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Abstract

We study a structural model of R&D alliance networks where firms jointly form R&D collab-
orations to lower their production costs while competing on the product market. We derive
the Nash equilibrium of this game, provide a welfare analysis and determine the optimal
R&D subsidy program that maximizes total welfare. We also identify the key firms, i.e. the
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1. Introduction

R&D partnerships have become a widespread phenomenon characterizing technological dy-

namics, especially in industries with a rapid technological development such as, for instance,

the pharmaceutical, chemical and computer industries [cf. Ahuja, 2000; Hagedoorn, 2002;

Powell et al., 2005; Riccaboni and Pammolli, 2002; Roijakkers and Hagedoorn, 2006]. In

those industries, firms have become more specialized in specific domains of a technology and

they tend to combine their knowledge with the knowledge of other firms that are specialized

in different technological domains [Powell et al., 1996; Weitzman, 1998]. The increasing im-

portance of R&D collaborations has spurred research for theoretical models studying these

relationships, and for empirical tests of these models.

In this paper, we consider a general model of competition à la Cournot, where firms

choose both R&D expenditures and output levels. Firms can reduce their costs of production

by investing in R&D as well as by establishing R&D collaborations with other firms. An

important – and realistic – innovation of our framework is to study the equilibrium outcomes

in which firms can establish R&D collaborations with both competing firms in their own

sector and firms in other sectors. In this model, R&D collaborations can be represented

by a network. This allows us to write the profit function of each firm as a function of

two matrices, A and B, where A is the adjacency matrix of the network capturing all

direct R&D collaborations, while B is a competition matrix that keeps track of which firm

is in competition with which other firm in the same product market. Due to these two

matrices and thus, these two opposing effects of technology spillovers and competition, all

firms indirectly interact with all other firms. To illustrate this point, consider, for example,

the car manufacturing sector. The price of a car is determined by the demand for cars and

the competition between other car producing firms. However, when these firms do not only

have R&D collaborations with other car manufacturing firms but also with firms from other

sectors, the price of cars will also be indirectly influenced by firms from other industries.

We characterize the Nash equilibrium of our model for any type of R&D collaboration

network (i.e. any matrix A) as well as for any type of competition structure between firms

(i.e. any matrix B). We show that there exists a key trade off faced by firms between the

technology (or knowledge) spillover effect of R&D and the product rivalry effect of competi-

tion. The former effect captures the positive impact of R&D collaborations on output and

profits (through the matrix A) while the latter captures the negative impact of competition

and market stealing effects (through the matrix B).

We show that the Nash equilibrium can be characterized by the fact that firms produce

their goods proportionally to their Katz-Bonacich centrality, a well-known measure in the

sociology literature that determines how central each firm is in the network, and also the

degree of competition in the product market. In particular, a very central firm in the network

will not always produce the highest output because the optimal output choice will also depend

on the competition intensity the firm faces in the product market.

1



We also provide a welfare analysis with an explicit expression for total welfare as a function

of the fundamental parameters of the model. We further provide a lower and an upper bound

on the welfare function with bounds that depend on the parameters as well as the topology

of the network. Moreover, we study the problem of optimal network design where we show

which network is the most efficient (i.e. the one maximizing welfare determined by producer

and consumer surplus among all possible networks). Then, we study two important policies.

First, our equilibrium characterization allows us to define the key firms, i.e. the firms whose

exit would reduce welfare the most. These are the systemically relevant firms for industry

productivity and performance. Second, we study subsidy policies where the planner can

subsidize the R&D effort of each firm. In both cases, we are able to derive an exact formula

for any type of network and competition structure that determines which the key firm is and

the amount of subsidy that should be given to each of them.

Then, we bring the model to the data by using a panel of R&D collaborations and annual

company reports over different sectors and years. We estimate the first-order conditions of

the model by testing the trade-off for firms between the technology (or knowledge) spillover

effect of R&D and the product rivalry effect of competition mentioned above. In terms of

identification strategy, we use firm and time fixed effects (as we have a panel of firms), an IV

strategy and an estimation of a network formation model. As predicted by the theoretical

model, we find that the spillover effect has a positive and significant impact on output and

profit while the competition effect has a negative and significant impact. We also show that

the net effect of collaboration is positive.

Following our theoretical results, we empirically rank the key firms in terms of their

contribution to welfare across different sectors and countries. In particular, in our analysis of

the key firms, we quantify theoretically and empirically the highest welfare loss incurred due

to the exit of a firm. Observe that we determine the key firms for each year during the whole

period (1950-2006). As a result, key firms can differ from year to year and our key-player

policy is mainly a short-run policy analysis in which the network does not change during the

given year the key firms are calculated. We believe that our results could thus help guide

policy makers in evaluating how much it would be worth bailing out a particular firm in a

given stage of the industry evolution.

We also perform the same analysis for R&D subsidies. We further analyze the temporal

changes of the rankings of key firms and subsidized firms. In particular, we show that the

key firms are not always the most central ones by any conventional measure. In other words,

the key firms are not always those with the largest number of R&D collaborations, nor the

highest eigenvector, betweenness or closeness centrality. More importantly, we also show that

the key firms are not those with the highest market share in their industry. For example, we

find that General Motors is a key firm, but it does not have the highest market share in its

sector, since it “only” has 12.14 % of the market share while, for example, Hitachi, Altria or

Pepsico have a much higher share (up to 50 %), but are not the top key firms. This means

that it is not straightforward to determine which firm should be “targeted” in the network
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by only observing its market share, size or even its position in the network.

Interestingly, in late 2008, General Motors (along with Chrysler) told America that it was

in danger of folding. George W. Bush agreed to a temporary bailout, but handed the auto

company’s long-term future over to his successor, President-Elect Barack Obama. Obama

then shepherded a comprehensive bailout ofGeneral Motors that allowed it to stay in business

but imposed numerous conditions that, it was hoped, would secure its viability and allow

the companies to eventually return to profitability. Even though it was very controversial, it

turns out that the bailout of General Motors was a success since, with profits of 3.2 billion

U.S. dollars, the first quarter of 2011 was General Motors ’s best performance in ten years and

its fifth-consecutive profitable quarter. In our ranking of key firms, General Motors ranks

first in 1990 and fourth in 2005. If General Motors had gone bankrupt in 1990 and exited

the market, the loss of total welfare for both firms and consumers would have been as high as

8.14 %. Our results indicate that General Motors is a key firm, not only because it is a large

company but also because it connects other firms to each other in an important way, and

our analysis thus brings conditional support to the recent government intervention program

in the automobile manufacturing sector in the United States.

The rest of the paper is organized as follows. In the next section, we compare our contri-

bution to the existing literature. In Section 3, we develop a model of firms competing in the

product market with technology sharing R&D collaborations that allow them to reduce their

production costs. We characterize the Nash equilibrium of this game and show under which

conditions it exists, is unique and interior. Section 4 determines welfare and investigates

the optimal network structure of R&D collaborations. Section 5 introduces the definition

and computation of the key firms while Section 6 discusses optimal R&D subsidies. Section

7 describes the data. Section 8 is divided into two parts. In Section 8.1, we define the

econometric specification of our model while, in Section 8.2, we highlight our identification

strategy. The empirical results are given in Section 9. The policy results of our empirical

analysis are given in Section 10 where the key player analysis can be found in Section 10.1

while that of the subsidy analysis appears in Section 10.2. Finally, Section 11 concludes the

paper. The network definitions and characterizations used throughout the paper are given

in Appendix A, an analysis in terms of Bertrand competition is performed in Appendix B

and some additional results for welfare are to be found in the Appendix C. In Appendix D,

we provide a theoretical model of intra and interindustry collaborations. All proofs can be

found in Appendix F.

2. Related Literature

Our paper lies at the intersection of different strands of the literature. We would like to

expose them in order to highlight our contribution.
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Network Theory Our theoretical model analyzes a game with strategic complementarities

where firms decide about output and R&D effort by taking the network as given. Thus, it

belongs to the class of games known as games on networks [cf. Jackson and Zenou, 2015].1

Compared to this literature, where a prominent paper is that of Ballester et al. [2006],2 we

re-interpret their model in terms of R&D networks and extend their framework to account

for competition between firms not only within the same product market but also between

different product markets (see our Proposition 1). This yields very general results that can

encompass any possible network of collaborations and any possible interaction structure of

competition between firms. We also provide an explicit welfare characterization, provide

lower and upper bounds and determine which network that maximizes total welfare (see

Propositions 2, 3 and 4). To the best of our knowledge, this is one of the first papers

to provide such an analysis.3 We also provide two policy analyses. The first consists of

subsidizing firms’ R&D efforts. We are able to determine the optimal subsidy level both

when it is homogenous (Proposition 6) and when it is targeted to firms (Proposition 7). We

are not aware of any other studies of subsidy policies in the context of networks.4 Finally,

we extend the key player analysis proposed by Ballester et al. [2006]. In their paper, they

define a key player in the context of crime where the removal of the key player generates the

highest reduction of crime in the network. In our context of R&D networks, we define a key

firm as the one that would reduce total welfare the most if it were removed. It is a different

notion since the key firms are those whose disappearance from the market would result in

a dramatic total welfare loss. Thus, we generalize the inter-centrality formula proposed in

Ballester et al. [2006] by having both network and competition effects defining the key player

(see Proposition 5).

Theoretical Studies of R&D Collaboration Networks In the industrial organization

literature, there is a long tradition of models that analyze product and price competition with

R&D collaborations, first pioneered by Arrow [1962] and then pursued by Spence [1984]. One

of their main insights is that the incentives to invest in R&D are reduced by the presence

of such technology spillovers. This raised the interest in R&D cooperation as a means of

internalizing spillovers. More recently, the seminal works by D’Aspremont and Jacquemin

[1988] and Suzumura [1992], Kamien et al. [1992] focus on the direct links between firms in

the R&D collaboration process.

In all of this literature, however, there is no explicit network of R&D collaborations.

1The economics of networks is a growing field. For overviews of the literature, see Vega-Redondo [2007],
Goyal [2007], Jackson [2008], De Mart́ı and Zenou [2011], Jackson and Zenou [2013, 2015], Zenou [2015a].

2See also Bramoullé et al. [2014].
3In a recent paper, Belhaj et al. [2013] study network design in a game on networks with strategic

complements, but without competition effects.
4There are some papers that look at subsidies in industries with R&D collaborations but the network

is not explicitly modeled. See e.g. Acemoglu et al. [2012]; Bagwell and Staiger [1994]; Bloom et al. [2002];
Hinloopen [2001]; Impullitti [2010]; Leahy and Neary [1997]; Qiu and Tao [1998]; Song and Vannetelbosch
[2007]; Spencer and Brander [1983].
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The first paper that provides an explicit analysis of R&D networks is that by Goyal and

Moraga-Gonzalez [2001].5 The authors introduce a strategic Cournot oligopoly game in the

presence of externalities induced by a network of R&D collaborations. Benefits arise in

these collaborations from sharing knowledge about a cost-reducing technology. However, by

forming collaborations, firms also change their own competitive position in the market as well

as the overall market structure. Thus, there exists a two-way flow of influence from the market

structure to the incentives to form R&D collaborations and, in turn, from the formation of

collaborations to the market structure. Westbrock [2010] extends their framework to analyze

welfare and inequality in R&D collaboration networks, but abstracts from R&D investment

decisions.

However, these papers typically provide results only for a small number of firms or specific

networks, such as regular networks (i.e. all firms have the same number of R&D collabo-

rations), star-shaped or complete networks, networks that we typically do not observe in

the real-world. Compared to these papers, we provide results for all possible networks with

an arbitrary number of firms and a complete characterization of equilibrium output and

R&D effort choices in multiple interdependent markets. We also determine policies related

to network design, the identification of the key player and optimal R&D subsidies.

Econometrics of Networks There has recently been a significant progress in the literature

on identification and estimation of social network models (see Blume et al. [2011], for a recent

survey). In his seminal work, Manski [1993] introduces a linear-in-means social interaction

model with endogenous effects, contextual effects, and correlated effects. Manski shows

that the linear-in-means specification suffers from the ”reflection problem” and the different

social interaction effects cannot be separately identified. Bramoullé et al. [2009] generalize

Manski’s linear-in-means model to a general local-average social network model, whereas the

endogenous effect is represented by the average outcome of the peers. They provide some

general conditions for the identification of the local-average model using the characteristics of

an indirect connection as an instrument for the endogenous effect assuming that the network

(and its adjacency matrix) is exogenous. However, if the adjacency matrix is endogenous,

i.e., if there exists some unobservable factor that could affect both the link formation and

the outcome, then the above identification strategy will fail. Here, as we have a panel data

where the network changes over time (whereas in many applications, the network is observed

at one point in time; [see e.g. Bramoullé et al., 2009; Calvó-Armengol et al., 2009]), we adopt

a similar identification strategy using instruments but with both firm and time fixed effects

to attenuate the potential endogeneity of the adjacency matrix. Then, we go even further

by explicitly modeling the network formation process of R&D collaborations. Indeed, we

add a first stage, where we explain an R&D collaboration between two firms i and j at

time t by whether these two firms had an R&D collaboration in the past, whether they are

5See also Dawid and Hellmann [2012] and Goyal and Joshi [2003].
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technologically close in terms of patents and whether they are in the same industry. Then,

we carry out our instrumental variable (IV) estimation strategy described above using the

predicted adjacency matrix derived from the first stage and compare our results to the ones

with the observed adjacency matrix.

Empirical Studies of Technology Spillovers and R&D Collaborations There is a

large empirical literature on technology spillovers [see e.g. Bloom et al., 2013; Einiö, 2013;

Griffith et al. , 2006; Jones, 1998]. Besides, there is also a large number of empirical papers on

R&D collaboration networks, which are mostly descriptive [see e.g. Fleming, 2007; Hanaki

et al., 2010; Powell et al., 2005; Rosenkopf and Schilling, 2007]. Compared to these two

literatures, we explicitly model the network of R&D collaborations, structurally estimate our

model and derive policy implications.

To illustrate our contribution, let us consider a prominent paper within the first strand of

literature, namely that by Bloom et al. [2013]. This paper highlights the key trade-off faced by

firms between the technology (or knowledge) spillover effect of R&D and the product rivalry

effect. The former effect captures the positive impact of R&D collaborations on output and

profit while the latter captures the negative impact of competition. The authors first provide

different ”distance” measures between firms to capture technology spillovers and then test

the impact of these two effects on output and profits of firms. They show that the net effect

of R&D is positive so that the former dominates the latter effect. In our analysis, we can

directly measure the technological spillovers between two firms through the presence of an

R&D collaboration between them. Within this framework, we further provide a theoretical

model of R&D collaboration networks that incorporates the trade off between the knowledge

spillover effect and the product rivalry effect. We structurally estimate our theoretical model

using the CATI alliance database and Compustat data and show that the net effect of R&D

collaborations is positive. Using our estimates, we empirically apply our model to analyze

subsidy and key player policies and provide a ranking of the top 25 firms. We believe that

this is the first empirical paper to provide such a ranking based on these two types of R&D

policies.

However, it should be clear that R&D spillovers do not only take place through R&D col-

laborations. For example, in Bloom et al. [2013], none of this is through R&D collaborations,

and this paper and others in this literature point to important spillovers through building on

the shoulders of giants or technological neighborhood. In particular, R&D spillovers could

extend to (i) reading other firms’ patents; (ii) imitating their products; and (iii) hiring their

employees. As a result, using our dataset and that of Bloom et al. [2013], we extend both

our theoretical and empirical analysis by allowing for direct (R&D collaborations between

firms) and indirect weighted technology spillovers (between non-collaborating firms), where

weights characterize alternative channels for technology spillovers than R&D collaborations

(representing technological proximity).
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The Key-Player Problem The problem of identifying key players in a network has a

long history, at least in the sociology literature. Indeed, one of the focuses of this literature

is to propose different measures of network centrality and to assert the descriptive and/or

prescriptive suitability of each of these measures to different situations [see, in particular

Wasserman and Faust, 1994]. Borgatti [2003, 2006] was among the first to investigate the

issue of identifying key players, which is based on explicitly measuring the contribution of

a set of agents to the cohesion of a network. The basic strategy is to take any network

property, such as density or maximum flow, and derive a centrality measure by deleting

nodes and measuring the change in the network property. Borgatti measures the amount of

reduction in cohesiveness of the network that would occur if some nodes were not present.

Ballester et al. [2006, 2010] were the first to define the key-player problem in terms of

the behavior of agents and the total activity is measured as the sum of efforts of all agents

at the Nash equilibrium. As stated above, from a theoretical viewpoint, we extend their

intercentrality measure of the key player by looking at welfare loss instead of total activity

(output) loss and by including both the network spillover and the competition effect. In our

context, a key firm can help measure the fragility of the system, since, if it disappears from

the economy, welfare reduction will be the highest among all other possible firms. It has to

be clear, however, that it is a short-run policy since the network is taken as given.

To the best of our knowledge, there are only two other papers that have empirically

tested the key player policy but for crime. Liu et al. [2012] test the key player policy for

juvenile crime in the United States, while Lindquist and Zenou [2013] identify key players

for co-offending networks in Sweden.6 We are the first to test the key player policy for R&D

networks and propose a ranking of firms according to their intercentrality measures. We also

consider another policy which consists of subsidizing the R&D expenditures of firms so that

total welfare is maximized. In the empirical section, we also compare the ranking of firms in

terms of the key player and the subsidy policies.

3. The Model

We consider a general Cournot oligopoly game where a set N = {1, . . . , n} of firms is par-

titioned in M heterogeneous product markets.7 We also allow for consumption goods to be

imperfect substitutes (and thus differentiated products) by adopting the consumer utility

maximization approach of Singh and Vives [1984]. We first consider the demand qi for the

good produced by firm i in market Mm, m = 1, . . . ,M . A representative consumer in market

6For an overview of the key-player literature, see Zenou [2015b].
7In the empirical analysis in Section 7, we measure the market where each firm operates by the Stan-

dard Industrial Classification (SIC), which classifies industries by a four-digit code. As a result, a market
corresponds to a particular industry or sector.
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Mm obtains the following gross utility from consumption of the goods (qi)i∈Mm

Ūm((qi)i∈Mm
) = αm

∑

i∈Mm

qi −
1

2

∑

i∈Mm

q2i −
ρ

2

∑

i∈Mm

∑

j∈Mm,j 6=i

qiqj.

In this formulation, the parameter αm captures the market size or the heterogeneity in prod-

ucts, whereas ρ ∈ (0, 1] measures the degree of substitutability between products. In partic-

ular, ρ → 1 depicts a market of perfectly substitutable goods, while ρ → 0 represents the

case of local monopolies.

The consumer maximizes net utility Um = Ūm−∑i∈Mm
piqi, where pi is the price of good

i. This gives the inverse demand function for firm i

pi = ᾱi − qi − ρ
∑

j∈Mm,
j 6=i

qj, (1)

where ᾱi =
∑M

m=1 αm1{i∈Mm}. In the model, we will study both the general case where ρ > 0

but also the special case where ρ = 0. The latter case is when firms are local monopolies so

that the price of the good produced by each firm i is only determined by its quantity qi (and

the size of the market) and not by the quantities of other firms, i.e. pi = ᾱi − qi.

Firms can reduce their production costs by investing in R&D as well as by establishing

an R&D collaboration with another firm. The amount of this cost reduction depends on the

R&D effort ei of firm i and the R&D efforts of the firms that are collaborating with i, i.e.,

R&D collaboration partners.8 Given the effort level ei ∈ R+, the marginal cost ci of firm i is

given by9,10

ci = c̄i − ei − ϕ
n∑

j=1

aijej, (2)

The network G is captured by A, which is a symmetric n× n adjacency matrix. Its element

aij ∈ {0, 1} indicates if there exists a link between nodes i and j and zero otherwise.11 In the

context of our model, aij = 1 if firms i and j set up an R&D collaboration (0 otherwise) and

aii = 0. In Equation (2), the total cost reduction for firm i stems from its own research effort

ei and the research knowledge of other firms, i.e., knowledge spillovers, which is captured by

the term
∑n

j=1 aijej, where ϕ ≥ 0 is the marginal cost reduction due to neighbor’s effort.12

8 See also Kamien et al. [1992] for a similar model in which firms unilaterally choose their R&D effort
levels.

9This generalizes earlier studies such as that by D’Aspremont and Jacquemin [1988] where spillovers
are assumed to take place between all firms in the industry and no distinction between collaborating and
non-collaborating firms is made.

10Throughout the paper we assume that the cost c̄i is large enough such that marginal costs, ci, are always
positive for all firms i ∈ N .

11See Appendix A.1 for more definitions and characterization of networks.
12In Equation (42) in Appendix E we present an extension of the model where firms benefit from both, direct

technology spillovers between collaborating firms and indirect technology spillovers between non-collaborating
firms. It is therefore important to note that we can define with A a more general matrix that captures
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We assume that R&D effort is costly. In particular, the cost of R&D effort is an increasing

function, exhibits decreasing returns, and is given by 1
2
e2i . Firm i’s profit is then given by

πi = (pi − ci)qi −
1

2
e2i . (3)

Inserting marginal cost from Equation (2) and inverse demand from Equation (1) into Equa-

tion (3) gives

πi = (ᾱi − qi − ρ
∑

j∈Mm,j 6=i

qj − c̄i + ei + ϕ

n∑

j=1

aijej)qi −
1

2
e2i

= (ᾱi − c̄i)qi − q2i − ρ

n∑

j=1

bijqiqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i , (4)

where bij ∈ {0, 1} indicates whether firms i and j operate in the same market or not, and let B

be the n×n matrix whose ij-th element is bij . In Equation (4), we have that
∑

j∈Mm,j 6=i qj =∑n

j=1 bijqj since bij = 1 if i, j ∈ Mm and i 6= j, and bij = 0 otherwise, i.e. if i and j do

not belong to the same market. In other words, the matrix B captures which firms operate

in the same market and which firms do not. Take row i in matrix B, for example. If there

are only zeros, this means that firm i is alone in its market. If there is a 1 corresponding to

column j, this means that firms i and j operate in the same market (or sector).

