressions of net leverage ratios on
lagged capital age. The dependent variable is Net book leverage in columns 1 to 3; Net market leverage in columns
4 to 6 and Net lease-adjusted leverage in columns 7 to 9. Each explanatory variable is standardized by its full-
sample standard deviation. The models in columns 3, 6 and 9 include industry-year fixed effects created using
Hoberg-Phillips fixed industry classification with 100 industries. The sample period is from 1975 to 2018. All
variables are defined in Table A.1. t-statistics are reported in parentheses. Standard errors are clustered at the
firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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% debt maturing > 3y % debt maturing > 5y Debt maturity (yr.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Capital age -0.043∗∗∗ -0.035∗∗∗ -0.033∗∗∗ -0.035∗∗∗ -0.029∗∗∗ -0.023∗∗∗ -0.245∗∗ -0.343∗∗∗ -0.433∗∗∗

(-15.69) (-10.18) (-7.12) (-12.12) (-7.98) (-4.89) (-2.10) (-2.59) (-2.86)
Size 0.068∗∗∗ 0.111∗∗∗ 0.008 0.026 1.898∗∗ 2.245∗∗

(2.95) (3.75) (0.39) (1.07) (2.45) (2.51)
Size squared -0.009 -0.052∗ 0.038∗∗ 0.028 -1.311 -1.590∗

(-0.46) (-1.93) (2.05) (1.17) (-1.64) (-1.69)
Market-to-book 0.011∗∗∗ 0.008∗∗ 0.006∗∗ 0.000 0.074 0.071

(3.56) (2.19) (2.21) (0.03) (0.76) (0.61)
Asset maturity 0.003 0.000 0.008∗∗ 0.004 0.207∗ 0.208

(0.85) (0.00) (2.10) (0.77) (1.79) (1.50)
Abnormal earnings 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.005 0.026

(5.32) (3.29) (5.97) (4.86) (0.24) (0.78)
Cash flow volatility -0.004 -0.004 -0.004 -0.001 -0.044 0.001

(-1.45) (-1.06) (-1.51) (-0.46) (-0.71) (0.02)
R&D 0.004 0.002 0.001 -0.002 0.016 -0.013

(0.84) (0.28) (0.22) (-0.34) (0.09) (-0.08)
Net book leverage 0.027∗∗∗ 0.032∗∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.015 -0.005

(7.89) (6.99) (4.15) (3.03) (0.16) (-0.04)
Firm age -0.073 -0.019 -0.102∗∗ -0.032 3.218∗∗ 2.785∗

(-1.58) (-0.42) (-1.96) (-0.59) (2.15) (1.73)

Year FE Yes Yes No Yes Yes No Yes Yes No
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE No No Yes No No Yes No No Yes
Observations 65464 48654 32608 65464 48654 32608 15923 13001 11478
Adj. within R2 0.0108 0.0199 0.0161 0.0082 0.0127 0.0079 0.0010 0.0054 0.0055

Table 3: Capital age and debt maturity – within-firm regressions. The table presents estimates from
regressions of debt maturity on lagged capital age. The dependent variable is % of debt maturing in > 3 years
in columns 1 to 3; % of debt maturing in > 5 years in columns 4 to 6; and Debt maturity (yr.) in columns 7 to
9. Each explanatory variable is standardized by its full-sample standard deviation. Models in columns 3, 6 and 9
include industry-year fixed effects created using Hoberg-Phillips fixed industry classification with 100 industries.
The sample period is from 1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in
parentheses. Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to
indicate p-values.
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In Table IA.3 in the Internet Appendix, we carry out an analysis of the importance of

the factors that we use in our debt maturity regressions. Similar to leverage, we show that

capital age has the most explanatory power.

D Financing Cycles: Exploring the Mechanism

Having established that capital age plays an important role in explaining within-firm varia-

tion in net leverage and debt maturity, we now go deeper in the analysis of the mechanism by

investigating various economic channels which are bound to influence our results. We exam-

ine three such channels: the intensity of intangible capital use, the lumpiness of investment,

and the reliance on leasing. According to Prediction 3, the first two channels are expected to

respectively weaken and strengthen the effects of capital age on leverage and debt maturity.

In addition, despite not being explicitly accounted for in the model, we expect leasing to

weaken the mechanism in the paper, as firms relying more on leasing will finance fewer of

their assets with debt.

First, we investigate how the extent of intangible capital use affects the strength of our

mechanism. To this end, each fiscal year we split the firms into terciles based on their capital

intangiblity, proxied by the ratio of intangible assets to total assets, and on the R&D to sales

ratio, if R&D is positive. We expect that firms with a larger share of intangibles on their

balance sheet and firms spending more on R&D will exhibit a less pervasive influence of

capital age on financing. We test our hypothesis by running net leverage and debt maturity

regressions in each subsample. Table 4 presents the results of our tests.

The results in Panel A indicate that firms which rely more heavily on intangible capital

and firms with larger R&D expenses have a lower sensitivity of net leverage to ageing capital.

For example, when using capital age as the only explanatory variable, a one standard devia-

tion increase in capital age is associated with a 7.8 percentage point lower net book leverage

when firms spend less on R&D, but only a 4.4 percentage point decrease when their R&D

expenses are high. When controlling for other leverage determinants, the difference between

the two terciles remains large. Importantly, the adjusted R2 is dramatically larger in the
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lowest terciles of intangibility and R&D, further indicating that our mechanism is able to

explain more variation in net leverage when intangible capital is less important. Panel B of 4

presents the results of our test for debt maturity. The effect of capital age on debt maturity

is stronger when firm rely less on intangible capital and spend less on R&D investment. The

quantitative difference between the first and third terciles in terms of the explanatory power

and size of the effect of capital age on debt maturity are also meaningful.

Second, we analyze the role of investment lumpiness. Our model implies that when the

spells between investment spikes become longer, our mechanism becomes more important.

As such, we expect that financing policy of firms with more lumpy investment is more

sensitive to capital age. Given the maturity matching in Prediction 5, we expect investment

lumpiness to be particularly important for debt maturity. To test the hypothesis, we split

firms into terciles based on two proxies of investment lumpiness—the firm-level skewness and

kurtosis of investment. We then run the leverage and debt maturity regressions with and

without control variables in each sub-sample. Table 5 presents the resulting estimates.

The results in Panel A indicate that firms for which investment is more lumpy have a

higher sensitivity of net leverage to ageing capital. For example, when using capital age as

the only explanatory variable, a one standard deviation increase in capital age is associated

with a 5.3 percentage point lower net book leverage when investment is more lumpy, but

only a 3.1 percentage point decrease when their investment is less lumpy. Importantly, the

adjusted R2 is again larger in the highest terciles of investment lumpiness, further indicating

that our mechanism is able to explain more variation in net leverage when investment is

more lumpy. Panel B of 5 presents the results of our test for debt maturity. As expected,

the effect of capital age on debt maturity is stronger when investment is more lumpy. The

quantitative difference between the first and third terciles in terms of the explanatory power

and size of the effect of capital age on debt maturity are also substantial.
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Panel A: Net leverage

Intangibility R&D

Low High Low High Low High Low High

Capital age -0.045∗∗∗ -0.028∗∗∗ -0.022∗∗∗ -0.017∗∗∗ -0.078∗∗∗ -0.044∗∗∗ -0.049∗∗∗ -0.028∗∗

(-8.18) (-5.22) (-3.63) (-3.02) (-7.01) (-3.33) (-6.03) (-2.02)

Controls No No Yes Yes No No Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9770 9538 9770 9538 3148 3212 3148 3212
Adj. within R2 0.0293 0.0126 0.0973 0.0343 0.1108 0.0198 0.1732 0.0792

Panel B: Debt maturity

Intangibility R&D

Low High Low High Low High Low High

Capital age -0.046∗∗∗ -0.039∗∗∗ -0.037∗∗∗ -0.030∗∗∗ -0.048∗∗∗ -0.038∗∗ -0.037∗∗ -0.022
(-5.10) (-4.40) (-4.00) (-3.14) (-3.46) (-2.29) (-2.40) (-1.24)

Controls No No Yes Yes No No Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9770 9538 9207 9410 3148 3212 3074 3134
Adj. within R2 0.0075 0.0044 0.0170 0.0106 0.0086 0.0037 0.0081 0.0123

Table 4: Capital age and financing – the role of intangible capital intensity. This table presents estimates from regressions
of net leverage (Panel A) and debt maturity (Panel B) on lagged capital age for subsamples of firms split each fiscal year into terciles
by the degree of intangible capital intensity (the ratio of intangible to total assets and the ratio of R&D to sales, when R&D is
non-zero). The dependent variable is Net book leverage in Panel A and % of debt maturing in > 3 years in Panel B. Each explanatory
variable is standardized by its full-sample standard deviation. We control for all independent variables from Tables 2 in Panel A and
3 in Panel B. All models include industry-year fixed effects created using the Hoberg-Phillips fixed industry classification with 100
industries. The sample period is from 1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in parentheses.
Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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Panel A: Net leverage

Skewness Kurtosis

Low High Low High Low High Low High

Capital age -0.034∗∗∗ -0.053∗∗∗ -0.025∗∗∗ -0.044∗∗∗ -0.041∗∗∗ -0.052∗∗∗ -0.029∗∗∗ -0.041∗∗∗

(-6.05) (-10.63) (-3.83) (-7.83) (-5.54) (-10.11) (-3.42) (-7.25)

Controls No No Yes Yes No No Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11558 13819 9124 12269 11211 14066 8373 12733
Adj. within R2 0.0174 0.0414 0.0485 0.0987 0.0203 0.0395 0.0517 0.1034

Panel B: Debt maturity

Skewness Kurtosis

Low High Low High Low High Low High

Capital age -0.029∗∗∗ -0.053∗∗∗ -0.019∗∗ -0.038∗∗∗ -0.038∗∗∗ -0.051∗∗∗ -0.031∗∗∗ -0.037∗∗∗

(-4.09) (-8.28) (-2.18) (-4.75) (-4.64) (-8.39) (-2.86) (-4.95)

Controls No No Yes Yes No No Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11558 13819 8692 11935 11211 14066 7912 12418
Adj. within R2 0.0033 0.0124 0.0136 0.0238 0.0047 0.0118 0.0122 0.0224

Table 5: Capital age and financing – the role of investment lumpiness. This table presents estimates from regressions of
net leverage (Panel A) and debt maturity (Panel B) on lagged capital age for subsamples of firms split into terciles by the proxy
of investment lumpiness (firm-level skewness and kurtosis). The dependent variable is Net book leverage in Panel A and % of debt
maturing in > 3 years in Panel B. Each explanatory variable is standardized by its full-sample standard deviation. We control for
all independent variables from Tables 2 in Panel A and 3 in Panel B. All models include industry-year fixed effects created using the
Hoberg-Phillips fixed industry classification with 100 industries. The sample period is from 1975 to 2018. All variables are defined
in Table A.1. t-statistics are reported in parentheses. Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05,
and ∗∗∗ p < 0.01 to indicate p-values.
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Third, we focus on leasing, with the expectation that firms which predominantly lease

their assets should be less affected by our mechanism. Table IA.1 in the Internet Appendix

splits firms into terciles, quintiles and deciles based on the ratio of capitalized rental expenses

to total lease-adjusted assets. The effect of capital age on net leverage is always stronger

in subsamples of firms that rely less on leasing, and largely insignificant when firms rely

almost exclusively on leasing to finance their investment, confirming the intuition that our

mechanism is less effective when firms rely more on leasing to finance assets.