In the following, we consider quantity competition among firms à la Cournot.13 The next

proposition establishes the Nash equilibrium where each firm i simultaneously chooses both

its quantities qi and its R&D effort ei in a given network of R&D collaborations.14

Proposition 1. Consider the n–player simultaneous move game with payoffs given by Equa-

tion (4) and strategy space in R
n
+ × R

n
+. Denote by µi ≡ ᾱi − c̄i for all i ∈ N , µ the

corresponding n× 1 vector, φ ≡ ϕ/(1− ρ), |Mm| the size of the largest market, In the n× n

identity matrix, u the (n×1) vector of ones and λPF(A) the largest eigenvalue of A. Denote

also by µ = maxi {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with 0 < µ < µ.

(i) If

ρ+ ϕ <

(
max

{
λPF(A), max

m=1,...,M
{(|Mm| − 1)}

})−1

(5)

and

ρ max
m=1,...,M

{(|Mm| − 1)} < 1− ϕλPF(A), (6)

potential technology spillovers between firms.
13In Appendix B we show that the same functional forms for best response quantities and efforts can

be obtained for price setting firms under Bertrand competition as we find them in the case of Cournot
competition.

14See Appendix A.4 for a precise definition of the Bonacich centrality used in the proposition.
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hold, there exists a unique interior Nash equilibrium with output levels given by

q = (In + ρB− ϕA)−1µ. (7)

(ii) Assume that there exists only a single market so that M = 1. Let the µ-weighted

Bonacich centrality be given by bµ (G, φ) ≡ (In − φA)−1
µ. If

φλPF (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1, (8)

holds, then there exists a unique interior Nash equilibrium with output levels given by

q =

(
1

1− ρ

)[
bµ(G, φ)− ρ ‖bµ(G, φ)‖1

1− ρ+ ρ ‖bu(G, φ)‖1
bu(G, φ)

]
. (9)

(iii) Assume a single market (i.e., M = 1) and that µi = µ for all i ∈ N . If φλPF (A) < 1,

then there exists a unique interior Nash equilibrium with output levels given by

q =
µ

1− ρ+ ρ‖bu (G, φ) ‖1
bu (G, φ) . (10)

(iv) Assume a single market (i.e., M = 1), µi = µ for all i ∈ N and that goods are non-

substitutable (i.e., ρ = 0). If ϕ < λPF(A)−1, then the unique equilibrium quantities are

given by q = µbu (G,ϕ).

(v) Let q be the unique Nash equilibrium quantities in any of the above cases (i) to (iv),

then for all i ∈ N = {1, . . . , n} the equilibrium profits are given by

πi =
1

2
q2i , (11)

and the equilibrium efforts are given by

ei = qi. (12)

This proposition gives the results of the Nash equilibrium starting from the most general

case where firms can operate and have links in any market (case (i)) to the case where all firms

operate in the same market (case (ii)) and where they have the same fixed cost of production

and no product heterogeneity (case (iii)) and, finally, when, on top of that, goods are not

substitutable (case (iv)). Indeed, it is easily verified (see Appendix F; proof of Proposition

1) that the first-order condition with respect to R&D effort ei is given by Equation (12),15

15The proportional relationship between R&D effort levels and output in Equation (12) has been confirmed
in a number of empirical studies [see e.g. Cohen and Klepper, 1996a,b; Klette and Kortum, 2004].
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while the first-order condition with respect to quantity qi leads to

qi = µi − ρ

n∑

j=1

bijqj + ϕ

n∑

j=1

aijqj, (13)

or, in matrix form, q = µ − ρBq + ϕAq. In terms of the literature on games on networks

[Jackson and Zenou, 2015], this proposition generalizes the results of Ballester et al. [2006]

and Calvó-Armengol et al. [2009] for the case of local competition in different markets and

choices of both effort and quantity. This proposition provides a total characterization of an

interior Nash equilibrium as well as its existence and uniqueness in a very general framework

when different markets and different products are considered. If we consider case (i), the

new conditions are Equations (5) and (6), which guarantee the existence, uniqueness and

interiority of the Nash equilibrium solutions in the most general case. In case (ii) where all

firms operate in the same market, in order to obtain a unique interior solution, only the

condition in Equation (8) is required, which generalizes the usual condition φλPF (A) < 1

given, for example, in Ballester et al. [2006]. In fact, the condition in Equation (8) imposes a

more stringent requirement on ρ, ϕ,A as the left-hand side of the inequality is now augmented

by nρ

1−ρ

(
µ

µ
− 1
)

≥ 0. That is, everything else equal, the higher the discrepancy µ/µ of

marginal payoffs at the origin, the lower is the level of network complementarities φλPF (A)

that are compatible with a unique and interior Nash equilibrium.

More generally, the key insight of Proposition 1 is the interaction between the network

effect, through the adjacency matrix A, and the market effect, through the competition

matrix B and that is why the first-order condition with respect to qi given by Equation (13)

takes both of them into account. To better understand this result, consider the following

simple example of an industry composed of three firms and two sectors, M1 and M2, where

firms 1 and 2, as well as firms 1 and 3 have an R&D collaboration, while firms 1 and 2 operate

in the same market M1 (see Figure 1).

Then, the adjacency matrix A and the competition matrix B are given by

A =




0 1 1

1 0 0

1 0 0


 , B =




0 1 0

1 0 0

0 0 0


 .

Assume that firms are homogeneous such that µi = µ for i = 1, 2, 3. Using Proposition 1,

the equilibrium output is given by

q = µ(I− ϕA+ ρB)−1u =
µ

1− 2ϕ2 + 2ϕρ− ρ2




1 + 2ϕ− ρ

(ϕ+ 1)(1− ρ)

(1 + ρ)(1 + ϕ− ρ)


 . (14)

Profits are equal to πi = q2i /2 for i = 1, 2, 3. The condition for an interior equilibrium is

ρ + ϕ < 1/
√
2. Figure 1 shows an illustration of equilibrium outputs and profits for the
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Figure 1: Equilibrium output from Equation (15) and profits for the three firms with varying values of the
competition parameter 0 ≤ ρ ≤ 1

2

(√
2− 2ϕ

)
, µ = 1 and ϕ = 0.1. Profits of firms 1 and 3 intersect at ρ = ϕ

(indicated with a dashed line).

three firms with varying values of the competition parameter 0 ≤ ρ ≤ 1
2

(√
2− 2ϕ

)
, µ = 1

and ϕ = 0.1. We see that firm 1 has higher profits due to having the largest number of

R&D collaborations when competition is weak (ρ is low compared to ϕ). However, when

ρ increases, its profits decrease and become smaller than the profit of firm 3 when ρ > ϕ.

This result highlights the key trade off faced by firms between the technology (or knowledge)

spillover effect and the product rivalry effect of R&D [cf. Bloom et al., 2013] since the former

increases with ϕ, which captures the intensity of the spillover effect while the latter increases

with ρ, which indicates the degree of competition in the product market.

To better understand these two effects, consider the case of a single market, that is

M = 1. It is easily verified that, in that case, B = (uu⊤ − In) where u = (1, . . . , 1)⊤ is an

n-dimensional vector of ones. In our example, if there is only one market, all three firms will

compete with each other in the same market so that:

B =




0 1 1

1 0 1

1 1 0


 .

If ϕ/(1− ρ) < 1/
√
2, then the unique equilibrium output will given by:

q =
µ

1− 2ϕ2 + 4ϕρ+ ρ− 2ρ2




1 + 2ϕ− ρ

1 + ϕ− ρ

1 + ϕ− ρ


 . (15)

Since there is only one market, the position in the network will determine which firm will

produce the most and have the highest profit. As firm 1 is the most central firm in the

network and has the highest Bonacich centrality, it has the highest profit. In other words,

12



when M = 1, only the technology (or knowledge) spillover effect is of importance and the

position in the network is the only determi–t of output and profit. However, we saw that

this was not the case in the previous example with two markets because, as compared to firm

3, even if firm 1 had the highest Bonacich centrality, it was competing with firm 2 on the

product market while firm 3 had no competitor on its market. In other words, there is now a

trade off between the position in the network (technology (or knowledge) spillover effect) and

the position in the product market (product rivalry effect). We have seen that, depending on

the values of ρ and ϕ, firm 1 can have a higher or lower output and profit than firm 3.

4. Welfare

Let us now determine the welfare of this economy. We will consider different cases from

general to more specific ones. Inserting the inverse demand from Equation (1) into net

utility Um of the consumer in market Mm shows that

Um =
1

2

∑

i∈Mm

q2i +
ρ

2

∑

i∈Mm

∑

j∈Mm,
j 6=i

qiqj

For given quantities, the consumer surplus is strictly increasing in the degree ρ of substi-

tutability between products. In the special case of non-substitutable goods, when ρ → 0, we

obtain

Um =
1

2

∑

i∈Mm

q2i ,

while in the case of perfectly substitutable goods, when ρ → 1, we get

Um =
1

2

(
∑

i∈Mm

qi

)2

.

The total consumer surplus is then given by U =
∑M

m=1 Um. The producer surplus is given

by aggregate profits Π =
∑n

i=1 πi. As a result, total welfare is equal to W = U +Π.

4.1. Non-Substitutable Goods

When products are not substitutable (ρ → 0), total welfare is given by the producer and

consumer surplus, which can then be written as

W (G) =
n∑

i=1

(
q2i
2
+ πi

)
=

n∑

i=1

q2i .

The following proposition provides upper and lower bounds on welfare for any given graph

G, and determines the welfare maximizing graph.

Proposition 2. Consider independent markets with ρ → 0 and let µi and ϕ satisfy the
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restrictions of Proposition 1. Denote by G(n) the class of graphs with n nodes and the class

of graphs with n nodes and m links by H(n,m) ⊂ G(n).

(i) Let the largest eigenvalue of the adjacency matrix A be given by λPF and let vPF be the

associated eigenvector. Then, social welfare can be written as

W (G) =
(µ⊤vPF)

2

(1− ϕλPF)2
+ o

(
1

1− ϕλPF

)
,

and in the limit of large ϕ the efficient graph G∗ = argmaxG∈H(n,m) W (G) is a nested

split graph where the ordering of degrees {di}ni=1 follows the ordering of {µi}ni=1.

(ii) Assume that µi = µ for all i ∈ N . Then, welfare in the efficient graph G∗ =

argmaxG∈H(n,m)W (G) can be bounded from above and from below as

µ2n

(1− ϕd̄)2
≤ W (G∗) ≤ µ2n

(
1− ϕ

√
(n− 1)d̄

)2 ,

where d̄ = 2m
n

is the average degree in G.

(iii) The efficient graph G∗ = argmaxG∈G(n)W (G) is the one that maximizes the largest

eigenvalue λPF, that is, the complete graph Kn.

This proposition provides several interesting results. First, when products are not sub-

stitutable (ρ = 0), we are able to write an explicit expression of total welfare as a function

of the fundamental parameters of the model and provide a lower and an upper bound on

this welfare function where the bounds depend on the parameters as well as the topology of

the network (captured by the average degree in the network). Second, in terms of network

design, when ρ = 0, there is no competition effect and thus, only spillover effects through

the network matter. As a result, it should not be surprising that the complete network is

the efficient network because of positive complementarities between firms. We also show that

when ϕ is large (close to its maximum value in the limit), the nested split graph is the efficient

network.16,17 Basically, in a nested-split graph, the neighborhood of a node is contained in

the neighborhoods of the nodes with higher degrees (see König et al. [2014] for a discussion of

these graphs). If one looks at the leading term in the welfare function, then one can see that

it depends on the product of µ and the Perron eigenvector vPF. In any nested split graph,

the node with the highest degree also has the highest eigenvector. As a result, in order to

maximize total welfare, one wants to have the node i with the highest µi to have the highest

eigenvector component, which means that it should also have the highest degree. Note that

similar results relating the largest eigenvalue to efficiency have been obtained in Corbo et al.

16The complete graph Kn is a particular (degenerate) case of a nested split graph.
17In Appendix A.3, we formally define nested-split graphs.
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Figure 2: (Left panel) The two bounds from Proposition 2 for ϕ = 0.001, µ = 1, m = n− 1 for varying values
of n. (Right panel) The two bounds from Proposition 4 for ρ = 0.5, ϕ = 0.0001 and µ = 1. Note that the
comparison of welfare in the case of ρ → 0 and ρ > 0 in the above figures for increasing n is not meaningful as
the first considers a growing number of products, while the latter a single product with an increasing number
of firms producing it.

[2006], König et al. [2011] and Belhaj et al. [2013]. The two bounds from Proposition 2 part

(ii) are shown in Figure 2 (left panel).

4.2. Imperfectly Substitutable Goods

In this section, we allow for products to be substitutable, i.e. ρ > 0. Then, social welfare is

given by

W (G) =
1

2

(
n∑

i=1

q2i + ρ
n∑

i=1

n∑

j 6=i

bijqiqj

)
+

n∑

i=1

πi,

where equilibrium output and profits are given by Equations (9) and (11). Inserting profits

as a function of output leads to:

W (G) =
n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j 6=i

bijqiqj = q⊤q+
ρ

2
q⊤Bq,

We are now able to state a similar result as in part (i) of Proposition 2 for the case of

(imperfectly) substitutable goods.

Proposition 3. Denote by C = A− ρ

ϕ
B, let {νi}ni=1 be the eigenvalues of C and {vi}ni=1 the

associated eigenvectors. Then, welfare can be written as

W (G) =
2− ρ

2

(µ⊤v1)
2

(1− ϕν1)2

(
1 +

ρ

2− ρ
v⊤
1 Bv1

)
+ o

(
1

1− ϕν1

)2

.

Proposition 3 shows that when spillover effects are strong such that the leading terms in

1/(1 − ϕν1) dominate, then welfare is determined by the weighted sum of the eigenvector

components µ⊤v1 =
∑n

i=1 µiv1,i and the pairwise eigenvector complementarity effects in
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different markets v⊤
1 Bv1 =

∑n

i=1

∑n

j=1 v1,ibijv1,j.
18

To gain further insights, we will assume in the following that there is only a single market

(with M = 1, bij = 1 for i 6= j and bii = 1 for all i, j ∈ N ) and make the homogeneity

assumption that µi = µ for all i ∈ N . Then, welfare can be written as follows

W (G) =
2− ρ

2
‖q‖22 +

ρ

2
‖q‖21,

where ‖q‖p ≡ (
∑n

i=1 q
p
i )

1

p is the ℓp-norm of q and u = (1, . . . , 1)⊤ is a vector of ones. Using

the fact that ‖q‖2 ≤ ‖q‖1 ≤
√
n‖q‖2, we obtain an upper bound on welfare given by

W (G) ≤ 2 + (n− 1)ρ

2
‖q‖22 = (2 + (n− 1)ρ)Π,

where aggregate profits are given by Π =
∑n

i=1 πi. Hence, welfare is upper bounded by a

proportionality factor times the total profits generated in the economy.

We next consider the efficient network for small values of φ = ϕ/(1 − ρ) (defined as in

Proposition 1) and provide lower and upper bounds for welfare in the efficient graph.

Proposition 4. Consider a large market with substitutable goods where ρ > 0. Further,

assume that µi = µ for all i = 1, . . . , n, and let ρ, µ, ϕ and φ satisfy the restrictions of

Proposition 1. Denote by G(n) the class of graphs with n nodes and the class of graphs with

n nodes and m links by H(n,m) ⊂ G(n).

(i) For small values of φ, such that terms of the order O(φ3) can be neglected, welfare

W (G) is maximized in the graph G ∈ H(n,m) with the smallest degree variance σ2
d.

(ii) For small values of φ such that terms of the order O(φ4) can be neglected, welfare W (G)

for two graphs G,G′ ∈ H(n,m) with the same degree variance σ2
d is higher for the one

which is less degree assortative.

(iii) Assume that 0 < ρ < 1. Then, welfare in the efficient graph G∗ = argmaxG∈H(n,m) W (G)

can be bounded from above and from below as follows

µ2n(2 + (n− 1)ρ)

2(1 + (n− 1)ρ− d̄ϕ)2
≤ W (G∗) ≤ 2− ρ

2

µ2

ρ2


 ρ

2− ρ
+

1

n
(
1− ϕ

1−ρ

√
d̄(n− 1)

)


 ,

where d̄ = 2m
n

is the average degree in G.

(iv) Assume that 0 < ρ < 1. Then welfare in the efficient graph G∗ = argmaxG∈G(n)W (G)

is bounded from above and from below by

µ2n((n− 1)ρ+ 2)

2((n− 1)ρ− nϕ+ ϕ+ 1)2
≤ W (G∗) ≤ µ2((n− 1)nρϕ+ (ρ− 1)((n− 1)ρ+ 2))

2nρ2((n− 1)ϕ+ ρ− 1)
.

18Further results for the case of large spillover effects can be found in Appendix C.
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In particular, in the limit of large industry size n, we have that limn→∞W (Kn)/W (G∗) =
ρ2

(ρ−ϕ)2
, and for weak spillovers, the complete graph Kn is efficient, that is limϕ→0 limn→∞W (Kn) =

W (G∗).

Proposition 4 case (i) is in contrast to previous studies such as Westbrock [2010], where it

is argued that welfare in R&D collaboration networks is increasing with the degree variance.

Part (ii) of the proposition shows that once we allow for stronger spillover effects, the assor-

tativity of the network is also of importance for welfare.19 Part (iii) gives a general result for

the competition effect when 0 < ρ < 1. In that case, the welfare maximizing graph G∗ can

be bounded above and below. The two bounds from part (iv) of Proposition 4 are shown

in Figure 2 (right panel). The last result in part (iv) once more shows that the complete

network is the efficient one in large industries if the spillover effects are not too strong.20

5. The Key Player Policy

As stated in the introduction, the key-player problem was first been introduced in economics

by Ballester et al. [2006, 2010]. In the context of crime, they have argued that concentrating

efforts by targeting key players, i.e. criminals who once removed generate the highest possible

reduction in the aggregate crime level in a network, can have large effects on crime because

of feedback effects or social multipliers. Based on a peer-effect model, Ballester et al. have

proposed a centrality measure (the intercentrality measure) that determines the key player

in each network. Because we are not dealing with crime but with R&D networks, we will

redefine the key-player policy in the following way. First, as shown in Proposition 1, where

only cases (iii) and (iv) correspond to the model of Ballester et al., we will consider a much

more general model where both network and competition effects are of importance in a

context of different markets (or sectors) and different types of goods. Second, we define the

key player in a different way: it will be the firm which once removed from the network reduces

total welfare the most (and not total activity or total output as in Ballester et al.). As it will

turn out, the centrality that we obtain to define the key player (or the key firm) will be quite

different from the intercentrality measure proposed by Ballester et al..

Let G−i be the network obtained from G by removing firm i. The key firm is the one whose

removal from the network reduces welfare the most, i.e., the key firm i∗ ∈ N = {1, . . . , n}
and is defined by i∗ = argmaxi∈N{W (G)−W (G−i)}. The following proposition characterizes

the key firm i∗ both when ρ = 0 and when ρ > 0.

19The assortativity coefficient ρd(G) ∈ [−1, 1] is essentially the Pearson correlation coefficient of degree
between nodes that are connected. Positive values of ρd(G) indicate that nodes with similar degrees tend
to be connected, while negative values indicate that nodes with different degrees tend to be connected. See
Newman [2002] and Pastor-Satorras et al. [2001] for further details.

20In Appendix C, we provide additional results on welfare where we focus on a particular class of networks,
namely those with a large spectral gap.
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Proposition 5. Let ρ, µi, i ∈ N , ϕ and φ be defined as in Proposition 1.

(i) Assume that goods are not substitutable, i.e. ρ = 0 and let ϕ < 1/λPF. Moreover, let

NG(ϕ, i) = mii(G,ϕ) denote the generating function of the number of closed walks21

that start and terminate at node i and let M(G,ϕ) ≡ (In − ϕA)−1. Then, the key firm

is given by i∗ = argmaxi∈N ci(G,ϕ), where the intercentrality of firm i is given by

ci(G,ϕ) =
bµ,i(G,ϕ)

NG(ϕ, i)

[
(M(G,ϕ)bµ(G,ϕ))i −

1

2

bµ,i(G,ϕ)

NG(ϕ, i)
(M(G,ϕ)2)ii

]
. (16)

(ii) Assume that goods are substitutable, i.e. ρ > 0, that the matrix M(G, ρ, ϕ) = (In +

ρB−ϕA)−1 exists22 and let bµ(G, ρ, ϕ) = M(G, ρ, ϕ)µ. Then, the key firm is given by

i∗ = argmaxi∈N ci(G, ρ, ϕ), where the intercentrality of firm i is given by

ci(G, ρ, ϕ) =
bµ,i(G, ρ, ϕ)

mii(G, ρ, ϕ)

(
(M(G, ρ, ϕ)(2In + ρB)bµ(G, ρ, ϕ))i

−1

2

bµ,i(G, ρ, ϕ)

mii(G, ρ, ϕ)
(M(G, ρ, ϕ)(2In + ρB)M(G, ρ, ϕ))ii

)
.

Let us start with case (i), which assumes that goods are not substitutable, i.e. ρ = 0. We

propose a new intercentrality measure, which is an alternative to that of Ballester et al. [2006,

2010] defined as
bu,i(G,ϕ)2

NG(ϕ,i)
. Our intercentrality measure is defined as ci =

1
2

d
dϕ

(
ϕbµ,i(G,ϕ)2

NG(ϕ,i)

)
,

which, after some calculations, can be written as in Equation (16) (see the proof of Proposition

5). As for the case of crime, the key firm need not necessarily be the one producing the highest

output level or, equivalently, the one with the highest Bonacich centrality measure. This is

because the removal of the key firm has both a direct and an indirect effect on total welfare

and thus, the choice of key firm results from a compromise between these two effects. Indeed,

if the choice of key firm was solely governed by the direct effect of firm removal on aggregate

welfare, the most productive firms would be the natural candidates. But the choice of key

firm must also take into account the indirect effect on aggregate welfare reduction induced

by the network restructuring that follows from the removal of one firm from the original

network. Our intercentrality measure defined in Equation (16) takes this trade off into

account. Interestingly, the two effects appear in both intercentrality measures (ours and that

of Ballester et al. [2006, 2010]), the two effecs appear since they include both the Bonacich

centrality of the key firm (direct effect) and the generating function of the number of closed

walks that start and terminate at the key firm (indirect effect through self-loops).

If we now consider the more general case (ρ > 0) where both the network effect and

the competition effect are taken into account, it can be seen that there is a difference in

21See Appendix A.2 for a formal definition of walk generating functions of a graph and some results
associated with them.

22See Proposition 1, item (i), for a sufficient condition that guarantees that this matrix is invertible.
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the weighted Bonacich centralities bµ(G, ·) between part (i) and part (ii) of Proposition 5.

While the first is the standard weighted Bonacich centrality of the network G with firm-

specific weights µi (see Appendix A.4), in part (ii), the Bonacich centrality depends on both,

the adjacency matrix A of network G and the block diagonal matrix B, which indicates

which firm is competing with which other firms. This is an important generalization of the

intercentrality measure of the key player, which we believe to be crucial when one deals with

R&D networks (but also any network with both spillover and competition effects) since, as

stated above, there is a key trade off faced by firms between the technology (or knowledge)

spillover effect and the product rivalry effect of R&D that needs to be accounted for.

6. The R&D Subsidy Policy

In this section, we would like to consider an alternative policy to the key player one, that is

R&D subsidies. Indeed, in order to foster innovative activities and economic growth, govern-

ments in numerous countries have introduced R&D support programs aimed at increasing the

R&D effort in the private sector.23 Moreover, national governments in a number of countries

subsidize the R&D activities of domestic firms, particularly in industries where foreign and

domestically owned firms are in competition for international markets. Such programs are,

for example, the EUREKA program in the European Union or the SPIR program in the

United States.

To better understand this issue, we would now like to extend our framework by considering

an optimal R&D subsidy program in the short run, i.e. taking the network G as given. For

our analysis, we first assume that all firms obtain a homogeneous subsidy per unit of R&D

effort spent. Then, we proceed by allowing the social planner to differentiate between firms

and implement firm-specific R&D subsidies.24

6.1. Homogeneous R&D Subsidies

Let us first consider the case of a single market, M = 1. An active government is introduced

that can provide a subsidy, s ≥ 0, per unit of R&D. It is assumed that each firm receives the

same per unit R&D subsidy. The profit of firm i with an R&D subsidy can then be written

as:

πi = (ᾱ− c̄i)qi − q2i − ρqi
∑

j 6=i

bijqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i + sei. (17)

23Public R&D grants covered about 7.5 % of private R&D in the OECD countries in 2004 [OECD, 2012].
For an overview of R&D tax credits which are another commonly used fiscal incentive for R&D investment,
see Bloom et al. [2002]. Takalo et al. [2013] analyze the welfare effects of targeted R&D subsidies using
project-level data from Finland.

24We would like to emphasize that, as we have normalized the cost of R&D to one in the profit function of
Equation (3), the absolute values of R&D subsidies are not meaningful in the subsequent analysis, but rather
relative comparisons across firms are.
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This formulation is similar to that of Spencer and Brander [1983] where each firm i receives a

fixed amount of money sei proportional to firm i’s effort ei. The government (or the planner)

is here introduced as an agent that can set subsidy rates on R&D effort in a period before

the firms spend on R&D. The assumption that the government can pre-commit itself to such

subsidies and thus can act in this leadership role is fairly natural. As a result, this subsidy will

affect the levels of R&D conducted by firms, but not the resolution of the output game. In

this context, the optimal R&D subsidy s∗ determined by the planner is found by maximizing

total welfare W (G, s) less the cost of the subsidy s
∑n

i=1 ei, taking into account the fact that

firms choose output and effort for a given subsidy level by maximizing the profits in Equation

(17). If we define net welfare as W (G, s) ≡ W (G, s)− s
∑n

i=1 ei, the social planner’s problem

is given by

s∗ = argmaxs∈R+
W (G, s).

The following proposition derives the Nash equilibrium quantities and efforts and the optimal

subsidy level that solves the planner’s problem.

Proposition 6. Consider the n–player simultaneous move game with profits given by Equa-

tion (17) where firms choose quantities and efforts in the strategy space in R
n
+×R

n
+. Further,

let µi, i ∈ N be defined as in Proposition 1.

(i) If Equation (5) holds, then the matrix M = (In + ρB − ϕA)−1 exists, and the unique

interior Nash equilibrium in quantities with subsidies (in the second stage) is given by

q = q̄ + sr, (18)

where q̄ = Mµ and r = ϕM
(

1
ϕ
u+Au

)
. The equilibrium profits are given by

πi =
q2i + s2

2
. (19)

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if
∑n

i=1 (r
2
i (1− 3) + 2ri + 1) ≥

0, the optimal subsidy level (in the first stage) is given by

s∗ =

∑n

i=1 q̄i (1− 2ri)∑n

i=1 (ri (2ri − 2)− 1)
,

(iii) Assume that goods are substitutable, i.e. ρ > 0. Then if

n∑

i=1

(
r2i (1− 3) + 2ri + 1− ρ

n∑

j=1

bijrirj

)
≥ 0,
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the optimal subsidy level (in the first stage) is given by

s∗ =

∑n

i=1

(
q̄i(2ri − 1) + ρ

2

∑n

j=1 bij(q̄irj + q̄jri)
)

∑n

i=1

(
1 + ri

(
2− 2ri − ρ

∑n

j=1 bijrj

)) ,

In part (i) of Proposition 6, we solve the second stage of the game where firms decide

their output given the homogenous subsidy s. In parts (ii) and (iii) of the proposition, we

solve the first stage when the planner optimally determines the subsidy per R&D effort when

goods are not substitutable, i.e. ρ = 0, and when they are (ρ > 0). We are able to determine

the exact value of the optimal subsidy to be given to each firm embedded in a network of

R&D collaborations in both cases. Interestingly, the optimal subsidy depends on the vector

r = Mu+ ϕMAu where the vector Au determines the degree (i.e. number of links) of each

firm.

6.2. Targeted R&D Subsidies

We now consider the case where the planner can discriminate between firms by offering

different subsidies. In other words, we assume that each firm i, for all i = 1, . . . , n, obtains

a subsidy si ≥ 0 per unit of R&D effort. The profit of firm i can then be written as:

πi = (ᾱ− c̄i)qi − q2i − ρqi
∑

j 6=i

bijqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i + siei. (20)

As above, the optimal R&D subsidies s∗ are then found by maximizing welfare W (G, s)

less the cost of the subsidy
∑n

i=1 siei, when firms are choosing output and effort for a given

subsidy level by maximizing the profits in Equation (20). If we define net welfare asW (G, s) ≡
W (G, s)−∑n

i=1 eisi, then the solution to the social planner’s problem is given by

s∗ = argmax
s∈Rn

+
W (G, s).

The following proposition derives the Nash equilibrium quantities and efforts (second stage)

and the optimal subsidy levels that solve the planner’s problem (first stage).

Proposition 7. Consider the n–player simultaneous move game with profits given by Equa-

tion (17) where firms choose quantities and efforts in the strategy space in R
n
+×R

n
+. Further,

let µi, i ∈ N be defined as in Proposition 1.

(i) If Equation (5) holds, then the matrix M = (In + ρB − ϕA)−1 exists, and the unique

interior Nash equilibrium in quantities with subsidies (in the second stage) is given by

q = q̄ +Rs, (21)
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where R = M (In + ϕA), q̄ = Mµ, and equilibrium profits are given by

πi =
q2i + s2i

2
. (22)

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if the matrix In + 2R− 2R2

is positive definite, the optimal subsidy levels (in the first stage) are given by

s∗ = (In + 2R− 2R2)−1(2R− In)q̄.

(iii) Assume that goods are substitutable, i.e. ρ > 0. Then, if the matrix In−2R⊤
(
1
2
(2In + ρB

)
R−

In) is positive definite, the optimal subsidy levels (in the first stage) are given by

s∗ =

(
In − 2R⊤

(
1

2
(2In + ρB

)
R− In)

)−1 (
R⊤(2In + ρB)− In

)
q̄.

As in the previous proposition, in part (i) of Proposition 7, we solve for the second stage

of the game where firms decide their output given the targeted subsidy si. In parts (ii) and

(iii), we solve the first stage of the model when the planner optimally decides the targeted

subsidy per R&D effort when goods are substitutable (i.e. ρ > 0), and when they are not (i.e.

ρ = 0). We are able to determine the exact value of the optimal subsidy to be given to each

firm embedded in a network of R&D collaborations in both cases.25 We will use the results

of these two propositions below to empirically study R&D collaborations between firms in

our dataset.

We would now like to test the different parts of the theoretical results. First, we will

test Proposition 1 and will try to disentangle between the technology (or knowledge) spillover

effect and the product rivalry effect of R&D. Second, once the parameters of the model

have been estimated, we will determine which the key firms are in our dataset and make a

comparison with those that should be subsidized.

7. Data

We use data on interfirm R&D collaborations stemming from the MERIT-CATI database.26

Given its history and coverage, the MERIT-CATI database is one of the few databases that

allows us to study patterns in R&D partnerships in several industries, both domestically and

internationally, in different regions of the world over an extended period of several decades.

This database contains information about strategic technology agreements, including any

25Note that when the condition for positive definiteness is not satisfied then we can sill use parts (ii) or
(iii) of Proposition 7, respectively, as a candidate for a welfare improving subsidy program. However, there
might exist other subsidy programs which yield even higher welfare gains.

26We would like to thank Christian Helmers for providing access to the dataset.
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alliance that involves some arrangements for mutual transfer of technology or joint research,

such as joint research pacts, joint development agreements, cross licensing, R&D contracts,

joint ventures and research corporations [cf. Hagedoorn, 2002].27 The database only records

agreements for which a combined innovative activity or an exchange of technology is at least

part of the agreement. Moreover, only agreements that have at least two industrial partners

are included in the database, thus agreements involving only universities or government labs,

or one company with a university or lab, are disregarded. From the MERIT-CATI database,

we then obtain a total of 13, 040 companies. The systematic collection of inter-firm alliances

started in 1987 and ended in 2006. However, information about alliances prior to 1987 is

available in the database, and we use all information available starting from the year 1950.28

We construct the R&D alliance network by assuming that an alliance lasts 5 years [similar

to e.g. Rosenkopf and Padula, 2008].29 In the robustness section below (Section 9.2.2), we

will test our model for different durations of alliances.

Figure 3 shows the number of firms n participating in an alliance in the R&D network

constructed in this way, the average degree d̄, the degree variance σ2
d and the degree coefficient

of variation, i.e. cv = σd/d̄, over the years 1990 to 2005. It can be seen that there are very

large variations over the years in the number of firms having an R&D alliance with other firms.

Starting from 1990, we observe a strong increase followed by a sudden drop to a low level.

Since 1998, it is once more increasing. Interestingly, the average number of alliances per firm

(captured by the average degree d̄), the degree variance σ2
d as well as the degree coefficient of

variation cv have decreased over the years, indicating lower inter-firm collaboration activity

levels.

In Figure 4,30,31 exemplary plots of the largest connected component in the R&D network

for the years 1990, 1995, 2000 and 2005 are shown. In 1990, the giant component had a

core-periphery structure with many R&D interactions between firms from different sectors.

If we look at the same picture in 2005, the core-periphery structure seems less obvious and

two cores and a periphery seem to emerge, where there are only few interactions between

firms of different sectors in one of the cores. This may indicate more specialization in R&D

27Schilling [2009] compares different alliance databases, including MERIT-CATI, and finds that the different
databases show similar patterns.

28As explained below, we do not have any information available on firms’ financial reports from Standard
& Poor’s Compustat database prior to 1950. Hence, we choose this year as the first year of observation in
our sample.

29Rosenkopf and Padula [2008] use a five-year moving window assuming that alliances have a five-year life
span, and state that the choice of a five-year window is consistent with extant alliance studies [e.g. Gulati
and Gargiulo, 1999; Stuart, 2000] and conforms to Kogut [1988] finding that the normal life span of most
alliances is no more than five years. Moreover, Harrigan [1988] studies 895 alliances from 1924 to 1985 and
concludes that the average life-span of the alliance is relatively short, 3.5 years, with a standard deviation
of 5.8 years and 85 % of these alliances last less than 10 years. Park and Russo [1996] focus on 204 joint
ventures among firms in the electronic industry for the period 1979–1988. They show that less than half of
these firms remain active beyond a period of five years and for those that last less than 10 years (2/3 of the
total), the average lifetime turns out to be 3.9 years.

30See Appendix A.1 for the definition of a connected component.
31Only firms for which we could obtain their industry classification are shown.
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Figure 3: The number of firms n participating in an alliance, the average degree d̄, the degree variance σ2
d

and the degree coefficient of variation cv = σd/d̄.

alliance partnerships.

The CATI database provides the names for each firm in an alliance. We matched the

firms’ names in the CATI database with the firms’ names in Standard & Poor’s Compustat

US and Global fundamentals databases, to obtain information about their balance sheets and

income statements. For this purpose, we adopted and extended the name matching algorithm

developed as part of the NBER patent data project.32 We could match roughly 20% of the

firms in the CATI data. From our match between the firms’ names in the CATI database and

the firms’ names in the Compustat database, we obtained a firm’s sales, cost of goods sold,

number of employees and capital. As we do not observe physical output of the firms directly,

we use the profit function from Equation (3), πi = (pi − ci)qi − 1
2
e2i , together with the Nash

equilibrium expressions ei = qi and πi =
1
2
q2i (cf. Proposition 1), to obtain a relationship

between output qi, sales, piqi, and the cost of goods sold, ciqi, given by qi =
√
piqi − ciqi.

33

The empirical distributions for output P (q) (using a logarithmic binning of the data with

100 bins) and the degree distribution P (d) are shown in Figure 5. Both are highly skewed,

indicating a large degree of inequality in the number of goods produced as well as the number

32See https://sites.google.com/site/patentdataproject.
33Our approach circumvents the standard solution in the literature to deflate firm-level sales by an indus-

trywide producer price index in order to eliminate price effects to compute output. This procedure yields
unbiased results only when every firm’s price relative to the industry producer price index does not change
over time [cf. Bloom et al., 2013; DeLoecker, 2011].
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(a) 1990: n = 303, m = 777. (b) 1995: n = 405, m = 795.

(c) 2000: n = 497, m = 845. (d) 2005: n = 513, m = 861.

Figure 4: Network snapshots of the largest connected component for the years (a) 1990, (b) 1995, (c) 2000
and (d) 2005 with the number of firms n and the number of links m. Node colors represent different industry
SIC codes at the 4-digit level. The nodes’ sizes indicate their degree.
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Figure 5: Empirical output distribution P (q) and the distribution of degree P (d) for the years 1975, . . . , 2006.
The data for output has been logarithmically binned and non-positive data entries have been discarded.

of R&D collaborations.

8. Econometric Analysis

8.1. Econometric Specification

In this section, we introduce the econometric equivalent to the equilibrium quantity produced

by each firm given in Equation (13). Our empirical counterpart of the marginal cost cit of

firm i from Equation (2) at period t has a fixed cost equal to c̄it = η∗i − ǫit − x⊤
itβ, and thus,

we get

cit = η∗i − εit − x⊤
itβ − eit − ϕ

n∑

j=1

aij,tejt, (23)

where xit is a k-dimensional vector of observed exogenous characteristics of firm i, η∗i cap-

tures the unobserved (to the econometrician) firm-specific fixed effect, and εit captures the

remaining unobserved (to the econometrician) characteristics of the firms. We use capital

and labor to capture xit. Moreover, we assume that η∗i and εit can be observed by other

firms.

Similarly to Equation (1), the inverse demand function for firm i is given by:

pit = ᾱm + ᾱt − qit − ρ

n∑

j=1

bijqjt, (24)

where bij = 1 if i and j are in the same market and zero otherwise. In this equation, ᾱm

indicates the market-specific fixed effect and ᾱt captures the time fixed effect due to exogenous

demand shifters that affect consumer income, number of consumers (population), consumer

taste and preferences and expectations over future prices of complements and substitutes or

future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm− η∗i . Observe that κt captures the time fixed effect while
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ηi, which includes both ᾱm and η∗i , captures the firm fixed effect. Then, proceeding as in

Section 3 (see, in particular the proof of Proposition 1), adding subscript t for time and using

Equations (23) and (24), the econometric model equivalent to the best-response quantity in

Equation (13) is given by:

qit = ϕ
n∑

j=1

aij,tqjt − ρ
n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ǫit. (25)

Observe that the econometric specification in Equation (25) has a similar specification as

the product competition and technology spillover production function estimation in Bloom

et al. [2013] where the estimation of ϕ will give the intensity of the technology (or knowledge)

spillover effect of R&D, while the estimation of ρ will give the intensity of the product rivalry

effect. However, as opposed to these authors, we explicitly take into account the technology

spillovers stemming from R&D collaborations by using a network approach.

In vector-matrix form, we can write Equation (25) as

qt = ϕAtqt − ρBqt +Xtβ + η + κtun + ǫt, (26)

where qt = (q1t, · · · , qnt)⊤, At = [aij,t], B = [bij ], Xt = (x1t, · · · ,xnt)
⊤, η = (η1, · · · , ηn)⊤,

ǫt = (ǫ1t, · · · , ǫnt)⊤, and un is an n-dimensional vector of ones.

For the T periods, Equation (26) can be written as

q = ϕdiag{At}q− ρ(IT ⊗B)q+Xβ + uT ⊗ η + κ⊗ un + ǫ, (27)

where q = (q⊤
1 , · · · ,q⊤

T )
⊤, X = (X⊤

1 , · · · ,X⊤
T )

⊤, κ = (κ1, · · · , κT )
⊤, and ǫ = (ǫ⊤1 , · · · , ǫ⊤T )⊤,

All vectors are of dimension (nT × 1), where T is the number of years available in the data.

In terms of data, our main variables will be measured as follows. Output qit is the square

root of net profits of firm i at time t (as explained in the previous section) and comes from the

Compustat database. The network data comes from the CATI database and we set aij,t = 1

if there exists an R&D collaboration between firms i and j in the last s years before time

t, where s is the duration of an alliance.34 The exogenous variables captured by xit are the

firm’s number of employees and the square root of capital. Finally, we measure bij as in the

theoretical model so that bij = 1 if firms i and j are the same industry (measured by the

industry SIC codes at the four-digit level) and zero otherwise.

8.2. Identification and IV Estimation

We here adopt a structural approach in the sense that we estimate exactly the first-order

condition of the firm’s maximization in terms of output and R&D effort, which lead to

34For the benchmark estimation results reported in Table 1, we set s = 5. We report estimation results
with different lengths of alliance duration in Table 3 and the results are robust.
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Equation (26). Interestingly, the best-response quantity in Equation (26) corresponds to a

higher-order Spatial Auto-Regressive (SAR) model with two spatial lags Atqt and Bqt [Lee

and Liu, 2010]. As in the SAR model, the spatial lags Atqt and Bqt are endogenous variables

and need to be instrumented by AtXt and BXt.

To be more specific, let us consider Equation (25). The output of firm i at time t, qit, is

a function of the total output of all firms with an R&D collaboration with firm i at time t,

i.e. q̄a,it =
∑n

j=1 aij,tqjt, and the total output of all firms that operate in the same market as

firm i, i.e. q̄b,it =
∑n

j=1 bijqjt. Due the feedback effect, qjt also depends on qit and, thus, q̄a,it

and q̄b,it are endogenous. We instrument q̄a,it by the total number of employees and the total

capital of all firms with an R&D collaboration with firm i, i.e.
∑n

j=1 aij,txit, and instrument

q̄b,it by the total number of employees and the total capital of all firms that operate in the

same industry as firm i, i.e.
∑n

j=1 bijxit. In other words, we estimate Equation (25) using a

two-stage least squares (2SLS) approach where, in the first stage, we regress q̄a,it and q̄b,it on∑n

j=1 aij,txit and
∑n

j=1 bijxit, respectively, to obtain ˆ̄qa,it and ˆ̄qb,it. In the second stage of the

estimation, we replace the spatial lags in Equation (25) by ˆ̄qa,it and ˆ̄qb,it and estimate

qit = ϕˆ̄qa,it − ρˆ̄qb,it + x⊤
itβ + ηi + κt + ǫit. (28)

Obviously, the above identification strategy based on IVs is valid only if Xt and At are

exogenous. To control for the potential endogeneity of Xt, we also experiment with IVs based

on time-lagged employment and capital, e.g. AtXt−1 and BXt−1, for Atqt and Bqt and the

estimation results are robust. On the other hand, the potential endogeneity ofAt is somewhat

more complicated to deal with. At is endogenous if there exists an unobservable factor that

affects both qit and aij,t. If the unobservable factor is firm-specific, then it is captured by the

firm fixed-effect. If the unobservable factor is time-specific, then it is captured by the time

fixed-effect. Therefore, the fixed effects in the panel data model are helpful for attenuating

the potential endogeneity of At.

Furthermore, to address the endogeneity of the adjacency matrix, we also model the

network formation process of R&D collaborations between firms. That is, we consider an IV

strategy based on the predicted adjacency matrix, i.e. ÂtXt following Kelejian and Piras

[2012]. To be more specific, let us consider the estimation of Equation (25) using the predicted

adjacency matrix by a three-stage least squares (3SLS) approach. In the first stage of the

estimation, we obtain the predicted links âij,t from the regression of aij,t on whether firms

i and j collaborated before time (t − s) where s is the duration of an alliance, whether i

and j are in the same industry (measured by the first two digits of their SIC codes) and

technological proximity of firms i and j represented by Pij and P 2
ij [cf. e.g. Nooteboom
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et al., 2006; Powell and Grodal, 2006, Sec. 3.5].35,36 The proximity measure turns out to

be a significant predictor for R&D collaborations.37 In the second stage, we regress q̄a,it on∑n

j=1 âij,txjt to obtain ˜̄qa,it, and regress q̄b,it on
∑n

j=1 bijxit to obtain ˆ̄qb,it. In the third stage,

we replace the spatial lags in Equation (25) by ˜̄qa,it and ˆ̄qb,it, respectively and estimate

qit = ϕ˜̄qa,it − ρˆ̄qb,it + x⊤
itβ + ηi + κt + ǫit. (29)

Let us now give a formal definition for the estimator. In Equation (27), η and κ capture

the firm and time fixed effects, respectively. We allow for η and κ to depend on diag{At}, B
and X by treating them as vectors of unknown parameters. To avoid the incidental problem,

we transform Equation (27) using a within projector J = JT ⊗ Jn where JT = IT − 1
T
uTu

⊤
T

and Jn = In − 1
n
unu

⊤
n . The transformed Equation (27) is

Jq = ϕJdiag{At}q− ρJ(IT ⊗B)q+ JXβ + Jǫ. (30)

where the firm and time fixed effects η and κ have been washed out.