E Financing Cycles: Cross-Sectional Evidence

We next turn to the cross-sectional predictions of the model, namely that firms with longer-

lived assets should follow longer debt cycles (Prediction 2) and have a higher average debt

maturity (Prediction 5). We proxy for the useful life of the firm assets using an accounting

based measure—the ratio of the firm’s book value of its physical assets to its depreciation

costs. This measure is a proxy for the economic life of the firm’s assets, n in the model,

and does not directly depend on capital adjustment costs. Indeed, the measure captures the

number of years to fully depreciate the capital stock and does not rely on when the firm

actively chooses to replace it. As a consequence, the cross-sectional tests allow us to further

examine the importance of our mechanism for debt and maturity cycles.

To test the first prediction, we need to obtain a measure of the length of a firm’s debt

cycle. To do so, we define a leverage spike as an instance in which the firm’s net book leverage

exceeds its firm-specific median by one standard deviation. The length of the cycle is then

the number of years between consecutive leverage spikes, where we require a minimum of

five years between spikes. We then average the useful life of assets and the length of the

cycles for each firm in our sample. To test the second prediction, we examine the relationship

between average debt maturity and the average useful life of assets. The bottom panels in

Figure 1 show that both the debt cycle length and average debt maturity are increasing in

the firm’s average useful life.

To formally test the model predictions, we regress both the maximum length of the
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debt cycle and the average length of the debt cycle on the average useful life of the assets.

Formally, we run cross-sectional regressions of the form

Cyclei = α + φULi + βXi + εi,

where Cyclei is either the maximum or the average length of the cycle of firm i, and X is a

vector of averaged firm-level controls that includes market-to-book, tangibility, profitability,

size, cash flow volatility, R&D, and firm age. Given that observations are at the firm-level,

we cluster standard errors at the industry level using the Hoberg-Phillips fixed industry

classification with 100 industries (Hoberg and Phillips, 2010, 2016).

Table 6 presents the resulting estimates for the maximum debt cycle lengths (columns

1 to 2) and the average debt cycle length (columns 3 to 4). The results suggest a strong

positive association between the cycle length and the firm’s average asset life, consistent with

Prediction 2, and are robust to controlling for common determinants of leverage. A one-year

increase in asset life is associated with a one- to two-month increase in average debt cycle

length, depending on the specification. Moreover, consistent with the model, Table IA.8 in

the Internet Appendix shows that the relation between asset life and investment cycle length

has the same sign and magnitude as that between asset life and debt cycles. Thus, consistent

with Prediction 2, firms with longer lived assets have longer debt cycles.

To test Prediction 5, namely that the average useful life is positively associated with the

average debt maturity, we regress the firm-level averages of the debt maturity measures on

the average useful life of the assets. Formally, we run cross-sectional regressions of the form

Mati = α + φULi + βXi + εi,

where Mati is the average of the debt maturity for firm i, and X is a vector of average

firm-level controls that includes market-to-book, size, size squared, abnormal earnings, cash

flow volatility, R&D, net book leverage, and firm age.

Table 7 presents the resulting estimates for average % debt maturing in more than 3
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Max. debt cycle Avg. debt cycle

(1) (2) (3) (4)

Useful life 0.189∗∗∗ 0.104∗∗∗ 0.143∗∗∗ 0.079∗∗∗

(5.56) (3.65) (5.01) (3.22)
Market-to-book 0.152 0.042

(0.83) (0.22)
Tangibility -0.976 -0.715

(-1.50) (-1.21)
Profitability 6.381∗∗∗ 5.584∗∗∗

(4.22) (4.16)
Size 0.228∗∗∗ 0.145∗

(2.65) (1.85)
Cash flow volatility -16.967∗∗∗ -14.888∗∗∗

(-4.89) (-4.90)
R&D 11.952∗∗ 9.594∗∗

(2.40) (2.35)
Firm age 0.119∗∗∗ 0.084∗∗∗

(9.71) (8.81)

Observations 1937 1932 1937 1932
Adjusted R2 0.03 0.21 0.02 0.15

Table 6: Useful life and debt cycles – cross-sectional regressions. This table presents
estimates from regressions of maximum and average debt cycle length on average useful life.
The dependent variable is Maximum debt cycle length in columns 1 and 2, and Average debt
cycle length in columns 3 and 4. The sample period is from 1975 to 2018. Firms with no
leverage spike have a cycle length that is undefined and are dropped from the sample. All
variables are defined in Table A.1. t-statistics are reported in parentheses. Standard errors
are clustered at the industry level using Hoberg-Phillips fixed industry classification with
100 industries. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.

years (columns 1 and 2) and 5 years (columns 3 and 4), and average debt maturity (columns

5 and 6). The results document a positive and significant relationship between the average

debt maturity and the average useful life. This relationship is also similar in magnitude as

the relationship between useful life and debt cycle lengths. A one-year increase in average

useful life is associated with a roughly one- to two-month increase in average debt maturity,

depending on the specification. The results are consistent with Prediction 5 that firms with
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longer-lived assets will have longer debt maturities, matching the duration of their debt with

the duration of their assets.

% debt maturing > 3y % debt maturing > 5y Debt maturity (yr.)

(1) (2) (3) (4) (5) (6)

Useful life 0.015∗∗∗ 0.010∗∗∗ 0.013∗∗∗ 0.009∗∗∗ 0.146∗∗∗ 0.099∗∗∗

(7.67) (9.48) (7.03) (8.19) (5.28) (4.63)
Market-to-book 0.017∗∗∗ 0.002 0.066

(2.78) (0.45) (0.82)
Size 0.066∗∗∗ 0.028∗∗∗ -0.062

(8.01) (4.12) (-0.29)
Size squared -0.000 0.002∗∗∗ 0.065∗∗

(-0.51) (3.48) (2.58)
Abnormal earnings 0.041 0.022 0.654

(1.35) (0.99) (1.56)
Cash flow volatility -0.338∗∗ -0.102 -5.313∗∗∗

(-2.27) (-1.31) (-3.49)
R&D 0.450∗∗∗ 0.424∗∗∗ 1.942

(3.73) (3.97) (1.08)
Net book leverage 0.359∗∗∗ 0.238∗∗∗ 1.053∗∗

(10.88) (8.44) (2.57)
Firm age -0.001∗ 0.001∗∗ 0.016∗∗

(-1.82) (2.52) (2.25)

Observations 4704 4382 4704 4382 2684 2559
Adjusted R2 0.09 0.46 0.10 0.38 0.05 0.21

Table 7: Useful life and debt maturity – cross-sectional regressions. The table
presents estimates from regressions of debt maturity on average useful life. The dependent
variable is the average of each firm’s % of debt maturing in > 3 years in columns 1 to 2;
% of debt maturing in > 5 years in columns 3 to 4; and Debt maturity (yr.) in columns
5 to 6. The sample period is from 1975 to 2018. All variables are defined in Table A.1.
t-statistics are reported in parentheses. Standard errors are clustered at the industry level
using the Hoberg-Phillips fixed industry classification with 100 industries. We use ∗ p < 0.10,
∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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F Aggregate Financing Cycles

Our model also has predictions for aggregate leverage and debt maturity cycles. Notably, the

model’s key implication is that industries with a wider cross-sectional dispersion in capital

age have reduced leverage and maturity dispersion; see Prediction 6. To test this prediction,

we need proxies for the cross-sectional dispersion in capital age and for financing cycles

at the industry level. We first group firms into industries using the Hoberg-Phillips fixed

industry classification with 100 industries (Hoberg and Phillips, 2010, 2016), and apply the

same industry filters as before. To ensure a cross-section of firms within an industry, we drop

industry-year observations with less than 3 firms. Likewise, to ensure a sufficient time-series

to examine the cyclicality of the industry, we drop industries with less than ten consecutive

years of data. These filters result in a final sample of 80 industries.

To generate a proxy for industry-level dispersion in capital age, we take the average of

each industry’s annual standard deviation of firm-level capital age. We refer to this average

as the industry’s capital age dispersion. To generate a proxy for the financing cyclicality

of the industry, we first calculate aggregate industry-level annual observations for net book

leverage and share of debt maturing in more than 3- or 5-years using the same method as

their firm-level counterparts.13 We then take the standard deviation of these aggregates over

the time series and denote these variables aggregate leverage dispersion and aggregate debt

maturity dispersion.

As an example of the intuition, Figure 9 plots the annual aggregated net book leverage,

linearly detrended for comparison, for the industries with the 25th percentile and 75th per-

centile of the capital age dispersion distribution over the years that both industries were in

the sample (1991-2008). Both industries exhibit variation in net book leverage and show

some degree of cyclicality. The industry with more capital age dispersion, primarily related

to industrial machinery manufacturing, however, has a smoother profile of net leverage and

is less cyclical relative to the industry with the 25th percentile of capital age dispersion,

13We do not calculate a measure for the debt maturity from Capital IQ because it only is defined for a
subsample of firms and the time period is limited to 2002-2018.
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Figure 9: Industry debt cycles and capital age dispersion. The figure presents the
linearly detrended aggregate industry net book leverage over time for the Hoberg-Phillips
fixed 100 industries with the 25th and 75th percentile of capital age dispersion distribution.
The sample period is from 1991 to 2008, the years in which both industries were in the
sample. All variables are defined in Table A.1.

mainly related to toys and recreation. This matches our model’s prediction that capital age

dispersion mitigates the cyclicality of leverage in an industry.

To further explore the relation between industry cyclicality and capital age dispersion,

we regress the aggregate leverage and debt maturity dispersion on the aggregate capital age

dispersion. The former is a proxy for the cyclicality of net book leverage and debt maturity,

with a higher standard deviation proxying for industries with a higher cyclicality. Table

8 presents the resulting estimates.14 For robustness, we also report results from linearly

detrending the industry levels to account for any general industry trends that might drive

dispersion. Consistent with Prediction 6, the table shows that there is a negative and

statistically significant relation between capital age dispersion and both aggregate leverage

dispersion (columns 1 and 2) and aggregate debt maturity dispersion (columns 3 to 6).

14We adjust standard errors for heteroskedasticity using the HC3 method, which is the more conservative
method when dealing with small sample sizes (Long and Ervin, 2000).
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Dispersion

Book lev. Lease-adj. lev. Mat. (> 3y) Mat. (> 5y)

(1) (2) (3) (4) (5) (6) (7) (8)

Capital age dispersion -0.020∗∗ -0.018∗∗ -0.016∗∗ -0.014∗ -0.050∗∗∗ -0.044∗∗∗ -0.037∗∗∗ -0.033∗∗∗

(-2.245) (-2.113) (-2.015) (-1.979) (-3.288) (-3.000) (-3.036) (-2.993)

Detrended: No Yes No Yes No Yes No Yes
Observations 80 80 80 80 80 80 80 80
Adj. R2 0.03 0.03 0.02 0.02 0.10 0.08 0.07 0.07

Table 8: Capital age dispersion and financing cyclicality. This table presents estimates
from regressions of aggregate industry leverage and debt maturity dispersion on capital age
dispersion. The dependent variable is Book leverage dispersion in column 1 and 2, Lease-
adjusted leverage dispersion in columns 3 and 4, Maturity dispersion (> 3 years) in columns
5 and 6 and Maturity dispersion (> 5 years) in columns 7 and 8. Industry definitions are
based on the Hoberg-Phillips fixed industry classification with 100 industries. In columns
1, 3, 5 and 7 the dispersion is based on the raw levels of the industry. In columns 2, 4, 6
and 8, the dispersion is based on the linearly detrended levels. The sample period is from
1988 to 2018. All variables are defined in Table A.1. t-statistics are reported in parentheses.
Standard errors are adjusted for heteroskedasticity using the robust HC3 method. We use ∗

p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.