As stated above, to estimate Equation (30), we consider the IV matrix with the actual

adjacency matrix At, i.e. Q1 = J[diag{At}X, (IT ⊗ B)X,X], and the IV matrix with the

predicted adjacency matrix Ât = [âij,t], i.e. Q2 = J[diag{Ât}X, (IT ⊗B)X,X].

Let P1 = Q1(Q
⊤
1 Q)−1

1 Q⊤
1 P2 = Q2(Q

⊤
2 Q)−1

2 Q⊤
2 and Z = [diag{At}q, (IT ⊗B)q,X]. The

2SLS estimator with IVs based on the actual adjacency matrix is given by (Z⊤P1Z)
−1Z⊤P1q.

The 3SLS estimator with IVs based on the predicted adjacency matrix is given by (Z⊤P2Z)
−1Z⊤P2q.

With the estimates of ϕ, ρ,β, we can recover η and κ by the least squares dummy variable

method.

35 We matched the firms in our alliance data with the owners of patents from the US patent office (USPTO)
and the European patent office (EPO). For the US patents, we matched the firm names with the firms in the
NBER patent data project, while for the European patents, we matched them to the firms listed in the EPO
Worldwide Patent Statistical Database (PATSTAT). This allowed us to obtain the number of patents and
the patent portfolio held for about 30 % of the firms in the data. From the firms’ patents, we then computed

their technological proximity Pij =
F⊤

i Fj√
F⊤

i
Fi

√
F⊤

j
Fj

, where Fi is a vector whose k-th component Fik counts the

number of patents firm i has in technology category k divided by the total number of technologies attributed
to the firm [cf. Bloom et al., 2013; Jaffe, 1986]. We used the three-digit US patent classification system to
identify technology categories [Hall et al., 2001].

36A year-by-year linear probability regression is carried out. The estimated coefficients of the regressors
are all statistically significant with expected signs. In particular, the coefficient of Pij is positive and that of
P 2
ij is negative. The estimation results of this first stage are omitted to save space and are available upon

request.
37One would therefore expect to obtain similar results using patents as a measure for technology spillovers

(instead of explicit data on R&D collaborations) as in Bloom et al. [2013]. Moreover, in Section 9.2.4 we
allow for both, direct technology spillover from R&D collaborations, and indirect spillovers captured via the
patent proximity matrix Pij .
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Table 1: Parameter estimates (with standard errors in parenthesis) from a panel
regression with time dummies of Equation (26). Model A does not include firm
fixed effects (f.e.), while Model B introduces also firm fixed effects. Model C uses
the predicted instead of the actual adjacency matrix.

Model A Model B Model C

time eff. yes yes yes
firm f.e. no yes yes

ϕ 0.0214*** (0.0015) 0.0077*** (0.0013) 0.0077*** (0.0019)
ρ 0.0019*** (0.0001) 0.0008*** (0.0002) 0.0008*** (0.0002)
β1 0.0856*** (0.0072) 0.1249*** (0.0119) 0.1248*** (0.0119)
β2 0.4617*** (0.0064) 0.5280*** (0.0116) 0.5281*** (0.0118)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

9. Empirical Results

9.1. Results from Estimating our Model

The parameter estimates of Equation (26) are reported in Table 1, which reports three

different models. Models A and B are the 2SLS estimation of Equation (26) with time fixed

effects only and time and firm fixed effects, respectively. Model C is the 3SLS estimation

of Equation (26) where we estimate the adjacency matrix (network formation) in the first

stage. In all these models, we obtain the expected signs, that is the technology (or knowledge)

spillover effect (estimate of ϕ) always has a positive impact on own output while the product

rivalry effect (estimate of −ρ) always has negative impact on own output. Indeed, the more

a given firm collaborates with other firms in R&D, the higher is its output production. This

indicates that R&D by allied firms in the network is associated with higher product value and

indicate that there are strategic complementarities between own and allied firms. However,

conditional on technology spillovers, the more firms that compete in the same market, the

lower is the production of the good by the given firm. As in Bloom et al. [2013], this table

shows that the magnitude of the first effect (technology spillover) is much higher than that of

the second effect (product rivalry). Keeping all other firms’ output levels constant, suppose

that firm j is both a collaboration partner of firm i and operates in the same market as firm

i. Then, we find that the net effect of firm j increasing its output by one unit is captured by

the difference of the two effects. As the technology spillover effect is much higher than the

rivalry effect, we find that the latter dominates the former so that the net returns to R&D

collaborations are strictly positive. Furthermore, this table also shows that capital and labor

have a positive and significant impact on own output.
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Table 2: Parameter estimates (with standard errors in parenthesis) from a panel
regression with time dummies of Equation (26). Model A does not include firm
fixed effects (f.e.), while Model B introduces also firm fixed effects. Model C uses
the predicted instead of the actual adjacency matrix. Firms for which one of the
neighbors has missing data are dropped from the sample.

Model A Model B Model C

time eff. yes yes yes
firm f.e. no yes yes

ϕ 0.0174*** (0.0022) 0.0048** (0.0024) 0.0242*** (0.0051)
ρ 0.0021*** (0.0001) 0.0014*** (0.0002) 0.0014*** (0.0002)
β1 0.1325*** (0.0113) 0.1758*** (0.0108) 0.1766*** (0.0109)
β2 0.4300*** (0.0079) 0.5073*** (0.0123) 0.4966*** (0.0128)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

9.2. Robustness Checks

9.2.1. Missing Data

The actual number of observations used in the estimation is much lower than the 13, 040

companies in the MERIT-CATI database due to missing data in the dependent variables

qit and controls xit. The presence of missing data does not only introduce some technical

difficulty since the panel is unbalanced,38 but may also lead to more severe consequences.

Suppose that aij,t = 1 and the observation on qjt is missing. Then, the missing observation

introduces a measurement error to the spatial lag
∑n

j=1 aij,tqjt in Equation (25) and the above

estimators may not be consistent.39 Note that this is a different sampling issue from that

studied by Chandrasekhar and Lewis [2011] and Liu [2013], where the dependent variable

and controls can be observed and the observations on network links might be missing. This

missing data issue is more in line with that in Wang and Lee [2013]. However, the method

in Wang and Lee [2013] cannot be applied here as they consider a random-effect panel data

model rather than a fixed-effect model and they assume that there is no missing data in the

control variables.

As a robustness check, we estimate our model using the subsample of firms whose col-

laboration partners have no missing outputs. For those firms, the collaboration effect is

correctly specified. The estimation results are reported in Table 2 and are similar with re-

spect to those reported in Table 1, except for an increase in the spillover coefficient from

R&D collaborations.

38For notational simplicity, we present the estimation procedure for a balanced panel. For an unbalanced
panel due to missing data, the projector introduced by Wansbeek and Kapteyn [1989] can easily be extended
to the current model to eliminate the individual and time fixed effects.

39The missing observation of an individual firm output is less a concern for the product rivalry effect
because we directly use the industry-level total output from the data to get

∑n
j=1 bijqjt.
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9.2.2. Time Span of Alliances

We here analyze the impact of considering different time spans (other than 5 years as in

the previous section) for the duration of an alliance. The estimation results from Table 1 in

Section 8.2 for alliance durations ranging from 3 to 7 years are shown in Table 3. We find

that the estimates are robust over the different durations considered.

9.2.3. Intra- versus Interindustry Collaborations

So far, we have assumed that network effects or knowledge spillovers were the same whether

they were intra- or inter-industry collaborations. In the real-world, the knowledge spillovers

between two firms in the same industry (say Volvo and Honda in the car manufacturing sector)

may be different than between two firms from different industries (for example, between Volvo

and Toshiba in the car manufacturing and ICT sectors, respectively). The rationale is that

the involved firms might differ in the similarity of their areas of technological competences

and knowledge domains depending on whether the collaborating firms operate in the same

or in different industries [cf. Nooteboom et al., 2006; Powell and Grodal, 2006].40

In this section, we extend our empirical model of Equation (25) by allowing for intra-

industry technology spillovers to differ from inter-industry spillovers. The generalized model

is given by41

qit = ϕ1

n∑

j=1

a
(1)
ij,tqjt + ϕ2

n∑

j=1

a
(2)
ij,tqjt − ρ

n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ǫit, (31)

where a
(1)
ij,t = aij,tbij , a

(2)
ij,t = aij,t(1 − bij), and the coefficients ϕ1 and ϕ2 capture the intra-

industry and the inter-industry technology spillover effect, respectively. In vector-matrix

form, we have:

qt = ϕ1A
(1)
t qt + ϕ2A

(2)
t qt − ρBqt +Xtβ + η + κtun + ǫt. (32)

The parameter estimates from a fixed-effect panel regression with time dummies of Equation

(32) are given in Table 4. We observe that the signs and the significance (except for the

within industry spillovers) of the coefficients remain the same as before. Interestingly, the

inter-industry R&D spillover coefficient is significant, while the intra-industry R&D spillover

coefficient becomes insignificant. This highlights the importance of technology spillovers from

firms in different industries driven by dissimilarities in their technology portfolios and the

recombination of heterogeneous technologies for innovation [cf. Weitzman, 1998].

40This specification also allows for testing the possibility that allied firms which operate in the same market
might form a collusive agreement and thus affect each other’s quantity levels differently than firms operating
in different markets [cf. Duso et al., 2012; Goeree and Helland, 2012].

41The theoretical foundation of Equation (31) can be found in Appendix D.

32



Table 3: Parameter estimates (with standard errors in parenthesis) from a panel regression with time dummies of Equation (26) including firm
fixed effects assuming different durations of an alliance ranging from 3 to 7 years.

3 years 4 years 5 years 6 years 7 years

ϕ 0.0089*** (0.0016) 0.0084*** (0.0014) 0.0077*** (0.0013) 0.0075*** (0.0012) 0.0073*** (0.0012)
ρ 0.0008*** (0.0002) 0.0008*** (0.0002) 0.0008*** (0.0002) 0.0008*** (0.0002) 0.0008*** (0.0002)
β1 0.1271*** (0.0116) 0.1259*** (0.0117) 0.1249*** (0.0119) 0.1240*** (0.0119) 0.1233*** (0.0120)
β2 0.5267*** (0.0113) 0.5271*** (0.0113) 0.5280*** (0.0116) 0.5275*** (0.0117) 0.5275*** (0.0119)

# obs. 25166 25098 25027 24946 24862

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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Table 4: Parameter estimates (with standard errors in
parenthesis) from a fixed effects panel regression with time
dummies of Equation (32). Model E does not include firm
fixed effects (f.e.), while Model F introduces also firm fixed
effects.

Model E Model F

time eff. yes yes
firm f.e. no yes

ϕ1 0.0052 (0.0048) 0.0081 (0.0060)
ϕ2 0.0235*** (0.0015) 0.0078*** (0.0015)
ρ 0.0018*** (0.0001) 0.0008*** (0.0002)
β1 0.0862*** (0.0072) 0.1248*** (0.0111)
β2 0.4634*** (0.0065) 0.5278*** (0.0111)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

9.2.4. Direct and Indirect Technology Spillovers

So far, our adjacency matrix At only captured R&D collaborations between firms, which,

in the data, where measured by our MERIT-CATI database. As stated in the Introduction,

a lot of R&D spillovers do not take place through R&D collaborations and can come from

many channels such as reading other firms’ patents or imitating their products. In the

present section, we extend our empirical model of Equation (25) by allowing for both direct

(between collaborating firms) and indirect technology spillovers (between non-collaborating

firms), which will be captured by the matrices At and Wt, respectively.

The generalized empirical model is now given by42

qit = ϕ
n∑

j=1

aij,tqjt + χ
n∑

j=1

wij,tqjt − ρ
n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ǫit, (33)

where wij are weights characterizing alternative channels for technology spillovers than R&D

collaborations and the coefficients ϕ and χ capture the direct and the indirect technology

spillover effect, respectively. In vector-matrix form, we then have:

qt = ϕAtqt + χWtqt − ρBqt +Xtβ + η + κtun + ǫt. (34)

In terms of data, we measure the weights wij by the cells of the technological proximity

matrix, Pij, introduced already in Footnote 35. Recall that we matched the firms in our

alliance data with the patents from the US patent office (USPTO) and the European patent

office (EPO). From the firms’ patents, we then computed their technological proximity Pij ,

42The theoretical foundation of Equation (33) can be found in Appendix E.
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Table 5: Parameter estimates (with standard errors in parenthesis) from a panel
regression with time dummies of Equation (34). Model G does not include firm
fixed effects (f.e.), while Model H introduces also firm fixed effects. Model I uses
the predicted instead of the actual adjacency matrix. Firms for which one of the
neighbors has missing data are dropped from the sample.

Model G Model H Model I

time eff. yes yes yes
firm f.e. no yes yes

ϕ 0.0149*** (0.0022) 0.0039* (0.0023) 0.0211*** (0.0051)
χ 0.0045*** (0.0003) 0.0029*** (0.0004) 0.0023*** (0.0005)
ρ 0.0021*** (0.0001) 0.0015*** (0.0002) 0.0014*** (0.0002)
β1 0.1306*** (0.0111) 0.1764*** (0.0108) 0.1769*** (0.0109)
β2 0.4276*** (0.0078) 0.5064*** (0.0124) 0.4972*** (0.0128)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

defined by

Pij =
F⊤

i Fj√
F⊤

i Fi

√
F⊤

j Fj

, (35)

where Fi is a vector whose k-th component Fik counts the number of patents firm i has in

technology category k divided by the total number of technologies attributed to the firm [cf.

Bloom et al., 2013; Jaffe, 1986]. We used the three-digit US patent classification system to

identify technology categories [cf. Hall et al., 2001].

The results of a fixed-effect panel regression with time dummies of Equation (34) are

shown in Table 5. Both spillover coefficients, ϕ and χ, are positive and significant. We

further observe that the spillover effect from direct R&D collaborations (ϕ) is also typically

higher than the one from indirect technology spillovers (χ). We will use the most conservative

estimation in the last column in Table 5, Model I, for our policy analysis in Section 10, where

we use the predicted instead of the actual adjacency matrix, firms for which one of the

neighbors has missing data are dropped from the sample, and we allow for both direct and

indirect technology spillovers.

10. Policy Results

In the following sections, we use our estimation results from the most general model of Section

9.2.4 to analyze the different policies highlighted in Section 5 (key-player policy) and Section

6 (subsidy policy).

10.1. Determining the Key Firms

Now that we have estimated the parameters of the model, using the most conservative re-

gression in Table 5, Model I, together with the results of Section 5, we can calculate the
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intercentrality of each firm in our dataset.43 The corresponding formula is given in part

(ii) of Proposition 5. This will determine the key players or the key firms in our dataset.44

Therefore, we can rank the firms according to their intercentrality measures. This means

that the firm that will be ranked first is such that, if it exits from the market, it will generate

the highest loss in total welfare in the economy. The firm ranked second will be the one that,

if removed, will generate the second highest loss in total welfare, etc.. Remember that the

key-player policy is a short-term one as we do not take into account the possible reaction of

firms in terms of network formation. This is why we calculate for each year a new list of key

players.

A ranking of the first 25 firms with the highest impact on welfare upon exit in the

year 1990 can be found in Table 6, while the corresponding ranking in the year 2005 is

shown in Table 7. In these two tables, we also calculate the market share of each firm in

the primary four-digit sector where it operates (across all firms in the Compustat database

within that sector), the number of patents accumulated, its degree d (i.e. the number of R&D

collaborations), its eigenvector centrality vPF, its betweenness and closeness centralities (see

Wasserman and Faust [1994] and Jackson [2008] for a list and definitions of these and other

centrality measures), the relative output or Bonacich centrality of the firm, the key player

according to Ballester et al. [2006, 2010] (i.e. the firm which once removed generates the

highest decrease in total activity/output) and, finally, the key player defined in the present

paper (i.e. the firm which once removed generates the highest decrease in total welfare).

It should be clear that key firms are not always those with the highest centralities. If we

look, for example, at Table 6, then one can see that the key firm is General Motors but it

is not the one with the largest number of R&D collaborations (degree), number of patents,

nor the highest eigenvector, betweenness or closeness centrality. More importantly, General

Motors is not the firm that has the highest market share in its sector since it has “only”

12.14 % of the market share while, for example, Hitachi, Altria or Pepsico have a much higher

share (up to more than 50 %). This means that it is not straightforward to determine which

firm should be ”targeted” in the network by only observing its market share, size or even its

position in the network. Interestingly, our intercentrality and that of Ballester et al. [2006,

2010] give roughly the same rankings of firms. If General Motors were to be removed from

the market, then total welfare would be reduced by 8.14 %, while total output would decrease

by 2.13 %. As stated in Section 1, the bailout of General Motors by president Obama was a

success because of the indirect effects of a possible bankrupcy of this automoblie company on

other companies in the industry. These spillover effects are the main reason for why General

Motors is a key firm in our analysis. If Sony (which has 32 % of the market share of its

market) or Procter and Gamble (which has nearly 59 % of the market share of its market)

43Note that we use both, the matrix A = (aij)1≤i,j≤n of R&D collaborations and the matrix W =
(wij)1≤i,j≤n capturing indirect technology spillovers for our policy analysis, as discussed in Section 9.2.4.

44If some firms turn out to have non-positive output levels in a counterfactual equilibrium after the removal
of a firm, then they are assumed to exit the market.
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Figure 6: The transition matrix Tij from the rank i in year t to the rank j in year t + 1 for the key player
ranking (left panel) and the subsidies ranking (right panel) for the first 100 ranks.

were removed from the economy, then less than a 1.7 % decrease in output or welfare would

follow.

If we now compare the key player ranking between 1990 and 2005 (15 years after), then,

from Tables 6 and 7, we find that key firms change over time. For example, General Motors,

which was the key firm in 1990, is ranked seventh in 2005 and its removal will reduce welfare

by 1.83 % and total output by 0.68 %, while these numbers were 8.14 % and 2.13 % in

1990. More generally, it can be seen that the decline in welfare and total output due to the

removal of the highest ranked firms is generally much lower in 2005. Apart from the fact that

some key firms in 1990 are no longer present in 2005 (for example, Texaco, Hoechst A.G., Elf

Aquitaine), most key firms are still “key” in 2005. Figure 7 captures this idea by showing the

change in the ranking of the 25 highest ranked firms from 1990 to 2005. The ranking of firms

can be quite stable for some, while it is rather volatile for others. For example, Exxon Corp.

was the second highest ranked firm in 1990 and occupies the third place in 2005. In contrast,

Hoechst A.G., which was among the three highest ranked firms in 1990, slipped down to rank

82 in 2003. The left-hand panel in Figure 6 shows the transition probability Tij from a rank

i in year t to a rank j in year t+ 1 for the first 100 ranked firms. The figure illustrates that

the rankings are quite stable over time, where most transitions occur along the diagonal of

Tij. There is a larger variation in the bottom right corner of Tij and less variation in the top

left corner. This shows that the upper ranks are more stable than the lower ranks.

The left-hand panel of Figure 8 shows the (ordered) percentage decrease in welfare due

to the removal of a firm over the years 1990 to 2005. The exit of most firms only has a

minor impact on welfare, while the highest ranked firms can have a considerable effect on

total welfare.

10.2. R&D Subsidies

As an alternative policy to the key player analysis in the previous section, we now study

empirically the optimal subsidy policy, both for the homogenous subsidy, s∗, (see Proposition
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Table 6: Key player ranking for the year 1990 for the first 25 firms.

Firm Share [%]a num. pat. d vPF(G) Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e W (G)−W (G−i)

W (G) [%] Rank

General Motors Corp. 12.1445 50185 12 0.1185 0.3381 0.0025 1.5952 2.1320 8.1366 1
Exxon Corp. 10.1151 6927 3 0.0187 0.0000 0.0015 1.3351 1.4587 5.2459 2
Hoechst A.G. 13.8715 9634 2 0.0000 0.0006 0.0002 1.1600 1.2474 3.6020 3
Altria Group 57.0787 0 0 0.0000 0.0000 0.0000 0.9675 0.9675 2.4648 4
Chevron 3.7009 4410 5 0.0191 0.0430 0.0015 0.8618 0.9773 2.3855 5
Pepsico Inc. 52.5069 798 0 0.0000 0.0000 0.0000 0.9035 0.9203 2.1723 6
Unilever N.V./Plc. 8.2910 982 0 0.0000 0.0000 0.0000 0.8933 0.9300 2.1323 7
Daimler Corp. 5.2310 2 0 0.0000 0.0000 0.0000 0.8931 0.8877 2.0879 8
Texaco Inc. 3.9206 8939 6 0.0427 0.1857 0.0019 0.7446 0.8666 1.8826 9
Toyota Motor Corp. 6.2806 58 9 0.1578 0.1420 0.0023 0.6746 0.8293 1.6732 10
Sony Corp. 32.0711 5840 8 0.1021 0.0382 0.0018 0.7243 0.8922 1.6603 11
Motorola Inc. 18.5193 7903 16 0.2996 0.1027 0.0025 0.6349 0.9300 1.6273 12
Hitachi Ltd. 37.6873 40838 7 0.1309 0.0141 0.0020 0.6840 0.8554 1.5681 13
Bellsouth Corp. 3.2244 42 2 0.0059 0.0000 0.0009 0.7353 0.7782 1.5395 14
McDonnell Douglas Corp. 21.8941 899 14 0.1851 0.1452 0.0024 0.6194 0.8771 1.5056 15
Alcatel-Lucent 31.0329 1238 0 0.0000 0.0000 0.0000 0.7462 0.7683 1.4979 16
Renault 2.9712 524 2 0.0034 0.0000 0.0009 0.7250 0.7481 1.4789 17
Merrill Lynch Inc. 13.1555 8 4 0.0206 0.0257 0.0014 0.7033 0.7689 1.4645 18
Volkswagen A.G. 4.1641 414 4 0.0184 0.0344 0.0014 0.6855 0.7554 1.4348 19
Xerox Corp. 84.2264 24341 8 0.1378 0.0246 0.0020 0.6350 0.7820 1.2918 20
Procter & Gamble 58.8860 14744 1 0.0000 0.0000 0.0004 0.6888 0.7208 1.2861 21
Texas Instruments Inc. 20.5932 14822 22 0.3450 0.2083 0.0028 0.5342 0.8365 1.2766 22
Volvo A.B. 1.3887 119 4 0.0147 0.0395 0.0014 0.6205 0.6808 1.2521 23
Elf Aquitaine 3.1007 2471 1 0.0000 0.0000 0.0002 0.6675 0.7056 1.2442 24
Novartis AG 4.6058 311 0 0.0000 0.0000 0.0000 0.6518 0.6472 1.1257 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n − 1)(n− 2), the maximum
number of such paths.

c The closeness centrality of node i is computed as
∑n

j=1 2
−ℓij(G), where ℓij(G) is the length of the shortest path between i and j in the network G [Dangalchev,

2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1 (see Proposition 1).
e The decrease in output due to the removal of firm i is computed as ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G) /‖bµ(G)‖1.
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Table 7: Key player ranking for the year 2005 for the first 25 firms.

Firm Share [%]a num. pat. d vPF(G) Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e W (G)−W (G−i)

W (G) [%] Rank

Daimler Corp. 7.5743 9952 9 0.0093 0.1239 0.0009 0.8474 1.0518 3.8156 1
Toyota Motor Corp. 7.7760 567 4 0.0036 0.0019 0.0006 0.8056 0.8829 3.3055 2
Exxon Corp. 7.8647 11457 0 0.0000 0.0000 0.0000 0.8478 0.8744 3.2712 3
NTT DoCoMo 4.3962 1505 7 0.2752 0.1323 0.0016 0.6197 0.7763 2.1623 4
Volkswagen A.G. 4.8178 3931 3 0.0023 0.0000 0.0006 0.6201 0.6750 1.9932 5
Intel Corp. 9.8341 31709 15 0.3040 0.1593 0.0016 0.5607 0.7691 1.9605 6
General Motors Corp. 7.7341 66784 6 0.0101 0.0480 0.0009 0.5757 0.6823 1.8318 7
Sony Corp. 32.1340 32362 12 0.3462 0.1095 0.0015 0.5436 0.7413 1.8186 8
Chevron 4.4312 4987 0 0.0000 0.0000 0.0000 0.6201 0.6345 1.7510 9
Hitachi Ltd. 27.8692 106477 12 0.3199 0.1439 0.0015 0.5309 0.7532 1.7308 10
Total SA 3.6544 1205 0 0.0000 0.0000 0.0000 0.6107 0.6415 1.7153 11
Altria Group 40.0416 0 0 0.0000 0.0000 0.0000 0.5546 0.5546 1.3849 12
Fujitsu Ltd. 17.3622 26830 14 0.3722 0.1840 0.0016 0.3941 0.5520 1.1174 13
Unilever N.V./Plc. 9.0941 6697 0 0.0000 0.0000 0.0000 0.4910 0.5071 1.1033 14
Metro AG 17.6754 1 2 0.0543 0.0000 0.0009 0.4574 0.4842 1.0323 15
Endesa 1.5322 5 0 0.0000 0.0000 0.0000 0.4501 0.4775 0.9436 16
Sanofi 4.7555 7655 0 0.0000 0.0000 0.0000 0.4460 0.4340 0.9004 17
Tyco 78.0977 7517 0 0.0000 0.0000 0.0000 0.4388 0.4625 0.8971 18
Novartis AG 4.5096 10352 4 0.0048 0.1026 0.0008 0.4362 0.4842 0.8940 19
Procter & Gamble 54.0431 51544 1 0.0042 0.0000 0.0006 0.4345 0.4600 0.8915 20
Canon Inc. 28.2269 105340 1 0.0303 0.0000 0.0009 0.4269 0.4662 0.8826 21
Time Warner Inc 31.5018 242 0 0.0000 0.0000 0.0000 0.4335 0.4481 0.8637 22
Bellsouth Corp. 1.8106 4060 0 0.0000 0.0000 0.0000 0.4203 0.4354 0.8162 23
Comcast Corp 16.9208 0 3 0.0534 0.0176 0.0012 0.4042 0.4352 0.8128 24
Telstra Corp 1.4888 40 0 0.0000 0.0000 0.0000 0.4084 0.4219 0.7693 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n− 1)(n− 2), the maximum
number of such paths.

c The closeness centrality of node i is computed as
∑n

j=1 2
−ℓij(G), where ℓij(G) is the length of the shortest path between i and j in the network G [Dangalchev,

2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1 (see Proposition 1).
e The decrease in output due to the removal of firm i is computed as ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G) /‖bµ(G)‖1.
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Figure 7: Change in ranking of the 25 key firms (Table 6) from the year 1990 to the year 2005.
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6) and for the targeted subsidy, s∗ (see Proposition 7).45 In Figure 9, in the top panel, we

calculate the optimal homogenous subsidy times R&D effort over time (top left panel) and

the percentage increase in welfare due to the homogenous subsidy over time (top right panel).

Interestingly, the total subsidized R&D effort more than doubled over the time between 1990

and 2005. In terms of welfare, the highest increase (around 46 %) is in 2000 and 2005, while

the increase in welfare in 1995 is smaller (around 37 %). The bottom panel of Figure 9 does

the same exercise for the targeted subsidy policy.46 We first note that in this case we find

that while most of the firms receive a subsidy, a few are actually taxed (always below 0.5

% across all years). Moreover, the total expenditures on the targeted subsidies are typically

of the same order of magnitude as the ones for the homogeneous subsidy. However, the

targeted subsidy program turns out to have a much higher impact on total welfare, as it can

improve welfare by up to 120 % while the homogeneous subsidies can improve total welfare

only by up to 46 %. Moreover, the optimal subsidy levels show a strong variation over time.

Both the homogeneous and the aggregate targeted subsidy seem to follow a cyclical trend,

similar to the strong variation we have observed for the number of firms participating in

R&D collaborations in a given year in Figure 3. This cyclical trend is also reminiscent of the

R&D expenditures observed in the empirical literature on business cycles [cf. Barlevy, 2007;

Gaĺı, 1999].

We can compare the optimal subsidy level predicted from our model with the R&D tax

subsidies actually implemented in the United States and selected other countries between

1979 to 1997 [see Bloom et al., 2002; Impullitti, 2010]. While these time series typically show

a steady increase of R&D subsidies over time, they do not seem to incorporate the cyclicality

that we obtain for the optimal subsidy levels. Our analysis thus suggests that policy makers

should adjust R&D subsidies to these cycles.

At the firm level we can further compare our firm-specific optimal subsidies with those

that are actually provided by government agencies. For this purpose we have matched the

firms in our dataset with the firms that have obtained R&D subsidies from the European

intergovernmental organization for market-driven industrial R&D, EUREKA.47 A ranking

of the first 25 firms according to our optimal subsidy policy considering only those that re-

ceived funding from EUREKA is shown in Table 10. We observe that the ranking of our

subsidy policy does not necessarily reflect the ranking of the actual subsidies implemented

by EUREKA. For example, Fujitsu Ltd. received funding of 0.96 millions USD and is ranked

second according to our optimal subsidy policy, while Sony Corp. received funding of only

488.1916 millions USD while being ranked third, behind Fujitsu Ltd.. However, this discrep-

45As in the case of the key player analysis, we adopt the convention that if some firms turn out to have
non-positive output levels in a counterfactual equilibrium where the subsidy policy is implemented, then they
are assumed to exit the market.

46We find that the condition for positive definiteness in the case of a targeted subsidy in part (iii) of
Proposition 7 was violated in our data. Hence, our subsidy policy yields a lower bound on the potential
welfare gains. See also Footnote 25.

47See http://www.eurekanetwork.org/.
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Figure 9: (Top left panel) The total optimal subsidy payments, s∗‖e‖1, in the homogeneous case over time.
(Top right panel) The percentage increase in welfare due to the homogeneous subsidy, s∗, over time. (Bottom
left panel) The total subsidy payments, e⊤s∗, when the subsidies are targeted towards specific firms. (Bottom
right panel) The percentage increase in welfare due to the targeted subsidies, s∗, over time.

ancy is not surprising, as current public funding instruments such as EUREKA do not take

into account network effects stemming from R&D collaborations that determine our optimal

subsidy policy.

We proceed by providing a similar ranking as for the key player policy by ranking firms in

terms of targeted subsidies. In other words, if the planner wants to maximize total welfare,

which firms should receive the highest subsidies and how much should it be. The ranking of

the first 25 firms by their optimal subsidy levels in 1990 can be found in Table 8 while the one

for 2005 is shown in Table 9. As for the key player policy, we see that the ranking of firms

in terms of subsidies does not correspond to other rankings in terms of network centrality,

patent stocks or market share. However, the ranking is similar to the one for the key firms.

The correlation between the subsides and the key player ranking is 0.91 in the year 1990

and 0.88 in the year 2005. There is also volatility in the ranking since many firms that are

ranked in the top 25 in 1990 are no longer there in 2005 (for example McDonnell Douglas

Corp., Texaco Inc., Honeywell Inc., etc.). Figure 11 shows the change in the ranking of the

25 highest subsidized firms (Table 8) from 1990 to 2005. The right-hand panel of Figure 6

shows the transition probability Tij from a rank i in year t to a rank j in year t + 1 for the

first 100 ranks. As in the case of the key player rankings, the subsidy rankings are quite

stable over time, where most transitions occur along the diagonal of Tij . There is a larger

variation at the bottom right corner of Tij and less variation at the top left corner, showing
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data have been log and square root transformed to account for the heterogeneity in the data.

that the upper ranks are more stable than the lower ranks.

A comparison of market shares, the number of patents, the centrality used for the compu-

tation of the key player ranking and the targeted subsidies yields a high correlation between

the key player centrality and the targeted subsidies. A slightly weaker correlation can also be

found with the firms’ market shares and patent stocks. The corresponding pair correlation

plots for the year 1990 can be seen in Figure 10. Highly ranked firms tend to have a larger

market share and also a larger patent stock. However, these measures can only partially

explain the ranking of the firms, as the market share is more related to the product market

rivalry effect, while the patent stock is more related to the technology spillover effect, and

both enter into the computation of the key player ranking and the optimal subsidy program.

Observe that our subsidy rankings typically favor larger firms as they tend to be better

connected in the R&D network than small firms.48 This adds to the discussion of whether

large or small firms are contributing more to the innovativeness of an economy [cf. Mandel,

2011],49 by adding another dimension along which larger firms can have an advantage over

small ones. Namely by creating R&D spillover effects that contribute to the overall produc-

tivity of the economy.50 While studies such as Spencer and Brander [1983] and Acemoglu

48We further find a significant correlation between market share and the optimal subsidy levels of 0.48 in
the year 1990 and 0.58 in the year 2005. See also Figure 10.

49See also “Big and clever. Why large firms are often more inventive than small ones.” The Economist
(2011, Dec. 17th). Retrieved from http://www.economist.com.

50Our findings regarding the pro-welfare effect of R&D conducted by large firms is in line with the results
obtained by Bloom et al. [2013], where it is noted that “...smaller firms generate lower social returns to R&D
because they operate more in technological niches.”
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Figure 11: Change in the ranking of the 25 highest subsidized firms (Table 8) from 1990 to 2005.

et al. [2012] find that R&D should often be taxed rather than subsidized, we find in line with

e.g. Hinloopen [2001] that R&D subsidies can have a significantly positive effect on welfare.

As argued by Hinloopen [2001], the reason why our results differ from those of Spencer and

Brander [1983] is that we take into account the consumer surplus when deriving the optimal

R&D subsidy. Moreover, in contrast to Acemoglu et al. [2012], we do not focus on entry and

exit but incorporate the network of R&D collaborating firms. This allows us to take into

account the R&D spillover effects of incumbent firms, which are typically ignored in studies

of the innovative activity of incumbent firms versus entrants. Therefore, we see our analy-

sis as complementary to that of Acemoglu et al. [2012], and we show that R&D subsidies

can trigger considerable welfare gains when technology spillovers through R&D alliances are

incorporated.

Finally, if we compare the key player ranking and the subsidy ranking, we see that many

firms appear in both rankings (such as General Motors, Exxon Corp., Toyota Motor Corp.,

etc.) but that there are also many firms that do not (such as Altria Group, Honeywell Inc.,

etc.). In general, we believe that the key player policy is more relevant than the subsidy

policy. First, it captures the fragility of the system. Second, it allows the planner to help or

bail out the key firms whose removal or disappearance would be extremely costly in terms

of total welfare and total activity for the economy. Third, by taking the network as given in

this short run policy analysis, we do not incorporate the strategic formation of collaborations

when firms expect that these collaboration might have an impact on the R&D subsidies they

might receive. This is less of an issue for the key player analysis, where we study the response

of the economy to exogenous, unanticipated shocks.
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Table 8: Subsidies ranking for the year 1990 for the first 25 firms.

Firm Share [%]a num pat. d vPF(G) Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e s∗ [106] Rank

General Motors Corp. 12.1445 50185 12 0.1185 0.3381 0.0025 1.5986 2.1365 0.1368 1
Texas Instruments Inc. 20.5932 14822 22 0.3450 0.2083 0.0028 0.5353 0.8382 0.1201 2
Motorola Inc. 18.5193 7903 16 0.2996 0.1027 0.0025 0.6362 0.9320 0.1137 3
Intel Corp. 12.2966 1397 21 0.3029 0.2529 0.0028 0.4336 0.6611 0.1103 4
Honeywell Inc. 63.9769 17194 11 0.2464 0.1256 0.0024 0.4080 0.5552 0.1025 5
Sun Microsystems 11.0880 413 21 0.2791 0.1483 0.0026 0.2899 0.4483 0.1010 6
McDonnell Douglas Corp. 21.8941 899 14 0.1851 0.1452 0.0024 0.6207 0.8790 0.1005 7
TRW Inc 7.0559 1659 11 0.2016 0.0648 0.0023 0.5006 0.6758 0.0965 8
National Semiconductor Corp. 5.3366 1266 13 0.2527 0.0405 0.0023 0.3270 0.4391 0.0928 9
Toyota Motor Corp. 6.2806 58 9 0.1578 0.1420 0.0023 0.6760 0.8311 0.0920 10
Exxon Corp. 10.1151 6927 3 0.0187 0.0000 0.0015 1.3379 1.4618 0.0909 11
Harris Corp. 5.1937 2606 11 0.2257 0.0540 0.0023 0.3318 0.4460 0.0867 12
Hitachi Ltd. 37.6873 40838 7 0.1309 0.0141 0.0020 0.6854 0.8572 0.0825 13
Tektronix Inc. 17.5728 4486 14 0.2055 0.0787 0.0024 0.2902 0.4033 0.0823 14
Texaco Inc. 3.9206 8939 6 0.0427 0.1857 0.0019 0.7462 0.8684 0.0790 15
Chevron 3.7009 4410 5 0.0191 0.0430 0.0015 0.8636 0.9793 0.0779 16
Sony Corp. 32.0711 5840 8 0.1021 0.0382 0.0018 0.7258 0.8940 0.0770 17
Xerox Corp. 84.2264 24341 8 0.1378 0.0246 0.0020 0.6363 0.7836 0.0761 18
Electronic Data Systems Corp. 6.8935 8 7 0.1300 0.0616 0.0023 0.3882 0.4721 0.0738 19
Martin-Marietta Corp. 34.0667 818 8 0.1360 0.0423 0.0020 0.3406 0.4287 0.0704 20
Hoechst A.G. 13.8715 9634 2 0.0000 0.0006 0.0002 1.1624 1.2500 0.0675 21
Unisys Corp. 10.9318 9622 7 0.0836 0.0045 0.0017 0.4719 0.5777 0.0651 22
Volvo A.B. 1.3887 119 4 0.0147 0.0395 0.0014 0.6218 0.6822 0.0628 23
Volkswagen A.G. 4.1641 414 4 0.0184 0.0344 0.0014 0.6869 0.7570 0.0621 24
Merrill Lynch Inc. 13.1555 8 4 0.0206 0.0257 0.0014 0.7047 0.7705 0.0600 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n−1)(n−2), the maximum
number of such paths.

c The closeness centrality of node i is computed as
∑n

j=1 2
−ℓij(G), where ℓij(G) is the length of the shortest path between i and j in the network G

[Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1 (see Proposition 1).
e The decrease in output due to the removal of firm i is computed as ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G) /‖bµ(G)‖1.
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Table 9: Subsidies ranking for the year 2005 for the first 25 firms.

Firm Share [%]a num pat. d vPF(G) Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e s∗ [106] Rank

Intel Corp. 9.8341 31709 15 0.3040 0.1593 0.0016 0.5607 0.7691 0.0470 1
Fujitsu Ltd. 17.3622 26830 14 0.3722 0.1840 0.0016 0.3941 0.5520 0.0468 2
Sony Corp. 32.1340 32362 12 0.3462 0.1095 0.0015 0.5436 0.7413 0.0468 3
Hitachi Ltd. 27.8692 106477 12 0.3199 0.1439 0.0015 0.5309 0.7532 0.0467 4
NTT DoCoMo 4.3962 1505 7 0.2752 0.1323 0.0016 0.6197 0.7763 0.0465 5
Daimler Corp. 7.5743 9952 9 0.0093 0.1239 0.0009 0.8474 1.0518 0.0464 6
Motorola Inc. 12.4529 26313 16 0.1841 0.5527 0.0019 0.3129 0.4458 0.0460 7
Toyota Motor Corp. 7.7760 567 4 0.0036 0.0019 0.0006 0.8056 0.8829 0.0458 8
Infineon Technologies AG 2.1293 13376 13 0.2028 0.1826 0.0016 0.2971 0.3855 0.0458 9
Cisco Systems Inc 63.1857 4432 10 0.1648 0.2269 0.0017 0.3313 0.4350 0.0457 10
General Motors Corp. 7.7341 66784 6 0.0101 0.0480 0.0009 0.5757 0.6823 0.0456 11
Mitsubishi Electric Corp 5.6782 30529 6 0.2016 0.0742 0.0014 0.3309 0.4075 0.0455 12
Sharp Corp. 8.5948 14454 6 0.2413 0.0066 0.0012 0.2951 0.3532 0.0455 13
Lockheed Martin Co 95.5769 5482 11 0.0856 0.0553 0.0011 0.2899 0.3975 0.0454 14
Volkswagen A.G. 4.8178 3931 3 0.0023 0.0000 0.0006 0.6201 0.6750 0.0453 15
Exxon Corp. 7.8647 11457 0 0.0000 0.0000 0.0000 0.8478 0.8744 0.0453 16
Boeing Company 31.5363 14222 9 0.0798 0.1254 0.0013 0.3572 0.4511 0.0452 17
Texas Instruments Inc. 3.3920 40456 6 0.1820 0.0278 0.0012 0.2632 0.2955 0.0452 18
Sun Microsystems 7.3032 8227 7 0.1645 0.0533 0.0011 0.2264 0.2835 0.0451 19
Mitsubishi Corp 87.2569 154 4 0.1914 0.0000 0.0011 0.3396 0.3777 0.0451 20
Oracle Corp. 7.8059 1586 5 0.1310 0.0321 0.0011 0.2784 0.3130 0.0450 21
Northrop Grumman 37.8576 11573 7 0.0705 0.0240 0.0011 0.2766 0.3426 0.0449 22
STMicroelectronics NV 2.2482 4942 4 0.1306 0.0206 0.0014 0.2984 0.3211 0.0449 23
Total SA 3.6544 1205 0 0.0000 0.0000 0.0000 0.6107 0.6415 0.0448 24
Chevron 4.4312 4987 0 0.0000 0.0000 0.0000 0.6201 0.6345 0.0447 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n − 1)(n− 2), the
maximum number of such paths.

c The closeness centrality of node i is computed as
∑n

j=1 2
−ℓij(G), where ℓij(G) is the length of the shortest path between i and j in the network G

[Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1 (see Proposition 1).
e The decrease in output due to the removal of firm i is computed as ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G) /‖bµ(G)‖1.
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Table 10: Optimal subsidies ranking for the year 2005 including the first 25 firms which also received funding trough EUREKA.

Firm Share [%]a num pat. d vPF(G) Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e s∗ [106] EUREKA [106]f Rankg

Fujitsu Ltd. 17.3622 26830 14 0.3722 0.1840 0.0016 0.3941 0.5520 0.0468 0.9600 2
Sony Corp. 32.1340 32362 12 0.3462 0.1095 0.0015 0.5436 0.7413 0.0468 488.1916 3
Hitachi Ltd. 27.8692 106477 12 0.3199 0.1439 0.0015 0.5309 0.7532 0.0467 2.0880 4
Daimler Corp. 7.5743 9952 9 0.0093 0.1239 0.0009 0.8474 1.0518 0.0464 10951.9789 6
Motorola Inc. 12.4529 26313 16 0.1841 0.5527 0.0019 0.3129 0.4458 0.0460 596.3673 7
Toyota Motor Corp. 7.7760 567 4 0.0036 0.0019 0.0006 0.8056 0.8829 0.0458 7.9403 8
Infineon Technologies AG 2.1293 13376 13 0.2028 0.1826 0.0016 0.2971 0.3855 0.0458 64.3849 9
Volkswagen A.G. 4.8178 3931 3 0.0023 0.0000 0.0006 0.6201 0.6750 0.0453 2003.9790 15
Texas Instruments Inc. 3.3920 40456 6 0.1820 0.0278 0.0012 0.2632 0.2955 0.0452 173.3877 18
Metro AG 17.6754 1 2 0.0543 0.0000 0.0009 0.4574 0.4842 0.0447 0.44737 27
Johnson Controls Inc. 43.0902 1165 5 0.0080 0.0351 0.0008 0.2962 0.3462 0.0447 2.7370 28
Continental A.G. 4.3929 4152 3 0.0023 0.0000 0.0006 0.2994 0.3273 0.0447 6.3594 29
Novartis AG 4.5096 10352 4 0.0048 0.1026 0.0008 0.4362 0.4842 0.0447 23.5423 32
Endesa 1.5322 5 0 0.0000 0.0000 0.0000 0.4501 0.4775 0.0445 12.6000 39
Thales 15.7304 16086 4 0.0282 0.0029 0.0008 0.2194 0.2566 0.0445 1083.8765 40
Unilever N.V./Plc. 9.0941 6697 0 0.0000 0.0000 0.0000 0.4910 0.5071 0.0445 58.8410 41
Roche Holding AG 4.1559 6119 4 0.0117 0.0422 0.0007 0.3859 0.4114 0.0445 3.1983 42
Nortel Networks Corp. 12.3793 7274 3 0.0372 0.0261 0.0011 0.2310 0.2598 0.0445 2901.7316 45
Electronic Data Systems Corp. 6.9497 284 2 0.0282 0.0176 0.0010 0.2598 0.2851 0.0444 0.30975 48
Sanofi 4.7555 7655 0 0.0000 0.0000 0.0000 0.4460 0.4340 0.0444 18.6991 52
Johnson & Johnson Inc. 7.0606 11940 0 0.0000 0.0000 0.0000 0.3706 0.3744 0.0443 0.6662 55
Xerox Corp. 23.0754 50254 1 0.0455 0.0000 0.0009 0.2540 0.2700 0.0443 0.0490 58
Agere Systems 0.4245 2582 3 0.0592 0.0349 0.0012 0.1193 0.1263 0.0442 3.8720 63
Renault 2.0905 2355 0 0.0000 0.0000 0.0000 0.4167 0.4075 0.0442 9668.1773 68
Omron Corp. 0.9875 1 2 0.0490 0.0176 0.0008 0.2004 0.2155 0.0442 0.2750 70

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n− 1)(n− 2), the maximum number of such
paths.

c The closeness centrality of node i is computed as
∑n

j=1 2
−ℓij(G), where ℓij(G) is the length of the shortest path between i and j in the network G [Dangalchev, 2006].

d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1 (see Proposition 1).
e The decrease in output due to the removal of firm i is computed as ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G) /‖bµ(G)‖1.

f The EUREKA subsidies comprise the total contribution to project costs (in Mio. USD), where all project costs involving a particular firm are accumulated. For more
detailed information see http://www.eurekanetwork.org/.

g The rank corresponds to the ranking of Table 9.
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11. Conclusion

In this paper, we have developed a model where firms jointly form R&D collaborations

(networks) to lower their production costs while at the same time competing on the product

market. We have highlighted the positive role of the network in terms of technology spillovers

and the negative role of product rivalry in terms of market competition. We have also

determined the importance of the key firms and targeted subsidies on the total welfare of the

economy.