G Robustness

We examine the robustness of our results in the Internet Appendix. First, we show that our

results are largely robust to employing a different measure of capital age. We create this

measure by assuming that when the firm disinvests, it disposes of the oldest capital vintages

first, unlike in our main measure, where all vintages are equally affected (Lin et al., 2020).

Tables IA.4 and IA.5 show that the effect of the alternative proxy of capital age on net

leverage and debt maturity remains economically similar to the main specification.

Second, we show that our results are robust to changing the industry definition. While our

main specifications use the Hoberg-Phillips fixed industry classification with 100 industries,

Table IA.6 and IA.7 use the Hoberg-Phillips fixed industry classification with 50 industries

and the Fama-French industry classification with 49 industries. Third, we show that our

cross-sectional results for debt cycles carry over to investment cycles in Table IA.8 and are

robust to alternative measures of the useful life of assets in Tables IA.9, IA.10, and IA.11.
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Finally, in Table IA.12 we examine the relation between the aggregate leverage and debt

maturity dispersion and capital age dispersion for the Hoberg-Phillips fixed industry classifi-

cation with 50 industries and Fama-French industry classification with 49 industries. Results

for leverage dispersion are similar to the Hoberg-Phillips fixed 100 industry classification.

Results are not statistically significant for maturity dispersion (potentially due to the smaller

sample size), although the direction and magnitudes are similar.

V Conclusion

Capital ages and must eventually be replaced. This paper develops a dynamic investment

and financing model to study how ageing capital generates variation in financing decisions.

In this model, firms issue debt to finance investment. As capital ages, they deleverage to

free up debt capacity, which allows them to replace old capital by issuing new debt. To

achieve these dynamics, firms issue debt with a maturity that matches the useful life of

new assets and an amortization schedule that reflects the need to free up debt capacity

as capital ages. These debt dynamics lead to debt cycles consistent with leverage being

fundamentally unstable (Denis and McKeon, 2012; DeAngelo et al., 2018) and to a maturity

matching theory of debt (Stohs and Mauer, 1996). They also imply that both leverage and

debt maturity should be negatively related to capital age while both the duration of debt

cycles and debt maturity should be positively related to the useful life of assets. We embed

this single-firm model into an industry equilibrium and show that debt and maturity cycles

spill over into the aggregate when capital age is correlated across firms.

We take the model predictions to the data and find that all our measures of leverage

and debt maturity are negatively related to capital age while all measures of the duration

of debt cycles or debt maturity are positively related to the useful life of assets. The effects

we document are stronger in firms with more lumpy investment, with a smaller fraction

of intangible assets, and relying less on leasing. We also find that capital age dispersion is

negatively related to leverage and maturity cyclicality, consistent with the model predictions.
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Appendix

The first part of the appendix derives the single firm results (Proposition 1, Theorem 1,
and Proposition 2). The second part derives the financing results under arbitrary capital
depreciation schedules (Proposition 3). The third part derives the debt maturity results
(Theorem 2, Proposition 4, and Theorem 3). The fourth part derives the industry equilibrium
results (Proposition 5, Proposition 6, and Proposition 7). The final part defines the variables
used in the empirical analysis.

A Single Firm

We impose the following parameter restrictions. First we assume that

K <
π

r

(
1 +

1

r

ρC
(1 + ρC)n − 1

)−1

, (A.1)

which ensures that investing is positive NPV for an unlevered firm. Second, we assume that

φ ≥ φ =
max{K − C0, 0}

π
, (A.2)

φ < φ̄ = min

{
1

r
− K

π

(
1 +

1

r

ρC
(1 + ρC)n − 1

)
,

1

ρD

(
1− K

π

ρC(1 + r)n + r(1 + ρC)n − r
(1 + ρC)n − 1

)}
.

(A.3)

As we show below, the upper bound on φ ensures that debt is risk-free. The lower bound
on φ ensures that the firm can initially purchase the asset.

The single-firm results are organised as follows. First, we show that investing is positive
NPV when investment is internally financed (Lemma 1). Second, we show that this is also
true when the firm can issue debt and that the firm has no incentive to default (Lemma
2 and Proposition 1). Having established that the firm invests and does not default, we
derive the firm’s optimal financing policy (Theorem 1). We then establish that the firm pays
dividends in period t + 1 only if the collateral constraint binds in period t (Lemma 3) and
that the collateral constraints binds when the firm invests (Lemma 4).

Lemma 1 (Benchmark Firm Value). The value of a firm that retains profits to finance
investment internally is given by

C0 +
π

r
−K

(
1 +

1

r

ρC
(1 + ρC)n − 1

)
.

Proof. If the firm saves s today and for the next n − 1 periods and earns a rate ρC on its
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cash balances, then the future value of its savings in n− 1 periods is

n−1∑
i=0

s(1 + ρC)i = s
(ρC + 1)n − 1

ρC
.

As a result, the firm has enough savings to finance investment after n periods if

s = K
ρC

(ρC + 1)n − 1
.

The firm earns enough to save for investment if

π − s = π −K ρC
(ρC + 1)n − 1

≥ 0,

This is guaranteed by restriction (A.1). The value of a firm that saves to finance investment
is then given by

C0 −K +
∞∑
t=1

π − s
(1 + r)t

= C0 +
π

r
−K

(
1 +

1

r

ρC
(1 + ρC)n − 1

)
,

which is bigger than C0 given the restriction on K.

Lemma 2 (Firm Investment and Default). The firm replaces capital when it has reached
the end of its useful life and never before. Furthermore, the firm never defaults on its debt
obligations.

Proof. We want to show that the firm always invests when assets reach the end of their
useful life and has no incentive to default. To do so, we assume that creditors always believe
that the firm will not default and therefore charge an interest rate ρD on debt. We then
show that, given this belief, the firm has no incentive to default and always invests so that
the belief is consistent and constitutes an equilibrium.

Since the firm holds cash C0 > 0 and there is no debt payment due, the firm never
defaults at time t = 0. Furthermore, the firm never defaults when it holds a positive amount
of cash as net debt is negative. Therefore, we assume in this lemma that net debt is positive,
in that NDt > 0. Assume now that the firm does not invest at time t = 0 and defaults at
t = 1. This is suboptimal since

C0 +D0︸ ︷︷ ︸
Value of firm that defaults at t = 1

≤ C0 + φπ < C0 +
π

r
−K

(
1 +

1

r

ρC
(1 + ρC)n − 1

)
︸ ︷︷ ︸

Value of an internally financed firm

≤ E0

where the first inequality follows from the cash flow based collateral constraint and the
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second inequality follows from the restrictions on φ; see equations (A.2) and (A.3).15 As a
result, default can only happen for t > 1.

Assume that the firm has net debt NDt > 0 at time t > 0 and defaults at time t+ 1 > 1.
If the firm has capital installed at time t and therefore produces the final good at time t+ 1,
we have that ρDNDt ≤ ρDφπ < π (see equation (A.3)). Therefore, the firm can make the
interest payment ρDNDt and a positive dividend payment

Divt+1 ≥ π − ρDφπ > 0

if it chooses NDt+1 = NDt and defaults at t + 2. As a result, the firm will not default if it
produces the good at t+ 1.

Assume next that the firm has no (more) installed capital at time t and does not invest
so that it does not produce the good at t + 1 > 1 and therefore defaults at t + 1. Clearly,
each period since the last time it invested t′ ≥ t− n it must be that leverage is NDt′ = φπ.
Otherwise, the firm would benefit from increasing leverage and bringing dividend payments
forward in time since ρC < ρD < r and ρDφπ < π. This also implies that the firm pays a
dividend of Divt′ = π − ρDφπ for the n-periods t′ ∈ [t− n+ 1, t].

Our objective is now to show that there is a profitable deviation for the firm’s sharehold-
ers, namely to save for the n-periods t′ ∈ [t−n+ 1, t] and invest at time t and thereby avoid
default at t + 1. If instead of paying dividends, the firm saves s < π − ρDφπ each period
after the last time it invested (t′ ∈ [t− n + 1, t]) and puts this money in a savings account,
then its savings at time t amount to:

n−1∑
a=0

s(1 + ρC)n−1−a = s
(1 + ρC)n − 1

ρC
.

Instead, paying out s each period generates a value at time t of

n−1∑
a=0

s(1 + r)(n−1−a) = s
(1 + r)n − 1

r
.

The firm saves enough to finance investment if

s = K
ρC

(1 + ρC)n − 1

We need that the firm generates enough profits to save this amount. That is, we need

π(1− ρDφ) > K
ρC

(1 + ρC)n − 1
, (A.4)

15We need (A.2) to hold since it ensures that the firm has enough resources to invest at time zero.
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which holds under restriction (A.3). The firm prefers saving over paying dividends if

s
(1 + r)n − 1

r︸ ︷︷ ︸
Pay dividends

= K
ρC

(1 + ρC)n − 1

(1 + r)n − 1

r
<
π − ρDφπ

r
−K

(
1 +

1

r

ρC
(1 + ρC)n − 1

)
.︸ ︷︷ ︸

Internally financed firm with debt obligations φπ

The firm that would save for investment is worth at least as much as the internally financed
firm that makes coupon payments on its debt forever.16 This condition can be written as

φ <
1

ρD

(
1− K

π

ρC(1 + r)n + r(1 + ρC)n − r
(1 + ρC)n − 1

)
,

which holds under restriction (A.3).
A direct implication of the fact that it never defaults is that the firm always replaces

capital at the end of its useful life. The firm also never replaces capital early. If it would
do so, then it could increase its firm value by delaying replacement and yield a return of
ρCK > 0 on the cost of capital, which could be paid out as a dividend while leaving all other
policies and cash flows unchanged.

Proof of Proposition 1. It follows directly from Lemma 2.

Proof of Theorem 1. We want to show that the firm’s net debt is weakly decreasing in capital
age. To establish this result, we first need to show that the firm only pays dividends when
the collateral constraint binds in the previous period.

We show below that it is suboptimal for the firm to pay dividends at time t + 1 if the
collateral constraint does not bind at time t. Therefore, the collateral constraint must bind
at time t if the firm pays dividends at time t+ 1.

We know from Proposition 1 that the firm always replaces capital when it reaches the
end of its useful life. We know from Lemma 2 that the debt is risk-free. Assume that for
some t, Divt+1 > 0 while NDt < φπ. Define ∆Divt as

∆Divt = min

{
Divt+1

1 + ρD
, φπ −NDt

}
.

Increasing dividends at time t to Div′t = Divt + ∆Divt by using debt financing would imply
that Div′t+1 ≥ Divt+1−(1+ρD)∆Divt. The inequality follows from the fact that the interest
rate is lower if net debt was negative before NDt < 0.17 This change in policy would increase

16Observe that the value of the internally financed firm is actually a lower bound since some of the savings
can be used to temporarily lower net debt, which yields a rate of return ρD > ρC .

17Indeed, if NDt < 0 and NDt + ∆Divt ≤ 0 then the discount rate is ρC and the change in the amount
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shareholder value since its effect on equity value (at time t) is at least

∆Divt −
(1 + ρD)∆Divt

1 + r
> 0.

As a result, if NDt < φπ, then Divt+1 = 0 and therefore if Divt+1 > 0 then NDt = φπ.
Assume a > 0 and NDa−1 < NDa ≤ φπ. If NDa−1 > 0 then

Diva = π +NDa −NDa−1(1 + ρD) > ρDφπ − ρDNDa−1 + (NDa −NDa−1) > 0

because φ < 1
ρD

, see equation (A.3). While if NDa−1 < 0

Diva = π +NDa −NDa−1(1 + ρC) > 0.

But this contradicts the previous result and therefore NDa−1 ≥ NDa.

Lemma 3. If Divt+1 > 0 then NDt = φπ.

Proof. This result follows directly from the proof of Theorem 1.

Lemma 4. NDa=0 = φπ.

Proof. We want to show that NDa=0 = φπ. We do so by showing that NDa=0 < φπ can
never occur. Assume that for some t′ ≥ 0 with a = 0 we have NDt′ < φπ. Let t′′ > t′ be
the next time that NDt′′ = φπ and a = 0. Assume that t′′ does not exist. In this case, and
owing to Theorem 1 and Lemma 3, the firm never pays dividends for t > t′ since NDt < φπ.
Therefore, equity value is zero. But this cannot be the optimal strategy since investment
is positive NPV (Lemma 2) and therefore generates a surplus that can be distributed to
shareholders, which would yield a positive equity value. As a result, t′′ must exist. We
know that NDt′′−n < φπ since t′ ≤ t′′ − n < t′′. Given that Theorem 1 implies that net
debt is weakly decreasing within a cycle and NDt′′−n < φπ, we have that NDt < φπ for
t ∈ [t′′− n, t′′− 1] because of the definition of t′ and t′′. From Lemma 3, it then follows that
the firm does not pay any dividends over the interval t ∈ [t′′−n+ 1, t′′] where t′′−n+ 1 > 0.

that needs to be repaid at t+ 1 is

(1 + ρC)(NDt + ∆Divt)− (1 + ρC)NDt = (1 + ρC)∆Divt < (1 + ρD)∆Divt.

If NDt < 0 and NDt + ∆Divt > 0, this change is

(1 + ρD)(NDt + ∆Divt)− (1 + ρC)NDt = (1 + ρD)∆Divt +NDt(ρD − ρC) < (1 + ρD)∆Divt.

Instead, if NDt > 0 this change is (1 + ρD)∆Divt.
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Each period t, the firm has a cash flow of π but needs to pay interest. The firm can save
at least s = K ρC

(1+ρC)n−1
since equation (A.4) holds. Therefore, the firm lowers net debt by

at least s each period over this time interval and as a result net debt decreases by at least

n−1∑
a=0

s(1 + ρC)a = s
(1 + ρC)n − 1

ρC
= K.

As a result, we have that

π−
(

1 + ρDI{NDt′′−1≥0} + ρCI{NDt′′−1<0}

)
NDt′′−1 > π−ρDφπ−NDt′′−1 > K−NDt′′−n+1.

This implies that the dividend at time t′′, which follows from the budget constraint, is

Divt′′ = π −K +NDt′′ −
(

1 + ρDI{NDt′′−1≥0} + ρCI{NDt′′−1<0}

)
NDt′′−1

> K −K +NDt′′ −NDt′′−n+1 = φπ −NDt′′−n+1

> 0.

This makes it impossible that NDt′′−1 < φπ owing to Lemma 3. This result in combination
with Theorem 1 then implies that NDt′′−n = φπ but this contradicts the fact that NDt < φπ
for t ∈ [t′′−n, t−1′′]. This rules out thatNDa=0 < φπ so that we must haveNDa=0 = φπ.

Proof of Proposition 2. We show using backward induction that higher investment costs
K ′ > K lead to stronger leverage cycles.

Assume K ≤ π− ρDφπ. In that case, the firm always keep its net debt at φπ and invests
using retained earnings. As a consequence,

|NDa −NDa−1| = 0 ≤ |ND′a −ND′a−1|.

Assume next that K > π − ρDφπ so that K ′ > π − ρDφπ. In that case, the firm
needs debt capacity NDa=n−1 < φπ to finance investment and we know from Lemma 3 that
Diva=0 = 0. Furthermore, Lemma 4 implies that NDa=0 = φπ. From the budget constraint
it then follows that

0 = π −K + φπ −
(
1 + ρDI{NDa=n−1≥0} + ρCI{NDa=n−1<0}

)
NDa=n−1.

There is a unique NDa=n−1 that solves this equation. Furthermore, this NDa=n−1 is de-
creasing in K. These results also hold true for ND′a=n−1 and imply that

0 ≤ NDa=0 −NDa=n−1 = φπ −NDa=n−1 < φπ −ND′a=n−1 = ND′a=0 −ND′a=n−1
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and therefore

|NDa=0 −NDa=n−1| ≤ |ND′a=0 −ND′a=n−1|.

We are going to show the result for a > 0 using backwards induction. We have just
shown that NDa=n−1 ≥ ND′a=n−1. Assume now that NDa ≥ ND′a and a > 0. We want to
show that NDa−1 ≥ ND′a−1 and the proposition’s result. There are three cases.

1. Assume NDa−1 < φπ and ND′a−1 < φπ then we have that Diva = Div′a = 0, see
Lemma 3. Assume NDa−1 < ND′a−1 then the budget constraint implies that

0 = π +NDa −
(
1 + ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1

= π +ND′a −
(

1 + ρDI{ND′a−1≥0} + ρCI{ND′a−1<0}

)
ND′a−1,

NDa −ND′a =
(
1 + ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1

−
(

1 + ρDI{ND′a−1≥0} + ρCI{ND′a−1<0}

)
ND′a−1

< 0,

This contradicts the fact that NDa ≥ ND′a. Thus, we must have NDa−1 ≥ ND′a−1.

We still need to show the proposition’s result. We know that the budget constraint

0 = π +NDa −
(
1 + ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1

holds. From this budget constraint it directly follows that

0 ≤ NDa−1 −NDa = π −
(
ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1

≤ π −
(
ρDI{ND′a−1≥0} + ρCI{ND′a−1<0}

)
ND′a−1

= ND′a−1 −ND′a.

The inequality follows from the fact that NDa−1 ≥ ND′a−1. Therefore

|NDa−1 −NDa| ≤ |ND′a−1 −ND′a|.

2. Assume NDa−1 < φπ and ND′a−1 = φπ then we have that Diva = 0 from Lemma 3.
The budget constraint then implies that

0 = −Diva + π +NDa −
(
1 + ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1

= −Div′a + π +ND′a − (1 + ρD)ND′a−1

≤ π +ND′a − (1 + ρD)ND′a−1.
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As a consequence,

Diva ≥ (NDa−ND′a)−
(
1 + ρDI{NDa−1≥0} + ρCI{NDa−1<0}

)
NDa−1+(1+ρD)ND′a−1 > 0,

which is a contradiction. Therefore, this case cannot arise.

3. Assume NDa−1 = φπ and ND′a−1 ≤ φπ. This case directly implies that NDa−1 ≥
ND′a−1. If ND′a−1 = φπ then

0 ≤ NDa−1 −NDa = φπ −NDa ≤ φπ −ND′a = ND′a−1 −ND′a−1.

If ND′a−1 < φπ then Div′a = 0 by Lemma 3. From the budget constraint it then follows
that

0 ≤NDa−1 −NDa

=−Diva + π − ρDNDa−1

≤π −
(
ρDI{ND′a−1≥0} + ρCI{ND′a−1<0}

)
ND′a−1

=ND′a−1 −ND′a.

Therefore,

|NDa−1 −NDa| ≤ |ND′a−1 −ND′a|.

These steps recursively establish our result.

B Arbitrary Capital Depreciation

We now allow for arbitrary depreciation schedules of capital assuming that capital fully
depreciates in n periods, where n can be arbitrarily large. Let πt be the firm profits at time
t. To keep the analysis tractable, we make the following two assumptions:

1. The collateral constraint is time-invariant

Dt ≤ Φ.

2. Given the optimal policies, the firm generates enough profits to make interest payments

πt > ρDΦ > ρDDt.
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Proof of Proposition 3. We first establish that the firm never defaults and that the collateral
constraint must bind at time t for the firm to pay dividends at time t+ 1 (the equivalent of
Lemma 3). We then show that once net debt starts decreasing it does so (at least) until the
firm invests. As a consequence, during this period, capital ages while net debt declines.

The second condition ensures that the firm never defaults since it can always make interest
payments and therefore the rate of return on debt is ρD.

We want to show that the firm’s net debt is weakly decreasing in capital age at least
until the firm invests. To obtain this result, we first need to show that the firm only pays
dividends when the collateral constraint binds in the previous period. We show below that
it is suboptimal for the firm to pay dividends at time t + 1 if the collateral constraint does
not bind at time t. Therefore, the collateral constraint must bind at time t if the firm pays
dividends at time t+ 1.

We first establish that if the firm has net debt NDt < Φ then Divt+1 = 0. For this
purpose, assume that we have Divt+1 > 0 while NDt < Φ for some t. Define ∆Divt as

∆Divt = min

{
Divt+1

1 + ρD
,Φ−NDt

}
.

Increasing dividends at time t to Div′t = Divt + ∆Divt using debt financing implies that
Div′t+1 ≥ Divt+1−(1+ρD)∆Divt, where the inequality follows from the fact that the interest
rate is lower if net debt is negative (i.e. if NDt < 0); see footnote 17. This change in policy
would increase shareholder value since its effect on equity value (at time t) is at least

∆Divt −
(1 + ρD)∆Divt

1 + r
> 0,

which contradicts optimality of the firm’s policies. Therefore, if Divt+1 > 0 then NDt = Φ.
Next, we show that net debt weakly decreases over time at least until the firm invests.

Let t′ ∈ {t, T − 2} where T is the next time the firm invests. There are two cases. First, if
NDt′ = Φ then NDt′ ≥ NDt′+1 because of the collateral constraint. Second, if NDt′ < Φ
then the firm does not pay dividends at time t′ + 1 since NDt′ < Φ. Furthermore, NDt′ <
NDt′+1 since πt′+1 > ρDΦ > ρDNDt′ . Finally, from t′ to t′ + 1 installed capital becomes a
year older since there is no investment while net debt weakly decreases.

C Debt Maturity

This appendix first establishes the optimal debt issuance strategy (Theorem 2). It then
shows that average debt maturity is decreasing in capital age (Proposition 4) and increasing
in asset maturity (Theorem 3).

Proof of Theorem 2. We first show that the net debt dynamics are the same when ε → 0
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than when debt issuance is frictionless. These net debt dynamics allow us to show the
absence of permanent debt and derive the optimal debt issuance strategy.

Let E0(ε) be the equity value given issuance costs ε. Without issuance costs, debt ma-
turity is irrelevant as any long-term debt contract can be implemented by a sequence of
short-term contracts. Furthermore, E0(0) ≥ E0(ε) since issuance cost depress firm value.
As a result, the net debt and investment dynamics are the same as in the baseline model
when ε → 0. If this was not the case, then we would have limε↓0E0(ε) < E0(0) and using
the one-period debt implementation from the baseline model would dominate for sufficiently
small issuance costs ε→ 0.

Given these net debt dynamics, the firm wants to issue debt that minimizes issuance
costs. Observe that cash generates a lower return than debt ρC < ρD and given that debt
issuance costs are small ε→ 0, the firm only has debt outstanding when NDt > 0 and only
cash in hand when NDt < 0.

Because the firm always invests when assets reach the end of their useful life (Proposition
1), we have that NDa=n−1 < 0 since it needs both cash and debt to finance investment; see
equation (3). As a result, the firm does not issue debt with a maturity longer than n-periods.

To minimize issuance costs the firm only issues debt when it invests with a maturity that
matches the net debt dynamics during the capital’s lifetime.

Proof of Proposition 4. We first establish that average debt maturity has a recursive struc-
ture that depends on the ratio of this and next periods net debt. We then establish that the
ratio of this and next periods net debt can be ordered, which allows us to show that average
debt maturity declines as capital ages.