Using a panel of R&D alliance networks and annual reports, we have then tested our the-

oretical results and first showed that the magnitude of the technology spillover effect is much

higher than that of the product rivalry effect, indicating that the latter dominates the former

so that the net returns to R&D collaborations are strictly positive. We have also identified

the key firms whose default would reduce social welfare and aggregate industry output the

most. Finally, we have drawn some policy conclusions about optimal R&D subsidies from

the results obtained over different sectors, as well as their temporal variation.

We believe that the methodology developed in this paper offers a fruitful way of analyzing

the existence of R&D spillovers and their policy implications in terms of firms’ subsidies. We

also believe that putting forward the role of networks in terms of R&D collaborations is key

to understanding the different aspects of these markets.
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Appendix

A. Definitions and Characterizations

A.1. Network Definitions

A network (graph) G is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n} and a
set of edges (links) E ⊂ N ×N between them. A link (i, j) is incident with nodes i and j. The
neighborhood of a node i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N
gives the number of links incident to node i. Clearly, di = |Ni|. Let N (2)

i =
⋃

j∈Ni
Nj\ (Ni ∪ {i})

denote the second-order neighbors of node i. Similarly, the k-th order neighborhood of node
i is defined recursively from N (0)

i = {i}, N (1)
i = Ni and N (k)

i =
⋃

j∈N (k−1)
i

Nj\
(⋃k−1

l=0 N (l)
i

)
. A walk

in G of length k from i to j is a sequence 〈i0, i1, . . . , ik〉 of nodes such that i0 = i, ik = j, ip 6= ip+1,
and ip and ip+1 are (directly) linked, that is ipip+1 ∈ E, for all 0 ≤ p ≤ k − 1. Nodes i and j are
said to be indirectly linked in G if there exists a walk from i to j in G containing nodes other
than i and j. A pair of nodes i and j is connected if they are either directly or indirectly
linked. A node i ∈ N is isolated in G if Ni = ∅. The network G is said to be empty (denoted by
K̄n) when all its nodes are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links, E(G′) ⊆
E(G). A graph G is connected, if there is a path connecting every pair of nodes. Otherwise
G is disconnected. The components of a graph G are the maximally connected subgraphs. A
component is said to be minimally connected if the removal of any link makes the component
disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in S
is connected to at least one member of S by a link. An independent set is a set of nodes in
a graph in which no two nodes are adjacent. For example the central node in a star K1,n−1

forms a dominating set while the peripheral nodes form an independent set.
Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and

let d0 = 0 (even if no agent with degree 0 exists in G). Further, define Di = {v ∈ N : dv = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition of
G. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be its degree partition.
Then the nodes N can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating

set
⋃k

i=⌊ k
2 ⌋+1 Di in the graph G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are

nested. In particular, for each node v ∈ Di, Nv =
⋃i

j=1 Dk+1−j if i = 1, . . . ,
⌊
k
2

⌋
if i = 1, . . . , k, while

Nv =
⋃i

j=1 Dk+1−j \ {v} if i =
⌊
k
2

⌋
+ 1, . . . , k.

In a complete graph Kn, every node is adjacent to every other node. The graph in which no
pair of nodes is adjacent is the empty graph K̄n. A clique Kn′, n′ ≤ n, is a complete subgraph
of the network G. A graph is k-regular if every node i has the same number of links di = k for
all i ∈ N . The complete graph Kn is (n − 1)-regular. The cycle Cn is 2-regular. In a bipartite

graph there exists a partition of the nodes in two disjoint sets V1 and V2 such that each link
connects a node in V1 to a node in V2. V1 and V2 are independent sets with cardinalities n1

and n2, respectively. In a complete bipartite graph Kn1,n2 each node in V1 is connected to each
other node in V2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph Ḡ with the same nodes as G such that any two
nodes of Ḡ are adjacent if and only if they are not adjacent in G. For example the complement
of the complete graph Kn is the empty graph K̄n.

Let A be the symmetric n × n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and aij = 0
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if (i, j) /∈ E. The k-th power of the adjacency matrix is related to walks of length k in the
graph. In particular,

(
Ak
)
ij
gives the number of walks of length k from node i to node j. The

eigenvalues of the adjacency matrix A are the numbers λ1, λ2, . . . , λn such that Avi = λivi has
a nonzero solution vector vi, which is an eigenvector associated with λi for i = 1, . . . , n. Since
the adjacency matrix A of an undirected graph G is real and symmetric, the eigenvalues of
A are real, λi ∈ R for all i = 1, . . . , n. Moreover, if vi and vj are eigenvectors for different
eigenvalues, λi 6= λj, then vi and vj are orthogonal, i.e. v⊤

i vj = 0 if i 6= j. In particular,
R

n has an orthonormal basis consisting of eigenvectors of A. Since A is a real symmetric
matrix, there exists an orthogonal matrix S such that S⊤S = SS⊤ = I (that is S⊤ = S−1) and
S⊤AS = D, where D is the diagonal matrix of eigenvalues of A and the columns of S are the
corresponding eigenvectors. The Perron-Frobenius eigenvalue λPF(G) is the largest real eigenvalue

of A associated with G, i.e. all eigenvalues λi of A satisfy |λi| ≤ λPF(G) for i = 1, . . . , n and
there exists an associated nonnegative eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For
a connected graph G the adjacency matrix A has a unique largest real eigenvalue λPF(G) and
a positive associated eigenvector vPF > 0. There exists a relation between the number of
walks in a graph and its eigenvalues. The number of closed walks of length k from a node
i in G to herself is given by

(
Ak
)
ii
and the total number of closed walks of length k in G is

tr
(
Ak
)
=
∑n

i=1

(
Ak
)
ii
=
∑n

i=1 λ
k
i . We further have that tr (A) = 0, tr

(
A2
)
gives twice the number

of links in G and tr
(
A3
)
gives six times the number of triangles in G.

A.2. Walk Generating Functions

Denote by u = (1, . . . , 1)⊤ the n-dimensional vector of ones and define M(G,φ) = (In − φA)−1.
Then, the quantity NG(φ) = u⊤M(G,φ)u is the walk generating function of the graph G [cf.
Cvetkovic et al., 1995]. Let us show this result. Let Nk denote the number of walks of
length k in G. Then we can write Nk as follows

Nk =
n∑

i=1

n∑

j=1

a
[k]
ij = u⊤Aku,

where a
[k]
ij is the ij-th element of Ak. The walk generating function is then defined as

NG(φ) ≡
∞∑

k=0

Nkφ
k = u⊤

( ∞∑

k=0

φkAk

)
u = u⊤ (In − φA)

−1
u = u⊤M(G,φ)u.

For a k-regular graph Gk, the walk generating function is equal to

NGk
(φ) =

n

1− kφ
.

It holds that NG(0) = n, and one can show that NG(φ) ≥ 0. We further have that

M(G,φ) = (In − φA)−1 =
∞∑

k=0

φkAk =
∞∑

k=0

φkSΛkS⊤,

where Λ ≡ diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of the real, sym-
metric matrix A, and S is an orthogonal matrix with columns given by the orthogonal eigen-
vectors of A (with S⊤ = S−1), and we have used the fact that A = SΛS⊤ [Horn and Johnson,
1990]. The eigenvectors vi have the property that Avi = λivi and are normalized such that
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v⊤
i vi = 1. Note that A = SΛS⊤ is equivalent to A =

∑n
i=1 λiviv

⊤
i . It then follows that

u⊤M(G,φ)u = u⊤S
∞∑

k=0

φkΛkS⊤u,

where
S⊤u =

(
u⊤v1, . . . ,u

⊤vn

)⊤
,

and

Λk =




λk
1 0 . . . 0

0 λk
2 . . . 0

...
. . .

...
0 . . . λk

n




= λk
1




1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

...
. . .

...

0 . . .
(

λn

λ1

)k




.

We then can write

u⊤M(G,φ)u =

∞∑

k=0

φkλk
1

(
u⊤v1, . . . ,u

⊤vn

)




1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

...
. . .

...

0 . . .
(

λn

λ1

)k




(
u⊤v1, . . . ,u

⊤vn

)⊤
,

which gives

u⊤M(G,φ)u =

∞∑

k=0

φkλk
1

(
(u⊤v1)

2 +

(
λ2

λ1

)k

(u⊤v2)
2 + . . .+

(
λn

λ1

)k

(u⊤vn)
2

)

=

n∑

i=1

(u⊤vi)
2

∞∑

k=0

φkλk
i

=
n∑

i=1

(u⊤vi)
2

1− φλi
.

The above computation also shows that

Nk = u⊤Aku =

n∑

i=1

(u⊤vi)
2λk

i .

Hence, we can write the walk generating function as follows

NG(φ) = u⊤M(G,φ)u =

∞∑

k=0

Nkφ
k =

n∑

i=1

(v⊤
i u)

2

1− λiφ
.

If λ1 is much larger than λj for all j ≥ 2, then we can approximate

NG(φ) ≈ (u⊤v1)
2

∞∑

k=0

φkλk
1 =

(u⊤v1)
2

1− φλ1
.

Cvetkovic et al. [1995, p. 45] has found an alternative expression for the walk generating
function given by

NG(φ) =
1

φ


(−1)n

cAc

(
− 1

φ − 1
)

cA

(
1
φ

) − 1


 ,
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where cA(φ) ≡ det (A− φIn) is the characteristic polynomial of the matrix A, whose roots are
the eigenvalues of A. It can be written as cA(φ) = φn − a1φ

n−1 + . . .+ (−1)nan, where a1 = tr(A)

and an = det(A). Further, Ac = uu⊤−In−A is the complement of A, and uu⊤ is an n×n matrix
of ones. This is a convenient expression for the walk generating function, as there exist fast
algorithms to compute the characteristic polynomial [Samuelson, 1942].

A.3. Nested Split Graphs

Let us define nested split graphs [Cvetkovic and Rowlinson, 1990; Mahadev and Peled, 1995],
which include many common networks such as the star network. Moreover, as their name
already indicates, they have a nested neighborhood structure. This means that the set of neighbors
of each agent is contained in the set of neighbors of each higher degree agent. Nested split
graphs have particular topological properties and an associated adjacency matrix with a well
defined structure.

In order to characterize nested split graphs, it will be necessary to consider the degree
partition of a graph, which is defined as follows:

Definition 1 (Mahadev and Peled [1995]). Let G = (N , E) be a graph whose distinct positive degrees are
d(1) < d(2) < . . . < d(k), and let d0 = 0 (even if no agent with degree 0 exists in G). Further, define
Di = {v ∈ N : dv = d(i)} for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the
degree partition of G.

With the definition of a degree partition, we can now give a more formal definition of a
nested split graph.51

Definition 2 (Mahadev and Peled [1995]). Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk)
be its degree partition. Then the nodes N can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a

dominating set
⋃k

i=⌊ k
2 ⌋+1 Di in the graph G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are

nested. In particular, for each node v ∈ Di, i = 1, . . . , k,

Nv =

{⋃i
j=1 Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
,⋃i

j=1 Dk+1−j \ {v} if i =
⌊
k
2

⌋
+ 1, . . . , k.

(36)

In the following, we will call the sets Di, i =
⌊
k
2

⌋
+ 1, . . . , k, dominating subsets, since the set

Di induces a dominating set in the graph obtained by removing the nodes in the set
⋃k−i

j=0 Dj

from G.
A nested split graph has an associated adjacency matrix which is called stepwise matrix and

it is defined as follows:

Definition 3 (Brualdi and Hoffman [1985]). A stepwise matrix A is a symmetric, binary (n × n)-matrix
with elements aij satisfying the condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j and h ≤ i.

If a nested split graph is connected we call it a connected nested split graph. From the
stepwise property of the adjacency matrix, it follows that a connected nested split graph
contains at least one spanning star, that is, there is at least one agent that is connected to
all other agents (see e.g. König et al. [2014] for further properties).

A.4. Bonacich Centrality

We introduce a network measure capturing the centrality of a firm in the network due to
Bonacich [1987]. Let A be the symmetric n× n adjacency matrix of the network G and λPF its

51Let x be a real valued number x ∈ R. Then, ⌈x⌉ denotes the smallest integer larger or equal than x (the
ceiling of x). Similarly, ⌊x⌋ denotes the largest integer smaller or equal than x (the floor of x).

55



largest real eigenvalue. The matrix M(G,φ) = (I−φA)−1 exists and is non-negative if and only
if φ < 1/λPF.52 Then

M(G,φ) =

∞∑

k=0

φkAk. (37)

The Bonacich centrality vector is given by

bu(G,φ) = M(G,φ) · u, (38)

where u = (1, . . . , 1)⊤. We can write the Bonacich centrality vector as

bu(G,φ) =

∞∑

k=0

φkAk · u = (I− φA)−1 · u.

For the components bu,i(G,φ), i = 1, . . . , n, we get

bu,i(G,φ) =
∞∑

k=0

φk(Ak · u)i =
∞∑

k=0

φk
n∑

j=1

(
Ak
)
ij
. (39)

Because
∑n

j=1

(
Ak
)
ij
counts the number of all walks of length k in G starting from i, bu,i(G,φ)

is the number of all walks in G starting from i, where the walks of length k are weighted by
their geometrically decaying factor φk.

Observe that we can also define the weighted Bonacich centrality exactly as above but
when u is not anymore the (n× 1) vector of 1 but any (n× 1) vector.

The Bonacich matrix of Equation (37) is also a measure of structural similarity of the
firms in the network, called regular equivalence. Blondel et al. [2004]; Leicht et al. [2006] define
a similarity score bij, which is high if nodes i and j have neighbors that themselves have
high similarity, given by bij = φ

∑n
k=1 aikbkj + δij. In matrix-vector notation this reads M =

φAM+ I. Rearranging yields M = (I−φA)−1 =
∑∞

k=0 φ
kAk, assuming that φ < 1/λPF. We hence

obtain that the similarity matrix M is equivalent to the Bonacich matrix from Equation
(37). The average similarity of firm i is 1

n

∑n
j=1 bij =

1
nbu,i(G,φ), where bu,i(G,φ) is the Bonacich

centrality of i. It follows that the Bonacich centrality of i is proportional to the average
regular equivalence of i. Firms with a high Bonacich centrality are then the ones which also
have a high average structural similarity with the other firms in the R&D network.

The interpretation of eingenvector-like centrality measures as a similarity index is also
important in the study of correlations between observations in principal component analysis
and factor analysis [cf. Rencher and Christensen, 2012]. Variables with similar factor loadings
can be grouped together. This basic idea has also been used in the economics literature on
segregation [e.g. Ballester and Vorsatz, 2014; Echenique and Fryer Jr., 2007; Echenique et al.,
2006].

Since equilibrium profits are closely related the the Bonacich centralities of the firms in
the network, it is worth introducing a connection between the Bonacich centrality of a node
and its coreness in the network. Coreness is defined as follows: Given a network G, the
induced subgraph Gk ⊆ G is the k-core of G if it is the largest subgraph such that the degree
of all nodes in Gk is at least k. Note that the cores of a graph are nested such that Gk+1 ⊆ Gk.
Cores can be used as a measure of centrality in the network G. Note that k-cores can be
obtained by a simple pruning algorithm: at each step, we remove all nodes with degree less
than k. We repeat this procedure until there exist no such nodes or all nodes are removed.
We define the coreness of each node as follows: The coreness of node i, cori, is k if and only

52The proof can be found e.g. in Debreu and Herstein [1953].
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if i ∈ Gk and i /∈ Gk+1. We have that cori ≤ di. However, there is no other relation between the
degree and coreness of nodes in a graph. We then have the following result due to Manshadi
and Johari [2010], which relates the Nash equilibrium to the k-cores of the graph: If cori = k

then bi(G,φ) ≥ 1
1−φk , where the inequality is tight when i belongs to a disconnected clique

of size k + 1. The coreness of networks of firms has also been studied empirically in Kitsak
et al. [2010] and Rosenkopf and Schilling [2007]. In particular, Kitsak et al. [2010] find that
the coreness of a firm correlates with its market value. We can easily explain this from our
model because we know that firms in higher cores tend to have higher Bonacich centrality,
and therefore higher sales and profits (cf. Proposition 1).

B. Bertrand Competition

In the case of price setting firms we obtain from the profit function in Equation (3) the FOC
with respect to price pi for firm i

∂πi

∂pi
= (pi − ci)

∂qi
∂pi

− qi = 0.

When i ∈ Mm, then observe that from the inverse demand in Equation (1) we find that

qi =
αm(1− ρm)− (1− (nm − 2)ρm)pi + ρm

∑
j∈Mm,

j 6=i
pj

(1− ρ)(1 + (nm − 1)ρm)
,

where nm ≡ |Mm|. It then follows that

∂qi
∂pi

= − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

.

Inserting into the FOC with respect to pi gives

qi = − 1− (nm − 2)ρm
(1 − ρm)(1 + (nm − 1)ρm)

(pi − ci).

Inserting Equations (1) and (2) yields

qi =
(1 − (nm − 2)ρm)(αm − c̄i)

ρm(4 − (2− ρm)nm − ρm)
− 1− (nm − 2)ρm

4− (2 − ρm)nm − ρm

∑

j∈Mm,
j 6=i

qj

+
(1− (nm − 2)ρm)

ρm(4− (2 − ρm)nm − ρm
ei +

(1 − (nm − 2)ρm)ϕ

ρm(4− (2− ρm)nm − ρm

n∑

j=1

aijej .

The FOC with respect to R&D effort is the same as in the case of perfect competition, so
that we get ei = qi. Inserting equilibrium effort and rearranging terms gives

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

− ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

∑

j∈Mm,

j 6=i

qj

+
ϕ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

n∑

j=1

aijqj .
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If we denote by

µi ≡
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

ρ ≡ ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

λ ≡ ϕ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
.

Then we can write equilibrium quantities as follows

qi = µi − ρ

n∑

j=1

bijqj + λ

n∑

j=1

aijqj . (40)

Observe that the reduced form Equation (40) is identical to the Cournot case in Equation
(44).

C. Additional Results on Welfare

Here, we analyze welfare issues for a particular class of networks, namely the ones with a
large spectral gap, such that λ1 is much larger than λj for all j ≥ 2.53 These networks not only
allow for a more explicit computation of welfare, but they are also representative for many
real-world networks with a fat-tailed degree distribution,54 as we observe it in our data (see
Figure 5).
Proposition 8. Consider substitutable goods and assume that µi = µ for all i = 1, . . . , n, and let φ and µ
be defined as in Proposition 1. Then in the limit of φ approaching the inverse of the largest eigenvalue λPF

from below welfare can be written as

lim
φ↑1/λPF

W (G) =
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

‖v1‖21

)
.

Further, denote by G(n) the class of graphs with n nodes and the class of graphs with n nodes and m links by
H(n,m) ⊂ G(n). Consider the class S(n,m) ⊂ H(n,m) of graphs with a large spectral gap, such that λ1 = λPF

is much larger than λj for all j ≥ 2. Then the welfare maximizing graph G∗ = argmaxG∈S(n,m)W (G) in this

class is the one that minimizes the ℓ1-norm ‖v1‖1 of the principal eigenvector v1 associated with the largest
eigenvalue λ1.

Proposition 8 implies that the social planner’s problem reduces to finding the principal
eigenvector of A. For this problem there exist efficient algorithms, e.g. by using the power
iteration method [Mises and Pollaczek-Geiringer, 1929].

Note that the norm ‖v1‖1 is the projection of the principal eigenvector v1 onto the all ones
vector u,

‖v1‖1 = ‖v1‖2‖u‖2 cos(α1) =
√
n cos(α1),

where α1 is the angle between the vector v1 and u. α1 is called the principal graph angle

[Cvetkovic et al., 1997, Chap. 4.5]. Welfare can then be written in terms of the graph angle
α1 as follows

lim
φ↑1/λPF

W (G) =
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

n cos(α1)2

)
.

53The spectral gap is defined as λ1 − λ2. It is maximal in the complete graph Kn where it is equal to n.
In the star K1,n−1 we get λ1 − λ2 =

√
n− 1. In a k-regular graph we obtain λ1 − λ2 = µn−1, where µn−1 is

the second smallest eigenvalue of the Laplacian Q = diag(d)−A and d is the vector of degrees in G.
54Mihail and Papadimitriou [2002] have shown that networks with a power-law degree distribution also

have a power-law eigenvalue distribution. See also Anderson et al. [2010]; Dorogovtsev et al. [2003].
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Consider the spectral decomposition of the matrix A given by A =
∑n

i=1 λiviv
⊤
i , then the

principal graph angle satisfies cos(α1)
2 = 1

n‖v1v
⊤
1 ‖1. Moreover, its value is maximal for the

regular graph Gk, where it is one. We thus have that ‖v1‖21 ≤ n, and we obtain a lower bound
for welfare given by

lim
φ↑1/λPF

W (G) ≥ W (Gk) =
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

n

)
,

which is the welfare function in the regular graph. For the star G = K1,n−1 the principal eigen-
vector is given by v1 = 1√

2(n−1)
(
√
n− 1, 1, . . . , 1)⊤ where the corresponding largest eigenvalue is

λ1 =
√
n− 1. In this case (v⊤

1 u)
2 = 1

2 (2
√
n− 1 + n), and we obtain a lower bound on welfare in

the efficient graph given by

lim
φ↑1/λPF

W (K1,n−1) =
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

2

2
√
n− 1 + n

)
.

This is larger than the value we have obtained for the regular graph.55 Note that the star has
a higher degree variance than the regular graph. This indicates that the result of Proposition
4 does not hold for large values of the spillover parameter φ. Moreover, the star is dissortative
while the regular or complete graphs are not.

The quantity ‖v1‖21 = (
∑n

i=1 v1i)
2 has been called mixedness of G by Rucker et al. [2002],

since it relates to the variance of the principal eigenvector components as follows56

σ2
v1

=
1

n− 1




n∑

i=1

v21i −
1

n

(
n∑

i=1

v1i

)2

 =

n− ‖v1‖21
n(n− 1)

.

The variance σ2
v1
is decreasing in ‖v1‖1, and it is minimal for the regular graph where v1i = 1/

√
n

for all i = 1, . . . , n, that is to say they are maximally mixed. Welfare can then be written as

lim
φ↑1/λPF

W (G) =
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

n(1− (n− 1)σ2
v1
)

)
.

This suggests that the welfare maximizing graph (among the graphs with a large spectral
gap) is eigenvector heterogeneous, or minimally mixed. Rucker et al. [2002] have shown by
means of numerical computations for all networks of size n ≤ 10 that graphs called k-kites

minimize the mixedness.
A graph with a principal eigenvalue λ1 contains the more walks, the larger is ‖v1‖21. More-

over, the reciprocal 1/‖v1‖21 measures the share of self returning walks among all walks. It
follows that, a small value of ‖v1‖21 implies a large share of self returning walks, or a small
probability that a randomly chosen walk ends at a vertex other than its origin. In terms of
our model, where the network governs the way knowledge spillovers and diffusion are directed
between firms, we thus find that the welfare maximizing graph has a large share of self re-
turning walks, that is, knowledge originating in a firm passes through others before returning
to its originator. This indicates that maximizing the cross-fertilization of knowledge and
knowledge recombination between firms is welfare enhancing [cf. Weitzman, 1998]. It must be
noted, however, that we do not model explicitly the heterogeneous technology portfolios that
firms possess, but a reduced form in which firms benefit from R&D of their collaboration

55Observe that W (K1,n−1) =
2

n+2
√
n−1

> W (Kn) =
1
n and limn→∞ W (K1,n−1)/W (Kn) =

2n
n+2

√
n−1

= 2.
56An alternative way to write the norm is ‖v1‖21 = n−∑n

j=1

∑j−1
l=1 (vkj − vkl)

2 [Van Mieghem, 2011, p.40],

which shows that ‖v1‖21 is maximal for an eigenvector v1 with minimal difference between its components.
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partners.57

D. Intra- versus Interindustry Collaborations: Theory

We extend our model by allowing for intra-industry technology spillovers to differ from inter-
industry spillovers. The profit of firm i ∈ N is still given by πi = (pi − ci)qi − 1

2e
2
i , where

the inverse demand is pi = ᾱi − qi − ρ
∑n

j=1 bijqj. The main change is in the marginal cost of
production, which is now equal to

ci = c̄i − ei − ϕ1

n∑

j=1

a
(1)
ij ej − ϕ2

n∑

j=1

a
(2)
ij ej ,

where we have introduced two matrices A(1) and A(2) with elements a
(1)
ij and a

(2)
ij , respectively,

indicating a collaboration within the same industry (with the superscript (1)) or across
different industries (with the superscript (2)). Note that we can write A(1) = A ◦ B and
A(2) = A ◦ (U − B), with the matrix B having elements bij ∈ {0, 1} indicating whether firms i

and j operate in the same market or not, U being a matrix of all ones, and ◦ denotes the
Hadamard elementwise matrix product.58 Inserting this marginal cost of production into the
profit function gives

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑

j=1

bijqj + qiei + ϕ1qi

n∑

j=1

a
(1)
ij ej + ϕ2qi

n∑

j=1

a
(2)
ij ej −

1

2
e2i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi.
Inserting this optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ

n∑

j=1

bijqj + ϕ1

n∑

j=1

a
(1)
ij qj + ϕ2

n∑

j=1

a
(2)
ij qj .

Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ

n∑

j=1

bijqj + ϕ1

n∑

j=1

a
(1)
ij qj + ϕ2

n∑

j=1

a
(2)
ij qj . (41)

If the matrix In + ρB− ϕ1A
(1) − ϕ2A

(2) is invertible, this gives us the equilibrium quantities

q = (In + ρB− ϕ1A
(1) − ϕ2A

(2))−1µ.

Let us now write the econometric equivalent of Equation (41). Proceeding as in Section 8.1,
using Equations (23) and (24) and introducing time t, we get

µit = x⊤
itβ + ηi + κt + ǫit.

57A model of R&D network formation in which the technology portfolios of firms are explicitly considered
is analyzed in König [2012].

58Let A and B be m×n matrices. The Hadamard product of A and B is defined by [A◦B]ij = [A]ij [B]ij
for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e. the Hadamard product is simply an element-wise multiplication.

60



Plugging this value of µit into Equation (41), we obtain

qit = ϕ1

n∑

j=1

a
(1)
ij,tqjt + ϕ2

n∑

j=1

a
(2)
ij,tqjt − ρ

n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ǫit,

where a
(1)
ij,t = aij,tbij and a

(2)
ij,t = aij,t(1 − bij). This is Equation (31) in Section 9.2.3.

E. Direct and Indirect Technology Spillovers: Theory

We extend our model by allowing for direct (between collaborating firms) and indirect (be-
tween non-collaborating firms) technology spillovers. The profit of firm i ∈ N is still given by
πi = (pi − ci)qi − 1

2e
2
i , where the inverse demand is pi = ᾱi − qi − ρ

∑n
j=1 bijqj. The main change is

in the marginal cost of production, which is now equal to59

ci = c̄i − ei − ϕ

n∑

j=1

aijej − χ

n∑

j=1

wijej , (42)

where wij are weights characterizing alternative channels for technology spillovers than R&D
collaborations (representing for example a patent cross-citation, a flow of workers, or tech-
nological proximity measured by the matrix Pij introduced in Footnote 35). Inserting this
marginal cost of production into the profit function gives

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑

j=1

bijqj + qiei + ϕqi

n∑

j=1

aijej + χqi

n∑

j=1

wijej −
1

2
e2i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi.
Inserting this optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj + χ
n∑

j=1

wijqj .

Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ

n∑

j=1

bijqj + ϕ

n∑

j=1

aijqj + χ

n∑

j=1

wijqj . (43)

If the matrix In + ρB− ϕA− χW is invertible, this gives us the equilibrium quantities

q = (In + ρB− ϕA− χW)−1µ.

Let us now write the econometric equivalent of Equation (43). Proceeding as in Section 8.1,
using Equations (23) and (24) and introducing time t, we get

µit = x⊤
itβ + ηi + κt + ǫit.

Plugging this value of µit into Equation (43), we obtain

qit = ϕ

n∑

j=1

aij,tqjt + χ

n∑

j=1

wij,tqjt − ρ

n∑

j=1

bijqjt + x⊤
itβ + ηi + κt + ǫit.

59See also Eq. (1) in Goyal and Moraga-Gonzalez [2001].
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This is Equation (33) in Section 9.2.4.

F. Proofs

Before we proceed with the proof of Proposition 1 we state the following lemma which will
be needed in the proof.

Lemma 1. Let A and B be two symmetric, real matrices and assume that the inverse A−1 exists and is
non-negative and also that B is non-negative. Provided that λmax(A

−1B) < 1 we have that

(i) the following series expansion exists

(A+B)−1 =

∞∑

k=0

(−1)k(A−1B)kA−1,

(ii) for any x ∈ Rn
+ we have that A−1Bx < x, and

(iii) if also A−1x > 0 then (A+B)−1x > 0.

Proof of Lemma 1. We first prove part (i) of the lemma. Notice that

(A+B)−1 = (A(In +A−1B))−1

= (In +A−1B))−1A−1

=

∞∑

k=0

(−1)k(A−1B)kA−1,

where the Neumann series expansion for (In +A−1B))−1 can be applied if λmax(A
−1B) < 1.

For the second part (ii), observe that λmax(A
−1B) < 1 is equivalent to A−1Bx < x for any x ∈ Rn

+.
To see this consider an orthonormal basis of Rn spanned by the eigenvectors of A−1B. Then we can write
x =

∑n
i=1 civi with suitable coefficients ci = x⊤vi/(v

⊤
i vi) and A−1Bvi = λivi. It then follows that

A−1Bx =

n∑

i=1

ciλivi ≤ λmax(A
−1B)

n∑

i=1

civi = λmax(A
−1B)x.

Hence, if λmax(A
−1B) < 1 it must hold that A−1Bx < x.

For part (iii) of the proof note that we can write the series expansion of the inverse as follows

(A+B)−1x =

∞∑

k=0

(−1)k(A−1B)kA−1x = A−1x−A−1BA−1x+A−1BA−1BA−1x− . . . .

By assumption we have that A−1x ≥ 0. Then denote by x̃ = A−1x ≥ 0. Then the first two terms in the
series can be written as

(In −A−1B)A−1x = (In −A−1B)x̃ > 0

where the inequality follows from part (ii) of the lemma. Next, consider the third and fourth terms in the
series expansion

(A−1BA−1B−A−1BA−1BA−1B)x̃ = A−1BA−1B(In −A−1B)x̃ ≥ 0,

where the inequality follows again from the fact that (In − A−1B)x̃ > 0 from part (ii) of the lemma and
the assumption that A−1 and B are non-negative matrices. We can then iterate by induction to show the
desired claim.

Proof of Proposition 1. Let us start with the most general setup, i.e. case (i). The profit of firm i ∈ N
is given by

πi = (ᾱi − c̄i)qi − q2i − ρ
∑

j∈Mm,j 6=i

qiqj + qiei + ϕqi

n∑

j=1

aijej −
1

2
e2i ,
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where bij ∈ {0, 1} is the ij-th element of the n× n matrix B defined by

and um is a n×1 zero-one vector with elements umi = 1 if i ∈ Mm and umi = 0 otherwise for all i = 1, . . . , n.
Moreover, Dm = diag(um) is the diagonal matrix with diagonal entries given by um. The FOC of profits
with respect to R&D effort ei of firm i is given by

∂πi

∂ei
= qi − ei = 0,

so that we obtain
ei = qi.

The FOC with respect to quantity is given by

∂πi

∂qi
= ᾱi − c̄i − 2qi − ρ

n∑

j=1

bijqj + ei + ϕ
n∑

j=1

aijej.

Note that the Hessian is given by

(
∂2πi

∂q2
i

∂2πi

∂qi∂ei
∂2πi

∂ei∂qi
∂2πi

∂e2
i

)
=

(
−2 1
1 −1

)
.

The eigenvalues of the Hessian are 1
2 (−3 ±

√
5), which are both negative. Hence, the Hessian is negative

definite, and the profit function is strictly quasi-concave in both variables qi and ei.
Next, inserting equilibrium effort and rearranging terms gives

qi = (ᾱi − c̄i)− ρ

n∑

j=1

bijqj + ϕ

n∑

j=1

aijqj .

In the following we denote by µi ≡ ᾱi − c̄i, so that we obtain for equilibrium quantity

qi = µi − ρ
n∑

j=1

bijqj + ϕ
n∑

j=1

aijqj . (44)

In matrix-vector notation it can be written as

q = µ− ρBq+ ϕAq

or, equivalently,
(In + ρB− ϕA)q = µ.

The matrix In+ρB−ϕA is invertible if its determinant is not zero. This also guarantees the uniqueness and
existence of the equilibrium. Following Lee and Liu [2010], the determinant of In −∑p

j=1 λjWj is strictly

positive if
∑p

j=1 |λj | < 1/maxj=1,...,p ‖Wj‖, where ‖Wj‖ is any matrix norm, including the spectral norm

(which is the largest eigenvalue of Wj). We have that the largest eigenvalue of the matrix B is equal to the
size of the largest market |Mm| minus one (as this is a block-diagonal matrix with all elements being one in
each block and zero diagonal), and the largest eigenvalue of A is the Perron-Frobenius eigenvalue λPF(A).
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A sufficient condition for invertibility is then given by

ρ+ ϕ <

(
max

{
λPF(A), max

m=1,...,M
{(|Mm| − 1)}

})−1

,

which can also be written as

1 + ϕ/ρ <

(
max

{
λPF(A), max

m=1,...,M
{(|Mm| − 1)ρm}

})−1

.

When the inverse of In + ρB− ϕA exists, we can write equilibrium quantities as

q = (In + ρB− ϕA)−1µ.

We have shown that there exists a unique equilibrium given by q = (In + ρB − ϕA)−1µ, but we have
not yet shown that it is interior, i.e. qi > 0, ∀i ∈ N . We will deal with corner solutions below. Profits in
equilibrium can be written as

πi = (ᾱi − c̄i)qi − ρqi

n∑

j=1

bijqj + ϕqi

n∑

j=1

aijqj −
1

2
q2i .

From Equation (44) it follows that

ρqi

n∑

j=1

bijqj − ϕqi

n∑

j=1

aijqj = ρqi

n∑

j=1

bijqj − ϕqi

n∑

j=1

aijqj

= qi((ρB− ϕA)q)i

= qi((In + ρB− ϕA)q − q)i

= qi ((ᾱi − c̄i)− qi) , (45)

so that we can write equilibrium profits as

πi = (ᾱi − c̄i)qi − qi ((ᾱi − c̄i)− qi)−
1

2
q2i =

1

2
q2i .

Let us now deal with case (ii) in the proposition, i.e. we assume that all firms operate in the same market
so that M = 1. The first-order condition for a firm i is given by Equation (44), which, when M = 1, can be
written as

qi = µi − ρ
∑

j 6=i

qj + ϕ
n∑

j=1

aijqj

Let us have the following notation: q−i ≡
∑

j 6=i qj , which is the total ouput of all firms but excluding firm i.
The equation above is equivalent to

qi = µi − ρq−i + ϕ

n∑

j=1

aijqj

We can now define q ≡ ∑
j 6=i qj + qi, which corresponds to the total output of all firms (including i). The

equation above is now equivalent to

qi = µi − ρq + ρqi + ϕ

n∑

j=1

aijqj

⇔ qi =
1

1− ρ
µi −

ρ

1− ρ
q +

ϕ

1− ρ

n∑

j=1

aijqj (46)

Observe that even if firms are local monopolies (i.e. ρ = 0) this solution is still well-defined. Observe also
that 1− ρ > 0 if and only if ρ < 1, which we assume throughout.
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In matrix form, Equation (46) can be written as

[
I− ϕ

1− ρ
A

]
q =

1

1− ρ
µ− ρq

1− ρ
u

where µ = (µ1, . . . , µn)
⊤, and u =(1, . . . , 1)⊤. Denote φ = ϕ/ (1− ρ). If φλPF(A) < 1, this is equivalent to

q =

(
1

1− ρ

)
(I−φA)−1

µ− ρq

1− ρ
(I−φA)−1

u

This equation is equivalent to:

q =

(
1

1− ρ

)
[bµ(G,φ)− ρq bu(G,φ)] (47)

where bu(G,ϕ/ (1− ρ)) = (I− φA)
−1

u is the unweighted vector of Bonacich centralities and bµ(G,ϕ/ (1− ρ)) =

(I− φA)
−1

µ is the weighted vector of Bonacich centralities where the weights are the µi for i = 1, . . . , n.60

We need now to calculate q. Multiplying Equation (47) to the left by u⊤, we obtain:

(1− ρ) q = ‖bµ(G,φ)‖1 − ρq ‖bu(G,φ)‖1

where

‖bµ(G,φ)‖1 = uTbµ(G,φ) =

n∑

i=1

bµi
(G,φ) =

n∑

i=1

n∑

j=1

+∞∑

p=0

φpa
[p]
ij µj

is the sum of the weighted Bonacich centralities and

‖bu(G,φ)‖1 = u⊤bu(G,φ) =

n∑

i=1

bu,i(G,φ) =

n∑

i=1

n∑

j=1

+∞∑

p=0

φpa
[p]
ij

is the sum of the unweighted Bonacich centralities. Solving this equation, we get:

q =
‖bµ(G,φ)‖1

(1− ρ) + ρ ‖bu(G,φ)‖1

Plugging this value of q into Equation (47), we finally obtain:

q =

(
1

1− ρ

)[
bµ(G,φ) − ρ ‖bµ(G,φ)‖1

1− ρ+ ρ ‖bu(G,φ)‖1
bu(G,φ)

]
(48)

This corresponds to Equation (9) in the proposition. For each firm i, we thus have

qi =

(
1

1− ρ

)[
bµ,i(G,φ)− ρ ‖bµ(G,φ)‖1

1− ρ+ ρ ‖bu(G,φ)‖1
bu,i(G,φ)

]
(49)

Next, we consider corner solutions and provide conditions which guarantee that the equilibrium is always
interior. For that, we would like to show that qi > 0, ∀i = 1, . . . , n. Using Equation (49), this is equivalent
to

bµ,i(G,φ) >
ρ ‖bµ(G,φ)‖1

1− ρ+ ρ ‖bu(G,φ)‖1
bu,i(G,φ), ∀i = 1, . . . , n. (50)

60A definition and further discussion of the Bonacich centrality is given in Appendix A.4.
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Denote by µ = maxi {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with µ < µ. Then, ∀i = 1, . . . , n, we have

‖bu(G,φ)‖1 =

n∑

i=1

n∑

j=1

∞∑

p=0

φpa
[p]
ij µj

≤ µ

n∑

i=1

n∑

j=1

∞∑

p=0

φpa
[p]
ij = µ ‖bu(G,φ)‖1

and

bµ,i(G,φ) =
n∑

j=1

∞∑

p=0

φpa
[p]
ij µj ≥ µ bu,i(G,φ) =

n∑

j=1

∞∑

p=0

φpa
[p]
ij µ

Thus, a sufficient condition for Equation (50) to hold is:

µ bu,i(G,φ) >
ρµ ‖bu(G,φ)‖1

1− ρ+ ρ ‖bu(G,φ)‖1
bu,i(G,φ)

or equivalently

µ >
ρµ ‖bu(G,φ)‖1

1− ρ+ ρ ‖bu(G,φ)‖1
or

1− ρ > ρ ‖bu(G,φ)‖1
(
µ

µ
− 1

)
(51)

Observe that, by definition,

‖bu(G,φ)‖1 =

n∑

i=1

n∑

j=1

∞∑

p=0

φpa
[p]
ij =

∞∑

p=0

φpu⊤Apu (52)

We know that λPF (Ap) = λPF (A)
p
, for all p ≥ 0.61 Also, u⊤Apu/n is the average connectivity in the matrix

Ap of paths of length p in the original network A, which is smaller than that its spectral radius λPF (A)p

[Cvetkovic et al., 1995], i.e. u⊤Apu/n ≤ λPF (A)
p
. Therefore, Equation (52) leads to the following inequality

‖bu(G,φ)‖1 =

∞∑

p=0

φpu⊤Apu ≤ n

∞∑

p=0

φpλPF (A)
p
=

n

1− φλPF (A)
.

A sufficient condition for Equation (51) to hold is thus

φλPF (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1.

Clearly, this interior equilibrium is unique. This is the condition given in the proposition for case (ii).
Let us now go back to case (i) in the proposition and show that we have an interior equilibrium with

all firms producing at positive quantity levels, that is q = (In + ρB − ϕA)−1µ > 0. To do this we would
like to apply Lemma 1. Let In − ϕA be the matrix A in the lemma and ρB the corresponding matrix B.
We have that both are real and symmetric, and that B is a non-negative matrix. Further, provided that
ϕ < 1/λPF(A), the inverse A−1 exists and is non-negative. Next, we need to show that λPF(A

−1B) < 1,
but this is equivalent to

λPF((In − ϕA)−1ρB) < 1.

61Observe that λPF (Ap) = λPF (A)
p
is true for both a symmetric and an asymmetric adjacency matrix A

as long as A has non-negative entries aij ≥ 0. This follows from the Perron-Frobenius theorem.
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Note that

λPF((In − ϕA)−1ρB) = ρλPF((In − ϕA)−1B)

≤ ρλPF((In − ϕA)−1)λPF(B)

=
ρλPF(B)

1− ϕλPF(A)
,

so that a sufficient condition is given by
ρλPF(B)

1− ϕλPF(A)
< 1,

which is implied by
ρλPF(B) = ρ max

m=1,...,M
{(|Mm| − 1)} < 1− ϕλPF(A).

The lemma then implies that (A+B)−1x > 0 for any vector x > 0, and in particular for the vector µ, which
is positive by assumption.

Consider now case (iii) where not only M = 1 but also µi = µ for all i = 1, . . . , n. If φλPF (A) < 1, the
equilibrium condition in Equation (48) can be further simplified to

q =
µ

1− ρ+ ρ‖bu (G,φ) ‖1
bu (G,φ) . (53)

It should be clear that the output is now always strictly positive.
Let us now consider case (iv) where markets are independent and goods are non-substitutable (i.e.,

ρ = 0). If ϕ < λPF(A)−1, the equilibrium quantity further simplifies to q = µbu (G,φ), which is always
strictly positive. Equilibrium profit follows from Equation (11).