Define â as the largest capital age such that debt is positive

â = sup{a|NDa > 0}.

Given that K > φπ + π (see equation (3)), we know that NDn−1 < 0 and therefore that
â < n − 1. Furthermore, from Theorem 1 we have that NDa ≤ 0 for a > â. Therefore
average debt maturity is Ma = 0 for a > â.
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We can write the average debt maturity as

Ma =
n−1∑
i=a

I{NDi>0}(i+ 1− a)
NDi −max{NDi+1, 0}

NDa

=
â∑
i=a

(i+ 1− a)
NDi −max{NDi+1, 0}

NDa

=
1 ∗NDa − 1 ∗NDa+1 + 2 ∗NDa+1 − ...− (â− a)NDâ + (â+ 1− a)NDâ

NDa

=
NDa + ...+NDâ

NDa

= 1 +
NDa+1 + ...+NDâ

NDa

= 1 +
NDa+1

NDa

Ma+1.

Define Ba = NDa+1

NDa
for a < â. The above equation can be rewritten as

Ma = 1 +BaMa+1.

From Theorem 1 and the definition of â it follows that Ba ∈ (0, 1].
We want to show that Ba+1 ≤ Ba for a < â− 1. Assume first that NDa+1 = φπ. In this

case, we have Ba+1 ≤ 1 = φπ/φπ = NDa+1/NDa = Ba (Theorem 1). Assume next that
NDa+1 < φπ. Then we also have NDa+2 ≤ NDa+1 < φπ (Theorem 1). From the budget
constraint in equation (1), the fact that NDa+2 ≥ NDâ > 0 (Theorem 1), and the fact that
the firm pays no dividends at a+ 2 since NDa+1 < φπ (Lemma 3), it then follows that

NDa+2 = NDa+1(1 + ρD)− π

and therefore

Ba+1 = (1 + ρD)− π

NDa+1

.

If NDa < φπ then the same argument implies that

Ba = (1 + ρD)− π

NDa

.

Since NDa is weakly decreasing in a (Theorem 1), we then have that Ba+1 ≤ Ba.
If NDa = φπ the same argument implies that

NDa+1 = Diva+1 +NDa(1 + ρD)− π ≥ NDa(1 + ρD)− π
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and therefore

Ba ≥ (1 + ρD)− π

NDa

.

and we get that Ba+1 ≤ Ba

As a consequence

1 ≥ B0 ≥ B1 ≥ ... ≥ Bâ−1 > 0.

It is easy to see that Mâ = 1 and therefore

Mâ−1 = 1 +Bâ−1Mâ ≥ 1 = Mâ.

We can now establish our result using backward induction. Assume that Mâ−i−1 ≥
Mâ−i ≥ 0. We then know that

Mâ−i−2 = 1 +Bâ−i−2Mâ−i−1 ≥ 1 +Bâ−i−1Mâ−i−1 ≥ 1 +Bâ−i−1Mâ−i = Mâ−i−1 ≥ 0,

which recursively establishes that the debt maturity is decreasing in a.

Proof of Theorem 3. We first show that increasing asset life by a year yields the same net
debt dynamics just one year lagged. This result in combination with Proposition 4 allows
us to show that average debt maturity weakly increases with asset life.

Define the function

d(NDa−1, NDa) = π −KI{a=0} +NDa −
(
1 + I{NDa−1≥0}ρD + I{NDa−1<0}ρC

)
NDa−1,

which is the “dividend” the firm would pay when capital has age a and debt levels are NDa−1

and NDa, see equation (1). Observe that

∂d(NDa−1, NDa)

∂NDa−1

< 0. (A.5)

Given NDa, if the firm pays no dividends then the net debt from the previous period
NDa−1 solves

d(NDa−1, NDa) = 0,

which has a unique solution that we call N̂D(NDa). Given NDa, if the firm pays dividends
Diva > 0, then the net debt from the previous period NDa−1 solves

d(NDa−1, NDa) = Diva,
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which has a unique solution that we call ÑD(NDa, Diva). Equation (A.5) implies that

ÑD(NDa, Diva) < N̂D(NDa). (A.6)

Let NDa(n) be the net debt of a firm with asset maturity n and capital age a with
other quantities made dependent on n in a similar way. We first want to establish that
NDa(n) = NDa+1(n + 1) for a ≥ 0. We do so using backward induction. Lemma 4 implies
that ND0(n) = ND0(n + 1) = φπ. We additionally know that NDa=n−1(n) < 0 < φπ and
similarly that NDa=n(n + 1) < 0 < φπ as otherwise the firm cannot finance investment;
see equation (3). This together with Lemma 3 implies that Div0(n) = Div0(n + 1) = 0.
Therefore,

NDa=n−1(n) = NDa=n(n+ 1) = N̂D(φπ).

We can now establish recursively that NDa(n) = NDa+1(n + 1). Indeed assume that
NDa(n) = NDa+1(n+ 1). There are two cases to consider.

Case 1: If φπ ≥ N̂D(NDa(n)) then φπ ≥ N̂D(NDa(n)) > ÑD(NDa(n), Diva) for any
Diva > 0, see equation (A.6), and it cannot be the case that the firm pays dividends at time a
because in that case the debt level at a−1 would have been φπ > ÑD(NDa(n), Diva), which
violates Lemma 3. As a result, when φπ ≥ N̂D(NDa(n)) then NDa−1(n) = N̂D(NDa(n))
and via the same reasoning NDa(n+ 1) = N̂D(NDa+1(n+ 1)) = N̂D(NDa(n)). Therefore,

NDa−1(n) = NDa(n+ 1) = N̂D(NDa(n)).

Case 2: If φπ < N̂D(NDa(n)) then it must be that the firm pays dividends since
otherwise the debt level in the previous period would violate the collateral constraint. Given
that the firm pays dividends and Lemma 3, we must have that

NDa−1(n) = NDa(n+ 1) = φπ.

This recursively establishes that NDa(n) = NDa+1(n + 1) for a ≥ 0. Furthermore, we
have ND0(n+ 1) = φπ = ND0(n) = ND1(n+ 1); see Lemma 4.

A firm with assets that have a useful life of n+1 periods that issues debt with a maturity
that is one year longer than a firm with assets that have a useful life of n firm has net debt
dynamics NDa+1(n+ 1) = NDa(n) for a ≥ 0 with ND0(n+ 1) = ND1(n+ 1) = φπ, which
we just showed is the optimal net debt level when the useful life of assets is n + 1. This
in turn implies that Ma+1(n + 1) = Ma(n) and, in combination Proposition 4, leads to the
desired result.
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D Industry Equilibrium

We first establish the existence and uniqueness of an industry equilibrium (Proposition 5).
We then relate aggregate quantities to the capital age distribution (Proposition 6). Finally,
we solve the model where debt capital supply is uncertain (Proposition 7).

We start the proof by deriving a lower bound on the entry cost H. Indeed, if the single-
firm model parameter restrictions (equations (A.1), (A.2), and (A.3)) hold for some level of
profitability π then they also hold for firms with a higher profitability π′ > π. Therefore,
there exists a lower bound for profitability π such that the parameters restrictions from the
single-firm model hold for any π > π. We then define H as

H = E0(π)− C0.

If H > H then π > π (since the E0(π) is strictly increasing in π as we show below) and a
solution to our single-firm model with risk-free debt exists.

Proof of Proposition 5. We first show that no industry equilibrium with default can exist.
We then establish existence and uniqueness of a solution to the free-entry condition (equation
(4)), which guarantees equilibrium existence and uniqueness.

For π > π, if equilibria (in the default game between shareholders and creditors) of the
single-firm model with and without default exist for a given level of profitability, then we
assume that the firm and creditors select the single-firm model equilibrium without default.
This equilibrium maximizes shareholder value since investment is positive NPV so that

E0(π) > ED
0 (π),

where ED
0 (π) is the equilibrium (with the highest) firm value (among equilibria) with default.

The (no default) equity value is continuous in π since it solves a deterministic optimisation
problem with constraints that are continuous in π. Furthermore, it is strictly increasing in
π because for any ε > 0 we have that

E0(π + ε) ≥ E0(π) +
ε

r
> E0(π)

since the firm can always pay out the extra profits ε by increasing dividends. Similarly, it
can be be shown that ED

0 (π) is weakly increasing in π. Assume that there exists a level of
profitability π such that an industry equilibrium with default exists:

ED
0 (π) = C0 +H.

Then for this π we must have that π > π. Otherwise,

C0 +H = E0(π) ≥ ED
0 (π) ≥ ED

0 (π) = C0 +H > C0 +H.
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Given that π > π, equations (A.1), (A.2), and (A.3) are satisfied. Therefore, both a no
default equilibrium and a default equilibrium to the single-firm model exist. But since the
firm value is higher in the no default equilibrium E0(π) > ED

0 (π), shareholders select the
single-firm equilibrium without default. As a result, we can focus our attention on industry
equilibria without default.

Given that the (no default) equity value is strictly increasing in profitability, we have
that if S ′ > S then E0(P (S)) > E0(P (S ′)). The conditions on P (S) and H imply that

E0(P (0))− (C0 +H) > 0,

E0(π)− (C0 +H) ≤ 0.

Continuity of E0(P (S)) in S then guarantees that there exists a unique S∗ such that

E0(P (S∗))− (C0 +H) = 0

where P (S∗) ≥ π satisfies the parameter restrictions of the single-firm model (equations
(A.1), (A.2), and (A.3)). As a result, the mass of entrants must be S∗ in any industry
equilibrium. Given this unique mass of entrants, there is a unique aggregate supply Q∗ =
S∗, price P ∗ = P (S∗), profits π∗ = P (S∗), and firm policies (I∗a , ND

∗
a), which proves our

result.

Proof of Proposition 6. The result follows from the fact that the distribution of capital age in
the economy is given by qt and therefore aggregate production is given byQ∗ = S∗∗

∑n−1
a=0 q

a
t =

S∗, aggregate investment is given by S∗∗q0
t , aggregate net debt is given by S∗∗

∑n−1
a=0 q

a
t ∗ND∗a,

and average debt maturity is given by
∑n−1

a=0 q
a
tND

∗
a ∗M∗

a/
∑n−1

a=0 q
a
t ∗ND∗a.

E Data Definitions and Summary Statistics

I Capital IQ Maturity Data

We supplement the firm-level debt maturity proxy derived from Compustat with a more
detailed measure from Capital IQ security issuance data, which covers the period of 2002 to
2018. To merge the security- and firm-level data, we use the most recent filing dates and
remove any observations with the same ID/date, description, maturity, and interest rate.
We further remove all securities with missing gvkey and drop entries for credit lines that
reflect the drawdown limit only, as opposed to actual utilisation. We drop all observations
with missing or negative maturity values. We then compute the firm-level maturity as the
weighted average of individual-security maturities weighted by their notional amounts. As
the final data filter, we drop observations for which the total debt in Capital IQ is greater
than Compustat by more than 10%, as in Colla, Ippolito, and Li (2013).
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II Definitions of Variables

The variables used in the paper are defined in Table A.1.

Variable Definition

Capital age See Subsection IV.B
Useful life See Subsection IV.B
Net book leverage Ratio of total debt (dltt+dlc) less cash (che) over total assets

(at)
Net market leverage Ratio of total debt (dltt+dlc) less cash (che) over total debt

plus market value of equity (prcc f*csho)
Net lease-adjusted lever-
age

Ratio of total debt (dltt+dlc) plus capitalized rental ex-
penses (xrent*10 as in Rampini and Viswanathan, 2013) less
cash (che) over total assets plus capitalized rental expenses
(at+xrent*10)

Rental leverage Ratio of capitalized rental expenses (xrent*10) over total as-
sets plus capitalized rental expenses (at+xrent*10)

% debt maturing > 3y Ratio of long-term debt (dltt) minus debt maturing in 2- and
3-years (dd2+dd3) over total debt (dlc+dltt)

% debt maturing > 5y Ratio of long-term debt (dltt) minus debt maturing in 2-
, 3-, 4-, and 5-years (dd2+dd3+dd4+dd5) over total debt
(dlc+dltt)

Debt maturity (yr.) Average maturity of outstanding instruments from Capital
IQ, weighted by notional

Investment Capital expenditures (capx) over lagged installed capital
(l.ppegt)

Investment spike Dummy equal to 1 when investment (capx/l.ppegt) exceeds
firm-level median by one std. dev. (before applying the 5-year
window filter)

Investment cycle length Number of years to the first investment spike, between sub-
sequent investment spikes, or after the last spike, conditional
on the 5-year window filter and their being at least one spike

Leverage spike Dummy equal to 1 when net book leverage exceeds firm-level
median by one std. dev. (before applying the 5-year window
filter)

Debt cycle length Number of years to the first leverage spike, between subse-
quent leverage spikes, or after the last spike, conditional on
the 5-year window filter and their being at least one spike

Change in cash Change in cash (chech) scaled by total assets (at)

Table A.1: Definitions of variables. The table contains the definitions of all variables
used throughout the paper (in order of appearance).64



Variable Definition

Change in debt Change in debt (dltis-dltr-dlcch) scaled by total assets
(at)

Debt issuer Dummy equal to 1 when net debt issuance is positive
Equity issuer Dummy equal to 1 when non-employee-specific net equity is-

suance is positive, following McKeon (2015)
Profitability Operating income (oibdp) over total assets (at)
Size Natural log of real sales (log(sale/defl)), where defl is the

CPI deflator
Tangibility Ratio of property, plant and equipment (ppent) to total assets

(at)
Market-to-book Ratio of the sum of market value of equity (prcc f*csho) and

book value of debt (at-ceq) to total assets (at)
Cash flow volatility Moving 3-year standard deviation of profitability
R&D Ratio of R&D expenditure (xrd) to sales (sale), missing val-

ues replaced with zero
Firm age Time since listing, which is defined as the first appearance of

firm i in CRSP
Asset maturity Gross property, plant and equipment over depreciation and

amortization (ppegt/dp) times the proportion of property,
plant and equipment in total assets (ppegt/at), plus current
assets over the cost of goods sold (act/cogs) times the pro-
portion of current assets in total assets (act/at)

Abnormal earnings The difference between the income before extraordinary items,
adjusted for common stock equivalents (ibadj-l.ibadj) over
the market value of equity used in calculating earnings per
share (prcc f*cshpri)

Investment skewness
(firm)

The firm-level skewness of investment; we require at least 5
observations per firm

Investment kurtosis (firm) The firm-level kurtosis of investment; we require at least 5
observations per firm

Intangibility Intangible capital stock (intan) to total assets at

Aggregate capital age dis-
persion

Mean of annual within-industry standard deviation of firm-
level capital age

Aggregate book leverage
dispersion

Standard deviation of annual industry-level net book leverage

Aggregate lease-adjusted
leverage dispersion

Standard deviation of annual industry-level net lease-adjusted
leverage

Table A.1: Definitions of variables. The table contains the definitions of all variables
used throughout the paper (in order of appearance).
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Variable Definition

Aggregate maturity dis-
persion

Standard deviation of annual industry-level proportion of debt
maturing in more than 3-years

Table A.1: Definitions of variables. The table contains the definitions of all variables
used throughout the paper (in order of appearance).

III Summary Statistics

Table A.2 contains the summary statistics of all the variables used in the leverage and
maturity regression models which were not provided in Table 1.

Mean Std. dev. Q1 Median Q3 N

Investment spike 0.163 0.370 0.000 0.000 0.000 77877
Change in cash 0.005 0.067 -0.009 0.000 0.015 77877
Change in debt 0.011 0.102 -0.031 -0.001 0.044 77877
Debt issuer 0.669 0.471 0.000 1.000 1.000 77784
Equity issuer 0.115 0.319 0.000 0.000 0.000 77877
Profitability 0.111 0.125 0.073 0.125 0.176 77738
Size 5.169 2.201 3.743 5.240 6.684 77439
Market-to-book 1.515 0.946 0.976 1.226 1.685 77877
Tangibility 0.356 0.234 0.170 0.308 0.514 77815
Cash flow volatility 0.045 0.046 0.017 0.030 0.054 60482
R&D 0.011 0.030 0.000 0.000 0.007 77877
Firm age 18.440 16.917 6.252 13.337 24.592 75060
Asset maturity 11.002 10.160 4.171 8.188 14.540 75588
Abnormal earnings -0.018 0.274 -0.032 0.007 0.033 71568
Leverage spike 0.145 0.352 0.000 0.000 0.000 77877
Intangibility 0.106 0.159 0.000 0.028 0.148 70238
Inv. skewness (firm) 0.998 0.875 0.393 0.920 1.498 4969
Inv. kurtosis (firm) 3.730 2.784 2.040 2.807 4.351 4969
Rental leverage 0.167 0.162 0.045 0.123 0.239 77877

Table A.2: Summary statistics. The table contains the summary statistics of the variables
used in the regression models of net leverage and debt maturity. The sample period is from
1975 to 2018. All variables are defined in Table A.1.
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Internet Appendix to:

Financing Cycles

Thomas Geelen† Jakub Hajda‡ Erwan Morellec§ Adam Winegar¶

April 6, 2022

This internet appendix presents an extension of the industry equilibrium model that
allows for time-varying debt capital supply and additional robustness tests that support the
model predictions.

Aggregate Shocks and Financing Cycles

A question that we have not answered so far is what capital age distribution arises in equi-
librium. As we argue now, aggregate shocks—such as shocks to credit supply—can increase
the correlation across firms’ capital age, leading to aggregate financing cycles. Consider the
same industry equilibrium model as before, including the endogenous maturity choice. Just
as in the debt maturity section, assume that K > φP (0) + P (0) so that the firm has no
permanent debt. Furthermore, assume that a new firm requires debt financing to invest
K > C0.

The firm’s ability to issue debt and invest depends on the aggregate conditions in the
debt capital market. If debt capital is available A, then the firm can issue debt up to the
collateral constraint φπ. If debt is unavailable U , the firm cannot issue any new debt. We
assume that the state of the debt capital market follows a Markov chain. With probability
PA→U = q, debt capital becomes unavailable for a single period PU→A = 1. We assume that
the probability of debt capital markets becoming unavailable q is sufficiently small.

How does time-varying debt capital supply affect firms investment and financing deci-
sions? Since q is small, financing and investment choices are unaffected when debt capital
is available. The firm maximizes its leverage conditional on being able to make replacement
investments, which are partially financed by debt. If debt capital is unavailable when the
firm needs to invest, then it delays investment for a single period, which it can, since it holds
cash NDn−1 < 0 and invests in the next period. The following proposition shows that in
this case aggregate financing cycles arise:

Proposition 7. There exists a stationary equilibrium in which firms financing choices when
debt capital is available follow from Theorem 2 and firms only make replacement investments

†Copenhagen Business School and Danish Finance Institute, Denmark
‡HEC Montréal, Canada
§EPF Lausanne, Swiss Finance Institute, and CEPR, Switzerland
¶BI Norwegian Business School, Norway
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when debt capital is available. In this stationary equilibrium, there are aggregate financing
cycles.

This result shows that aggregate shocks—in this case to debt capital supply—lead to ag-
gregate financing cycles. Idiosyncratic firm-level shocks have the opposite effect and smooth
out aggregate financing cycles. As a result, the nature of the shocks firms face, aggregate
versus idiosyncratic, determines whether or not financing cycles spillover.

Proof of Proposition 7. We want to show that a stationary equilibrium exists in which fi-
nancing dynamics are the same as in Theorem 2 when debt capital is available and firms
only make replacement investments when debt capital is available. We can use this result to
then show that the economy faces aggregate financing cycles.

We look for a stationary equilibrium in which the mass of firms in the economy is constant
but the supply of the final good is not due to the stochastic availability of debt capital. Firms
assume that their competitors make replacement investments when debt capital is available
and otherwise they delay investment. Furthermore, firms assume that no new firms enter.
Indeed, firms do not enter when debt capital is available because the free entry condition
binds. Firms do not enter when debt capital is unavailable because they cannot finance
investment as C0 < K.

We want to show that given these beliefs, firms do not default and make replacement
investments when debt capital is available. Note that if debt capital is unavailable today
then firms believe this will weakly increase profits since firms cannot invest today. Therefore,
if debt capital is unavailable at time t, then St+1 ≤ St and

P (St+1) ≥ P (St). (1)

Assume that debt capital is available at time t and q is small. Then Lemma 2 goes
through. Therefore, the firm has no incentive to default at time t and invests if its assets
have reached the end of their useful life. Assume next that debt capital is unavailable at
time t. There are now two cases to consider: i) the asset has reached the end of its useful life
or ii) the asset has not reached the end of its useful life. If the firm’s assets have not reached
the end of their useful life then its profits are weakly higher, see equation (1). Furthermore,
debt capital is available again next period because of the structure of the Markov chain. The
same arguments as in Lemma 2 then imply that the firm has no incentive to default. If the
firm’s assets have reached the end of their useful life then it must be that the firm holds
cash NDt < 0 as otherwise it would not have been able to invest at time t if debt capital
was available since K > φP (0) + P (0). Given that the firm holds cash and debt capital is
available next period, the firm has no incentive to default and can invest next period since
ρC > 0. As a result, firms never default and have an incentive to invest when debt capital is
available (i.e. they invest every n or n+ 1 periods).
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Furthermore, the firm wants to maximize the amount of debt it has outstanding because
of the benefits to debt ρD < r. The firm therefore has two options. First, it issues the
maximum amount of debt and only makes replacement investments when debt capital is
available, in which case the financing dynamics follow from Theorem 2.18 Second, it issues
an amount of debt such that it can always invest even when debt capital is unavailable. That
is, the firm holds less net debt if it wants to invest when debt capital is unavailable, which
is costly. For q sufficiently small, the firm prefers the first solution. As a consequence, firms’
financing dynamics when debt capital is available are the same as in Theorem 2 and firms
only make replacement investments when debt capital is available.

Given that at random times debt capital is unavailable and therefore firms cannot invest,
in a stationary equilibrium all firms have the same capital age. Otherwise, the random
unavailability of debt capital would cause any set of firms with a different capital age today
to eventually have the same capital age. Proposition 6 then implies that the firm-level
financing cycles spillover into aggregate financing cycles.

Robustness and Additional Results

1. Figure IA.1 shows firms’ financing, investment, and capital age around investment
spikes.

2. Table IA.1 presents estimates from regressions of net lease-adjusted leverage for sub-
samples of firms split according to their reliance on leasing.

3. Tables IA.2 and IA.3 respectively document the importance of capital age and all the
other factors used in the leverage and debt maturity regressions following the approach
of Frank and Goyal (2009).

4. Tables IA.4 and IA.5 respectively present estimates from regressions of net leverage
ratios and debt maturity on an alternative measure of capital age. We create this
measure as in Lin et al. (2020) by assuming that when the firm disinvests, it disposes
of the oldest capital vintages first, unlike in our main measure, where all vintages are
equally affected. For the rest its defined in the same way as our main capital age
measure.

5. Tables IA.6 and IA.7 respectively present estimates from regressions of net leverage
ratios and debt maturity on lagged capital age for different definitions of industries.

18When the firm makes a larger profit because some competitors cannot invest since debt capital is un-
available it has two options: pay a (larger) dividend or reduce net debt. The firm prefers to pay a larger
dividend leaving the net debt dynamics unchanged because (net) debt earns interest at a rate below r.
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6. Table IA.8 presents estimates from regressions of firm-level maximum and average
investment cycle lengths on firm-level average useful life.

7. Table IA.9 presents estimates from regressions of firm-level maximum and average debt
cycle lengths on firm-level average alternative measures of asset useful life. Table IA.10
presents estimates from regressions of firm-level maximum and average investment cycle
lengths on firm-level average alternative measures of asset useful life.

8. Table IA.11 presents estimates from regressions of firm-level averages of % of debt
maturing in > 3y, % of debt maturing in > 5y, and average debt maturity on firm-
level average alternative measures of asset useful life.

9. Table IA.12 present estimates from regressions of aggregate industry leverage and debt
maturity dispersion on capital age dispersion using different industry classifications.
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Figure IA.1: Leverage and capital age cycles around investment spikes. The figure
presents the evolution of capital age, investment, net book leverage, changes in debt and
cash to total assets, as well as the fraction of firms issuing net debt and net equity around
investment spikes. Investment spikes are defined as cases in which firm investment exceeds
its median by one standard deviation. The event time t = 0 indicates the investment spike.
We only consider spikes which are not preceded or followed by another spike in a window of
5 years. The sample period is from 1975 to 2018. All variables are defined in Table A.1.
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Terciles Quintiles Deciles

1st 3rd 1st 5th 1st 10th

Capital age -0.035∗∗∗ 0.004 -0.031∗∗∗ 0.010 -0.044∗∗∗ 0.013∗

(-6.54) (0.79) (-3.72) (1.52) (-3.64) (1.83)
Profitability -0.029∗∗∗ -0.025∗∗∗ -0.022∗∗∗ -0.015∗∗∗ -0.023∗∗∗ -0.018∗∗∗

(-7.14) (-7.40) (-4.38) (-3.99) (-3.36) (-3.66)
Size 0.063∗∗∗ 0.060∗∗∗ 0.058∗∗∗ 0.047∗∗ 0.018 0.019

(4.47) (3.89) (2.94) (2.45) (0.54) (0.82)
Market-to-book -0.018∗∗∗ -0.011∗∗∗ -0.017∗∗∗ -0.011∗∗∗ -0.017∗ -0.010∗∗

(-3.95) (-3.79) (-3.04) (-3.16) (-1.82) (-2.21)
Tangibility 0.048∗∗∗ 0.043∗∗∗ 0.060∗∗∗ 0.041∗∗∗ 0.038∗∗ 0.049∗∗∗

(4.74) (5.61) (4.20) (4.32) (2.07) (4.65)
Cash flow volatility -0.006∗ 0.005∗ -0.004 0.004 0.006 0.005

(-1.80) (1.75) (-1.01) (1.33) (0.84) (1.40)
R&D 0.003 0.007 0.006 -0.006 0.005 -0.054

(0.48) (1.07) (0.64) (-0.72) (0.35) (-1.26)
Firm age 0.099∗ 0.044 0.233∗∗∗ 0.118∗∗ 1.081∗∗ 0.071

(1.95) (0.73) (3.41) (2.30) (2.40) (1.39)

Year FE No No No No No No
Firm FE Yes Yes Yes Yes Yes Yes
Ind.-Year FE Yes Yes Yes Yes Yes Yes
Observations 9382 10587 4865 5734 2818 2738
Adj. within R2 0.0899 0.0583 0.0872 0.0576 0.0746 0.0946

Table IA.1: Capital age and leverage – accounting for leasing. This table presents
estimates from regressions of leasing-adjusted leverage ratios on lagged capital age. The
dependent variable is Net lease-adjusted leverage. In each fiscal year, the sample of firms is
split according to rental leverage, i.e. the ratio between capitalized rental expenses and the
lease-adjusted assets. Columns 1 and 2 split the sample into terciles, columns 3 and 4 into
quintiles and columns 5 and 6 into deciles. Each explanatory variable is standardized by its
full-sample standard deviation. All models include industry-year fixed effects created using
the Hoberg-Phillips fixed industry classification with 100 industries. The sample period
is from 1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in
parentheses. Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05,
and ∗∗∗ p < 0.01 to indicate p-values.
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Adjusted within R2

Variable Coef. t-stat. Individual Cumulative

Capital age -0.048∗∗∗ -13.84 0.03437 0.03437
Size 0.093∗∗∗ 10.23 0.02048 0.04379
Tangibility 0.053∗∗∗ 9.12 0.01671 0.05277
Market-to-book -0.027∗∗∗ -10.73 0.01418 0.06688
Profitability -0.026∗∗∗ -9.46 0.01172 0.07837
Cash flow volatility -0.004∗ -1.89 0.00039 0.07859
R&D -0.004 -0.93 0.00009 0.07892
Firm age 0.027 0.83 0.00005 0.07890

Table IA.2: Capital age and leverage – importance of individual determinants.
This table presents estimates from regressions of net book leverage on lagged controls from
Table 2. We obtain the coefficient estimates, t-statistic and the individual adjusted within
R2 by regressing net book leverage on each individual variable. We then sort the variables
by their individual adjusted within R2 and regress net book leverage by consecutively adding
explanatory variables, which allows to obtain the cumulative adjusted within R2. All regres-
sions include firm and industry-year fixed effects, created using the Hoberg-Phillips fixed
industry classification with 100 industries, and are run on the same sample as the regression
model in column (3) in Table 2. All variables are defined in Table A.1. We use ∗ p < 0.10,
∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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Adjusted within R2

Variable Coef. t-stat. Individual Cumulative

Capital age -0.046∗∗∗ -10.6 0.00825 0.00825
Net book leverage 0.040∗∗∗ 9.07 0.00743 0.01313
Size 0.098∗∗∗ 8.00 0.00578 0.01519
Size squared 0.073∗∗∗ 6.24 0.00368 0.01552
Asset maturity -0.012∗∗ -2.40 0.00045 0.01548
Cash flow volatility -0.008∗∗ -2.38 0.00035 0.01552
Abnormal earnings 0.003∗∗ 2.10 0.00012 0.01588
Market-to-book 0.004 1.04 0.00004 0.01615
R&D -0.003 -0.56 -0.00002 0.01612
Firm age -0.010 -0.24 -0.00003 0.01609

Table IA.3: Capital age and debt maturity – importance of individual determi-
nants. This table presents estimates from regressions of debt maturity (% of debt maturing
in > 3 years) on lagged controls from Table 3. We obtain the coefficient estimates, t-statistic
and the individual adjusted within R2 by regressing net book leverage on each individual
variable. We then sort the variables by their individual adjusted within R2 and regress net
book leverage by consecutively adding explanatory variables, which allows to obtain the
cumulative adjusted within R2. All regressions include firm and industry-year fixed effects,
created using the Hoberg-Phillips fixed industry classification with 100 industries, and are
run on the same sample as the regression model in column (3) in Table 3. All variables are
defined in Table A.1. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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Net book leverage Net market leverage Net lease-adjusted lev.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Capital age (new) -0.022∗∗∗ -0.026∗∗∗ -0.027∗∗∗ -0.018∗∗∗ -0.027∗∗∗ -0.029∗∗∗ -0.015∗∗∗ -0.020∗∗∗ -0.020∗∗∗

(-9.86) (-10.88) (-8.87) (-6.76) (-9.60) (-9.10) (-6.99) (-8.63) (-6.83)
Profitability -0.040∗∗∗ -0.033∗∗∗ -0.058∗∗∗ -0.051∗∗∗ -0.041∗∗∗ -0.033∗∗∗

(-16.38) (-11.51) (-21.10) (-15.99) (-17.82) (-12.27)
Size 0.087∗∗∗ 0.109∗∗∗ 0.123∗∗∗ 0.154∗∗∗ 0.075∗∗∗ 0.095∗∗∗

(10.68) (11.37) (13.53) (14.26) (9.23) (9.91)
Market-to-book -0.013∗∗∗ -0.016∗∗∗ -0.032∗∗∗ -0.030∗∗∗ -0.013∗∗∗ -0.017∗∗∗

(-5.54) (-6.27) (-13.75) (-11.97) (-5.74) (-6.63)
Tangibility 0.052∗∗∗ 0.052∗∗∗ 0.063∗∗∗ 0.057∗∗∗ 0.043∗∗∗ 0.042∗∗∗

(10.66) (9.19) (11.53) (9.23) (9.13) (7.93)
Cash flow volatility -0.007∗∗∗ -0.004∗ -0.009∗∗∗ -0.004 -0.004∗∗ -0.001

(-3.71) (-1.67) (-4.26) (-1.63) (-2.08) (-0.58)
R&D -0.011∗∗∗ -0.008∗ -0.014∗∗∗ -0.008∗ -0.011∗∗∗ -0.009∗

(-2.91) (-1.79) (-3.89) (-1.70) (-3.06) (-1.95)
Firm age -0.065∗ -0.000 -0.056∗ -0.022 -0.030 0.028

(-1.86) (-0.01) (-1.66) (-0.66) (-0.94) (0.97)

Year FE Yes Yes No Yes Yes No Yes Yes No
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE No No Yes No No Yes No No Yes
Observations 62727 47851 31991 62727 47851 31991 62727 47851 31991
Adj. within R2 0.0086 0.0758 0.0742 0.0039 0.0990 0.0982 0.0046 0.0718 0.0701

Table IA.4: Capital age and leverage – alternative measure of capital age. This table presents estimates
from regressions of leverage on an alternative measure of lagged capital age, in which we assume that oldest
capital vintages are disposed of first when firms disinvest. The dependent variables are Net book leverage in
columns 1 to 3, Net market leverage in columns 4 to 6, and Net lease-adjusted leverage in columns 7 to 9. Each
explanatory variable is standardized by its full-sample standard deviation. The models in columns 3, 6 and 9
include industry-year fixed effects created using Hoberg-Phillips fixed industry classification with 100 industries.
The sample period is from 1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in
parentheses. Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to
indicate p-values.
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% debt maturing > 3y % debt maturing > 5y Debt maturity (yr.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Capital age (new) -0.023∗∗∗ -0.022∗∗∗ -0.023∗∗∗ -0.019∗∗∗ -0.019∗∗∗ -0.019∗∗∗ -0.043 -0.087 -0.158
(-8.46) (-6.65) (-5.32) (-6.75) (-5.75) (-4.48) (-0.35) (-0.63) (-0.99)

Size 0.089∗∗∗ 0.140∗∗∗ 0.024 0.043∗ 1.925∗∗ 2.364∗∗

(3.74) (4.52) (1.16) (1.67) (2.46) (2.47)
Size squared -0.006 -0.049∗ 0.043∗∗ 0.036 -1.051 -1.297

(-0.30) (-1.78) (2.20) (1.46) (-1.27) (-1.31)
Market-to-book 0.011∗∗∗ 0.008∗∗ 0.007∗∗ -0.000 0.066 0.073

(3.71) (2.16) (2.31) (-0.13) (0.63) (0.60)
Asset maturity 0.004 0.001 0.008∗∗ 0.006 0.153 0.165

(0.96) (0.27) (1.99) (1.10) (1.28) (1.14)
Abnormal earnings 0.006∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.013 0.040

(4.61) (2.69) (5.93) (4.77) (0.54) (1.20)
Cash flow volatility -0.005∗ -0.005 -0.005∗ -0.003 -0.043 -0.037

(-1.89) (-1.44) (-1.91) (-0.86) (-0.64) (-0.44)
R&D 0.005 0.003 0.001 0.000 -0.057 -0.109

(1.05) (0.42) (0.22) (0.05) (-0.38) (-0.65)
Net book leverage 0.030∗∗∗ 0.034∗∗∗ 0.016∗∗∗ 0.014∗∗∗ 0.112 0.133

(8.26) (7.16) (4.60) (3.18) (1.15) (1.21)
Firm age -0.081∗ -0.023 -0.116∗∗ -0.046 2.999∗ 2.481

(-1.76) (-0.49) (-2.30) (-0.84) (1.96) (1.51)

Year FE Yes Yes No Yes Yes No Yes Yes No
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ind.-Year FE No No Yes No No Yes No No Yes
Observations 62727 46711 31030 62727 46711 31030 14999 12332 10858
Adj. within R2 0.0036 0.0159 0.0147 0.0028 0.0105 0.0082 -0.0000 0.0039 0.0043

Table IA.5: Capital age and debt maturity – alternative measure of capital age. This table presents
estimates from regressions of debt maturity on an alternative measure of lagged capital age, in which we assume
that oldest capital vintages are disposed of first when firms disinvest. The dependent variables are % of debt
maturing in > 3 years in columns 1 to 3; % of debt maturing in > 5 years in columns 4 to 6; and Debt maturity
(yr.) columns 7 to 9. Each explanatory variable is standardized by its full-sample standard deviation. The models
in columns 3, 6 and 9 include industry-year fixed effects created using Hoberg-Phillips fixed industry classification
with 100 industries. The sample period is from 1975 to 2018. All variables are defined in Table A.1. t-statistics
are reported in parentheses. Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and
∗∗∗ p < 0.01 to indicate p-values.
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Net book leverage Net market leverage Net lease-adj. lev.

(1) (2) (3) (4) (5) (6)

Capital age -0.034∗∗∗ -0.034∗∗∗ -0.035∗∗∗ -0.035∗∗∗ -0.017∗∗∗ -0.019∗∗∗

(-9.64) (-11.54) (-8.93) (-10.32) (-4.95) (-6.78)

Ind.-Yr. FE (HP50) Yes No Yes No Yes No
Ind.-Yr. FE (FF49) No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Observations 33881 49562 33881 49562 33881 49562
Adj. within R2 0.0770 0.0802 0.0949 0.0950 0.0665 0.0684

Table IA.6: Capital age and leverage – alternative industry definitions. This table
presents estimates from regressions of net leverage ratios on lagged capital age for different
definitions of industries. The dependent variable is Net book leverage in columns 1 and 2, Net
market leverage in columns 3 and 4 and Net lease-adjusted leverage in columns 5 and 6. We
control for all independent variables from Table 2. Each explanatory variable is standardized
by its full-sample standard deviation. All models include industry-year fixed effects created
using the Hoberg-Phillips fixed industry classification with 50 industries (HP50 ) and the
Fama-French 49 industries (FF49 ). The sample period is from 1975 to 2018. All variables are
defined in Table A.1. t-statistics are reported in parentheses. Standard errors are clustered
at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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% debt maturing > 3y % debt maturing > 5y Debt maturity (yr.)

(1) (2) (3) (4) (5) (6)

Capital age -0.033∗∗∗ -0.035∗∗∗ -0.023∗∗∗ -0.027∗∗∗ -0.353∗∗ -0.269∗∗

(-7.37) (-9.37) (-5.15) (-7.06) (-2.43) (-2.02)

Ind.-Yr. FE (HP50) Yes No Yes No Yes No
Ind.-Yr. FE (FF49) No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Observations 32850 48339 32850 48339 11643 12789
Adj. within R2 0.0161 0.0187 0.0079 0.0112 0.0050 0.0038

Table IA.7: Capital age and debt maturity – alternative industry definitions. This
table presents estimates from regressions of debt maturity on lagged capital age for different
definitions of industries. The dependent variable is % of debt maturing in > 3 years in
columns 1 and 2; % of debt maturing in > 5 years in columns 3 and 4; and Debt maturity
(yr.) in columns 5 and 6. We control for all independent variables from Table 3. Each
explanatory variable is standardized by its full-sample standard deviation. All models include
industry-year fixed effects created using the Hoberg-Phillips fixed industry classification with
50 industries (HP50 ) and the Fama-French 49 industries (FF49 ). The sample period is from
1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in parentheses.
Standard errors are clustered at the firm level. We use ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗

p < 0.01 to indicate p-values.
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Max. Investment cycle Avg. Investment cycle

(1) (2) (3) (4)

Useful life 0.150∗∗∗ 0.085∗∗∗ 0.106∗∗∗ 0.060∗∗∗

(6.09) (3.83) (5.33) (3.21)
Market-to-book 0.371∗∗ 0.262

(2.21) (1.60)
Tangibility -0.516 -0.176

(-0.90) (-0.31)
Profitability 2.287∗ 1.476

(1.81) (1.33)
Size 0.327∗∗∗ 0.249∗∗∗

(5.43) (4.32)
Cash flow volatility -14.372∗∗∗ -11.332∗∗∗

(-4.59) (-4.33)
R&D 6.706∗ 5.655∗

(1.93) (1.72)
Firm age 0.091∗∗∗ 0.055∗∗∗

(8.65) (7.19)

Observations 2332 2327 2332 2327
Adjusted R2 0.02 0.17 0.01 0.11

Table IA.8: Useful life and investment cycles – cross-sectional regressions. This
table presents estimates from regressions of firms’ maximum and average investment cycle
length on average useful life. The dependent variable is Maximum investment cycle length in
columns 1 and 2, and Avg. investment cycle length in columns 3 and 4. The sample period
is from 1975 to 2018. Firms with no investment spike have a cycle length that is undefined
and are dropped from the sample. All variables are defined in Table A.1. t-statistics are
reported in parentheses. Standard errors are clustered at the industry level using Hoberg-
Phillips fixed industry classification with 100 industries. We use ∗ p < 0.10, ∗∗ p < 0.05, and
∗∗∗ p < 0.01 to indicate p-values.
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Max. debt cycle Avg. debt cycle

(1) (2) (3) (4) (5) (6)

Capital age 0.158∗∗ 0.141∗∗

(2.49) (2.43)
Asset Mat. 0.051∗∗ 0.038∗

(1.99) (1.85)
Asset Mat. (Cap) 0.121∗∗∗ 0.091∗∗∗

(2.99) (2.87)

Controls Yes Yes Yes Yes Yes Yes
Observations 1933 1911 1911 1933 1911 1911
Adjusted R2 0.21 0.21 0.21 0.15 0.15 0.15

Table IA.9: Useful life and debt cycles – alternative measures of useful life. This
table presents estimates from regressions of firms’ maximum and average debt cycle length
on firms’ average capital age, average asset maturity, and average asset maturity capped at
25 years. The dependent variable is Maximum debt cycle length in columns 1 to 3 and Avg.
debt cycle length in columns 4 to 6. We control for all independent variables from Table 6.
The sample period is from 1975 to 2018. Firms with no leverage spike have a cycle length
that is undefined and are dropped from the sample. All variables are defined in Table A.1.
t-statistics are reported in parentheses. Standard errors are clustered at the industry level
using Hoberg-Phillips fixed industry classification with 100 industries. We use ∗ p < 0.10, ∗∗

p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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Max. investment cycle Avg. investment cycle

(1) (2) (3) (4) (5) (6)

Capital age 0.131∗∗∗ 0.081∗∗

(3.21) (2.20)
Asset Mat. 0.063∗∗∗ 0.057∗∗∗

(4.08) (4.39)
Asset Mat. (Cap) 0.144∗∗∗ 0.121∗∗∗

(4.95) (5.69)

Controls Yes Yes Yes Yes Yes Yes
Observations 2327 2301 2301 2327 2301 2301
Adjusted R2 0.18 0.18 0.18 0.11 0.11 0.11

Table IA.10: Useful life and investment cycles – alternative measures of useful life.
This table presents estimates from regressions of firms’ maximum and average investment
cycle length on firms’ average capital age, average asset maturity, and average asset maturity
capped at 25 years. The dependent variable is Maximum investment cycle length in columns
1 to 3 and Avg. investment cycle length in columns 4 to 6. We control for all independent
variables from Table 6. The sample period is from 1975 to 2018. All variables are defined
in Table A.1. t-statistics are reported in parentheses. Standard errors are clustered at the
industry level using Hoberg-Phillips fixed industry classification with 100 industries. We use
∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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% debt maturing > 3y % debt maturing > 5y Debt maturity (yr.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Capital age 0.007∗∗∗ 0.007∗∗∗ 0.032
(3.25) (2.91) (0.78)

Asset Mat. 0.006∗∗∗ 0.005∗∗∗ 0.057∗∗∗

(10.61) (5.70) (3.32)
Asset Mat. (Cap) 0.009∗∗∗ 0.007∗∗∗ 0.095∗∗∗

(12.46) (10.74) (6.30)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4392 4323 4323 4392 4323 4323 2566 2519 2519
Adjusted R2 0.43 0.47 0.47 0.35 0.38 0.39 0.19 0.21 0.22

Table IA.11: Useful life and debt maturity – alternative measures of useful life. The table presents
estimates from regressions of debt maturity on firms’ average capital age, average asset maturity, and average
asset maturity capped at 25 years. The dependent variable is the average of each firm’s % of debt maturing in
> 3 years in columns 1 to 3; % of debt maturing in > 5 years in columns 4 to 6; and Debt maturity (yr.) in
columns 7 to 9. We control for all independent variables from Table 7. The sample period is from 1975 to 2018.
All variables are defined in Table A.1. t-statistics are reported in parentheses. Standard errors are clustered at
the industry level using the Hoberg-Phillips fixed industry classification with 100 industries. We use ∗ p < 0.10,
∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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Dispersion

Book lev. Lease-adj. lev. Mat. (> 3y) Mat. (> 5y)

(1) (2) (3) (4) (5) (6) (7) (8)

Cap. age disp. -0.029∗ -0.033∗∗ -0.019 -0.028∗ -0.041 -0.023 -0.038 -0.022
(-1.80) (-2.22) (-1.13) (-1.76) (-1.18) (-0.93) (-1.51) (-1.04)

Industries HP50 FF49 HP50 FF49 HP50 FF49 HP50 FF49
Observations 47 39 47 39 47 39 47 39
Adj. R2 0.11 0.24 0.04 0.18 0.05 0.04 0.04 0.04

Table IA.12: Capital age dispersion and industry-level financing dispersion – dif-
ferent industry classifications. This table presents estimates from regressions of industry
leverage and debt maturity dispersion, computed using aggregate net book leverage and %
debt maturing > 3y or > 5y, respectively, on capital age dispersion. The dependent variables
are Book leverage dispersion in column 1 and 2, Lease-adjusted leverage dispersion in columns
3 and 4, Maturity dispersion (> 3 years) in columns 5 and 6, and Maturity dispersion (> 5
years) in columns 7 and 8. The industry definitions are created using the Hoberg-Phillips
fixed industry classification with 50 industries (HP50 ) and the Fama-French 49 industries
(FF49 ). The dispersion results use the linearly detrended levels. The sample period is from
1975 to 2018. All variables are defined in Table A.1. t-statistics are reported in parentheses.
Standard errors are adjusted for heteroskedasticity using the robust HC3 method. We use ∗

p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 to indicate p-values.
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