Proof of Proposition 2. We first give a proof of part (ii) of the proposition. Assuming that µi = µ
for all i = 1, . . . , n, at the Nash equilibrium, we have that q = µM(G,ϕ)u, where we have denoted by
M(G,ϕ) ≡ (In − ϕA)−1.62 We then obtain

W (G) = q⊤q = µ2u⊤M(G,ϕ)2u.

Observe that the quantity u⊤M(G,ϕ)u is the walk generating function NG(ϕ) of G that we defined in detail
in Appendix A.2. Using the results of Appendix A.2, we obtain:

u⊤M(G,ϕ)2u = u⊤
( ∞∑

k=0

ϕkAk

)2

u

= u⊤
( ∞∑

k=0

k∑

l=0

ϕlAlϕk−lAk−l

)
u

=
∞∑

k=0

(k + 1)ϕku⊤Aku

= NG(ϕ) +

∞∑

k=0

kϕku⊤Aku.

62Note that there exists a relationship between the matrix M(G,ϕ) with elements mij(G,ϕ) and the length
of the shortest path ℓij(G) between nodes i and j in the network G, which have been used e.g. in Jackson
and Wolinsky [1996]. Namely

ℓij(G) = lim
ϕ→0

∂ lnmij(G,ϕ)

∂ lnϕ
= lim

ϕ→0

ϕ

mij(G,ϕ)

∂mij(G,ϕ)

∂ϕ
.

See also Newman [2010, Chap. 6]. This means that the length of the shortest path between i and j is given
by the relative percentage change in the weighted number of walks between nodes i and j in G with respect
to a relative percentage change in ϕ in the limit of ϕ → 0.
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Alternatively, we can write

∞∑

k=0

(k + 1)ϕku⊤Aku =
∞∑

k=0

(k + 1)Nkϕ
k =

d

dϕ
(ϕNG(ϕ)),

so that

u⊤M(G,ϕ)2u =
d

dϕ
(ϕNG(ϕ)) = NG(ϕ) + ϕ

d

dϕ
NG(ϕ).

Using Rayleigh’s inequality, one can show that [Van Mieghem, 2011, p. 51]

d

dϕ
(ϕNG(ϕ)) ≥

1

λ1

d

dϕ
(NG(ϕ)).

From this we can obtain a lower bound on welfare given by

W (G) ≥ µ2 1

λ1

d

dϕ
(NG(ϕ)).

Further, using the fact that

u⊤Aku =

n∑

i=1

(u⊤vi)
2λk

i ,

NG(ϕ) =
n∑

i=1

(v⊤
i u)

2

1− λiϕ
,

we can write

u⊤M(G,ϕ)2u =

n∑

i=1

(v⊤
i u)

2

1− λiϕ
+

n∑

i=1

(u⊤vi)
2

∞∑

k=0

kϕkλk
i

=

n∑

i=1

(v⊤
i u)

2

1− λiϕ
+

n∑

i=1

(u⊤vi)
2ϕλi

(1 − ϕλi)2

=

n∑

i=1

(u⊤vi)
2

1− ϕλi

(
1 +

ϕλi

1− ϕλi

)

=

n∑

i=1

(u⊤vi)
2

(1− ϕλi)2
.

From the above it follows that welfare can also be written as

W (G) = µ2 d

dϕ
(ϕNG(ϕ)) = µ2

n∑

i=1

(u⊤vi)
2

(1− ϕλi)2
.

This expression shows that gross welfare is highest in the graph where λ1 approaches 1/ϕ. Since, in the
k-regular graph Gk it holds that NG(ϕ) = n

1−kϕ and d
dϕ(ϕNG(ϕ)) = NG(ϕ) + ϕ d

dϕ = NG(ϕ) = n
1−kϕ +

nkϕ
(1−kϕ)2 = n

1−kϕ

(
1 + kϕ

1−kϕ

)
= n

(1−kϕ)2 , which gives us a lower bound on welfare in the efficient graph
n

(1− 2m
n

ϕ)2
≤ W (G∗), where we have used the fact that the number of links in a k-regular graph is given by

m = nk
2 .

In order to derive an upper bound, observe that

u⊤M(G,ϕ)2u =

n∑

i=1

(u⊤vi)
2

(1− ϕλi)2
,
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and we can write welfare as follows

W (G) = µ2
n∑

i=1

(u⊤vi)
2

(1 − ϕλi)2

≤ µ2

∑n
i=1(u

⊤vi)
2

(1− ϕλ1)2

≤ µ2 n

(1− ϕλ1)2
,

where we have used the fact that NG(0) =
∑n

i=1(u
⊤vi)

2 = n so that (u⊤v1)
2 < n. Moreover, the largest

eigenvalue in a graph G with m links and n nodes is bounded from above by λ1 ≤
√

2m(n−1)
n ≤ n− 1.63 This

gives us an upper bound on welfare according to

W (G∗) ≤ µ2 n
(
1− ϕ

√
2m(n− 1)/n

)2 ,

which completes part (ii) of the proposition. Part (iii) follows immediately, if the number of links m can be
chosen freely, because the largest eigenvalue λ1 is upper bounded by the largest eigenvalue of the complete
graph Kn, which is the (n−1)-regular graph. In this case, upper and lower bounds coincide, and the efficient
graph is therefore complete, that is Kn = argmaxG∈G(n)W (G).

Finally, a similar calculation as in part (ii) shows that

µ⊤Mµ =

n∑

i=1

(µ⊤vi)
2

1− ϕλi
,

and similarly

µ⊤M2µ =
n∑

i=1

(µ⊤vi)
2

(1− ϕλi)2
,

so that welfare can be written as

W (G) = µ2µ⊤M2µ = µ2
n∑

i=1

(µ⊤vi)
2

(1− ϕλi)2
,

which completes part (i) of the proposition.

Proof of Proposition 3. In the case of imperfectly substitutable goods, welfare can be written as

W (G) = q⊤q+
ρ

2
q⊤Bq.

Further, denoting by M̃ = (In + ρB− ϕA)−1 we can write equilibrium output as q = M̃µ, and welfare can
be written as

W (G) = µ⊤M̃2µ+
ρ

2
µ⊤M̃BM̃µ.

Observe that M̃ = (In − ϕC)−1, where we have denoted by C = A − ρ
ϕB, so that we can write M̃ =∑∞

k=0 ϕ
kCk. Let {νi}ni=1 be the eigenvalues of C and vi the associated eigenvectors. Further, let Λ =

diag{ν1, . . . , νn} and S the matrix whose columns are the eigenvectors vi. Then we have that C = SΛS⊤,
and we can write M̃ =

∑∞
k=0 ϕ

kSΛkS⊤. From this one can show that

µ⊤M̃µ =

n∑

i=1

(µ⊤vi)
2

1− ϕνi
,

63If we assume that G is connected then we can also use the bound λ1 ≤
√
2m− n+ 1 ≤ n− 1.
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and similarly

µ⊤M̃2µ =

n∑

i=1

(µ⊤vi)
2

(1− ϕνi)2
.

Moreover, we have that

µ⊤M̃BM̃µ = µ⊤M̃
M∑

m=1

(
umu⊤

m −Dm

)
M̃µ

=

M∑

m=1

(µ⊤M̃um)(u⊤
mM̃µ)− µ⊤M̃µ

=

M∑

m=1

(
n∑

i=1

(µ⊤vi)(u
⊤
mvi)

1− ϕνi

)2

−
n∑

i=1

(µ⊤vi)
2

(1 − ϕνi)2

=

(
n∑

i=1

(µ⊤vi)(viBvi)

1− ϕνi

)2

−
n∑

i=1

(µ⊤vi)
2

(1 − ϕνi)2
.

It then follows that welfare can be written as

W (G) =
2− ρ

2

n∑

i=1

µ⊤vi

1− ϕνi


 µ⊤vi

1− ϕνi

(
1 +

ρ

2− ρ
v⊤
i Bvi

)
+

ρ

2− ρ

n∑

j 6=i

(µ⊤vi)(v
⊤
i Bvj)

1− ϕνi


 .

Proof of Proposition 4. We start with the proof of part (i) of the proposition. Assuming that µi = µ for
all i = 1, . . . , n, we have that

q =
µ

1 + ρ(u⊤M(G,φ)u − 1)
M(G,φ)u,

with M(G,φ) ≡ (In − φA)−1, and we can write

W (G) =
2− ρ

2

µ2

(1 + ρ(u⊤M(G,φ)u − 1))2

(
u⊤M(G,φ)2u+

ρ

2− ρ
(u⊤M(G,φ)u)2

)
.

Using the fact that u⊤M(G,φ)u = NG(φ) and u⊤M(G,φ)2u = d
dφ (φNG(φ)), we then can write welfare in

terms of the walk generating function NG(φ) as

W (G) =
2− ρ

2

µ2

(1 + ρ(NG(φ)− 1))2

(
d

dφ
(φNG(φ)) +

ρ

2− ρ
NG(φ)

2

)
.

Next, observe that
NG(φ) = N0 +N1φ+N2φ

2 +O(φ3),

and consequently
d

dφ
(φNG(φ)) = N0 + 2N1φ+ 3N2φ

2 +O(φ3).

Inserting into welfare gives

W (G) =
µ2(−ρ+N0ρ+ 2)

2N0(1− ρ+N0ρ)2
− N1µ

2ρ(−ρ+N0ρ+ 2)

N0(1− ρ+N0ρ)3
φ

+
1

2
µ2(2− ρ)

( −N2
1 +N0N2

N3
0 (1 − ρ+N0ρ)2

+

(
3N2

1ρ
2

(1− ρ+N0ρ)4
− 2N2ρ

(1 − ρ+N0ρ)3

)(
1

N0
+

ρ

2− ρ

))
φ2

+O(φ)3.
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Using the fact that

N0 = n,

N1 = 2m = nd̄,

N2 = d⊤d = n(d̄2 + σ2
d),

we get

W (G) =
µ2(2− ρ+ nρ)

2n(1− ρ+ nρ)2
− 2

(
mµ2ρ(2− ρ+ nρ)

)

n(1− ρ+ nρ)3
φ

+
1

2
µ2(2 − ρ)

(−4m2 + 2mn+ n2σ2

n3(1 − ρ+ nρ)2
+

(
12m2ρ2

(1 − ρ+ nρ)4

− 4mρ

(1− ρ+ nρ)3
− 2nρσ2

(1− ρ+ nρ)3

)(
1

n
+

ρ

2− ρ

))
φ2

+O(φ)3.

Taking the derivative with respect to σ2
d yields

∂W (G)

∂σ2
d

=
µ2φ2

(((
1 + n− 2n2

)
ρ− 1

)
ρ+ 2− 2(1 + n)ρ

)

2n(1 + (n− 1)ρ)3
+O(φ)3,

and in the limit of large n we obtain

lim
n→∞

n2 ∂W (G)

∂σ2
d

= −µ2ρφ2

ρ2
+O(φ)3,

which is negative, indicating that welfare is decreasing in the degree variance σ2
d for large n up to the second

order of φ.
Let us now deal with part (ii) of the proposition. Up to the third order in φ we have that

NG(φ) = N0 +N1φ+N2φ
2 +N3φ

3 +O(φ4),

and consequently
d

dφ
(φNG(φ)) = N0 + 2N1φ+ 3N2φ

2 + 4N2φ
3 +O(φ4).

Using the fact that

N0 = n,

N1 = 2m = nd̄,

N2 = d⊤d = n(d̄2 + σ2
d),

and inserting into welfare gives

W (G) =
µ2(2− ρ+ nρ)

2n(1− ρ+ nρ)2
− 2

(
mµ2ρ(2− ρ+ nρ)

)

n(1 − ρ+ nρ)3
φ

+
1

2
µ2(2− ρ)

(−4m2 + 2mn+ n2σ2

n3(1− ρ+ nρ)2
+

(
12m2ρ2

(1− ρ+ nρ)4

− 4mρ

(1− ρ+ nρ)3
− 2nρσ2

(1− ρ+ nρ)3

)(
1

n
+

ρ

2− ρ

))
φ2

+
1

2
µ2(2− ρ)

(
−4mρ

(
−4m2 + 2mn+ n2σ2

)

n3(1 − ρ+ nρ)3
+

2
(
8m3 − 8m2n+ n2N3 − 4mn2σ2

)

n4(1− ρ+ nρ)2

+

(
− 32m3ρ3

(1− ρ+ nρ)5
+

24m2ρ2

(1− ρ+ nρ)4
− 2N3ρ

(1− ρ+ nρ)3
+

12mnρ2σ2

(1− ρ+ nρ)4

)(
1

n
+

ρ

2− ρ

))
φ3

+O(φ)4.
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Taking the derivative with respect to N3 yields

∂W (G)

∂N3
= −µ2φ3

((
1 +

(
n2 − 1

)
ρ
)
ρ− 2(1− ρ)

)

n2(1 + (n− 1)ρ)3
+O(φ)4,

and in the limit of large n we obtain

lim
n→∞

n3 ∂W (G)

∂N3
= −µ2ρφ3

ρ2
+O(φ)4.

It follows that welfare in the limit of large n is decreasing in N3. We further have that [Van Mieghem, 2011,
p. 183]

N3 =

n∑

i=1

d3i −
1

2

n∑

i=1

n∑

j=1

aij(di − dj)
2

=
N2

2

N1
+ ρd(G)

(
n∑

i=1

d3i −
N2

2

N1

)

︸ ︷︷ ︸
≥0

,

where ρd(G) is the degree assortativity coefficient of G [Newman, 2003]. Since welfare is decreasing in N3,
and N3 is increasing in the assortativity ρd(G), we have that welfare in the limit of large n is decreasing in
ρd(G).

We now deal with parts (iii) and (iv) of the proposition. We first provide a lower bound on welfare for
the efficient graph by considering the complete graph Kn. Welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2

u⊤M2u+ ρ
2−ρ (u

⊤Mu)2

(
1−ρ
ρ + u⊤Mu

)2 .

For the k-regular graph Gk we have that

u⊤Mu =
n

1− (k − 1)φ
,

u⊤M2u =
n

(1 − (k − 1)φ)2
,

and welfare is given by

W (Gk) =
µ2n((n− 1)ρ+ 2)

2(ρ(kφ+ n− 1)− kφ+ 1)2
.

As k = 2m/n this is

W (Gk) =
µ2n3((n− 1)ρ+ 2)

2(2m(ρ− 1)φ+ (n− 1)nρ+ n)2
.

Together with the definition of the average degree d̄ = 2m
n this gives us the lower bound on welfare in part

(iii) of the proposition. In particular, for the complete graph Kn we get

u⊤Mu =
n

1− (n− 1)φ
,

u⊤M2u =
n

(1 − (n− 1)φ)2
,

so that we obtain for welfare in the complete graph

W (Kn) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ(φ+ 1)− nφ+ φ+ 1)2
.

72



Using the fact that φ = ϕ
1−ρ we can write this as follows

W (Kn) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ− nϕ+ ϕ+ 1)2
.

This gives us the lower bound on welfare in part (iv) of the proposition. To obtain an upper bound, note
that welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2

u⊤M2u
(u⊤Mu)2 + ρ

2−ρ

( 1−ρ
ρ

+u⊤Mu)2

(u⊤Mu)2

.

Next, observe that

(
1−ρ
ρ + u⊤Mu

)2

(u⊤Mu)2
= 1 +

2(1− ρ)

ρ

1

u⊤Mu
+

1− ρ

ρ

1

(u⊤Mu)2
≥ 1,

for 0 < ρ ≤ 1. This implies that

W (G) ≤ 2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

u⊤M2u

(u⊤Mu)2

)
. (54)

Moreover, we have that

u⊤M2u

(u⊤Mu)2
=

d
dφ (φNG(φ))

NG(φ)2

=

∑n
i=1

(u⊤vi)
2

(1−φλi)2(∑n
i=1

(u⊤vi)2

1−φλi

)2

≤
1

1−φλ1

∑n
i=1

(u⊤vi)
2

1−φλi(∑n
i=1

(u⊤vi)2

1−φλi

)2

=
1

(1− φλ1)NG(φ)

≤ 1

n(1− φλ1)
,

where we have used the fact that NG(φ) ≥ NG(0) = N0 = n. Hence, we obtain an upper bound on welfare
in the efficient graph G∗ for large n given by

W (G∗) ≤ 2− ρ

2

µ2

ρ2

(
1

n(1− φλ1)
+

ρ

2− ρ

)
.

Using the upper bound λ1 ≤
√

2m(n−1)
n ≤ n− 1 we get

W (G∗) ≤ 2− ρ

2

µ2

ρ2




ρ

2− ρ
+

1

n

(
1− φ

√
2m(n−1)

n

)


 .

This allows us to state an upper and lower bound (from the explicit solution for welfare in the complete
graph Kn) for the efficient graph G∗ = argmaxG∈H(n,m)W (G). As the largest eigenvalue is bounded from
above by λ1 ≤ n− 1 we obtain

W (G∗) ≤ 2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

n(1− φ(n− 1))

)
, (55)

which gives an upper bound for the efficient graph G∗ = argmaxG∈G(n) W (G). Using the fact that φ = ϕ
1−ρ

73



we can write this as

W (G∗) ≤ µ2((n− 1)nρϕ+ (ρ− 1)((n− 1)ρ+ 2))

2nρ2((n− 1)ϕ+ ρ− 1)
.

In the following let us denote by W the upper bound on welfare in Equation (55). Then, for part (iv) of the
proposition, note that in the limit of large n the upper bound W converges to

lim
n→∞

W =
µ2

2ρ
,

while for the complete graph Kn we get

lim
n→∞

W (Kn) =
µ2ρ

2(ρ− (1− ρ)φ)2
.

Hence, we have that

lim
n→∞

W (Kn)

W
=

ρ2

(ρ− (1 − ρ)φ)2
.

Thus, we get

lim
ϕ→0

lim
n→∞

W (Kn)

W
= 1,

which proves part (iv) of the proposition.

Proof of Proposition 5. (i) In the case of independent markets (ρ = 0), welfare can be written as

W (G) = q⊤q = µ⊤M(G,φ)2µ,

where M(G,φ) = (In − φA)−1. Using the fact that (see the proof of Proposition 2):

µ⊤M(G,φ)2µ =
d

dφ
(φNG(φ)) = µ⊤ d

dφ
(φM(G,φ))µ,

welfare can be written as

W (G) = µ⊤ d

dφ
(φM(G,φ))µ,

we can write the change in welfare due to the exit of firm i as follows

W (G)−W (G−i, φ) =
(
µ⊤M(G,φ)2µ− µ⊤M(G−i, φ)2µ

)

=

(
d

dφ
φ
(
µ⊤M(G,φ)µ − µ⊤M(G−i, φ)µ

))
.

Denoting by
∆i(G,φ) ≡ µ⊤M(G,φ)µ − µ⊤M(G−i, φ)µ,

we can write the change in welfare as follows

W (G)−W (G−i, φ) =

(
d

dφ
φ (∆i(G,φ))

)
.

We next turn to the analysis of the quantity ∆i(G,φ). We first make the following observation (see
Lemma 1 in Ballester et al. [2006])

mjk(G
−i, φ) = mjk(G,φ) − mij(G,φ)mik(G,φ)

mii(G,φ)
.

74



We then can write

µ⊤M(G−i, φ)µ =
∑

j,k

µjmjk(G
−i, φ)µk

= µ⊤M(G,φ)µ−
∑

j,k µjmij(G,φ)mik(G,φ)µk

mii(G,φ)

= µ⊤M(G,φ)µ− bµ,i(G,φ)2

mii(G,φ)
,

and we obtain

∆i(G,φ) =
bµ,i(G,φ)2

mii(G,φ)
.

We then define the centrality measure

ci ≡
1

2

d

dφ
(φ∆i(G,φ)) =

1

2

d

dφ

(
φbµ,i(G,φ)2

mii(G,φ)

)
. (56)

The centrality ci corresponds to the welfare loss incurred from to the removal of firm i. Observe that

mii(G,φ) = NG(φ, i) ≡
∞∑

k=0

a
[k]
ii φ

k,

is the generating function of the number of closed walks that start and terminate at node i. It can be
written as [Van Mieghem, 2011]

NG(φ, i) =

n∑

k=1

(vkv
⊤
k )ii

1− λkφ
= −

cA−i

(
1
φ

)

φcA

(
1
φ

) ,

where cA(φ) ≡ det (A− φIn) is the characteristic polynomial of the matrix A, and A−i is the matrix
obtained from A by removing the i-th column and row. We can then write the centrality index as
follows.

ci =
1

2

d

dφ

(
φbµ,i(G,φ)2

NG(φ, i)

)
. (57)

This shows that the centrality index c(G,φ) is determined by the Bonacich centrality bi(G,φ) of firm
i and the walk generating function NG(φ, i). Further note that64

d

dφ

(
φbµ,i(G,φ)2

NG(φ, i)

)
=

bµ,i(G,φ)2

NG(φ, i)
+

φbµ,i(G,φ)

NG(φ, i)
[2(M(G,φ)Abµ(G,φ))i

−bµ,i(G,φ)

NG(φ, i)
(M(G,φ)AM(G,φ))ii

]

=
bµ,i(G,φ)

NG(φ, i)

[
2(M(G,φ)bµ(G,φ))i −

bµ,i(G,φ)

NG(φ, i)
(M(G,φ)2)ii

]

= µ⊤M(G,φ)µ− µ⊤M(G−i, φ)µ

= ∆i(G,φ). (58)

We then can write the centrality as follows

ci =
bµ,i(G,φ)

NG(φ, i)

[
(M(G,φ)bµ(G,φ))i −

1

2

bµ,i(G,φ)

NG(φ, i)
(M(G,φ)2)ii

]
.

64We have used the fact that dM(G,φ)
dφ = M(G,φ)AM(G,φ), which follows from dX−1

dφ = −X−1 dX
dφ X

−1 for
any invertible matrix X.
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(ii) Welfare for ρ > 0 is given by

W (G) =
1

2

n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j=1

bijqiqj +

n∑

i=1

πi.

Using the fact that πi =
1
2q

2
i , we obtain for welfare

W (G) =
n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j=1

bijqiqj .

In vector-matrix notation this can be written as

W (G) = q⊤(G)q(G) +
ρ

2
q⊤(G)Bq(G).

We denote by G−i the network obtained from G by removing firm i. Applying Lemma 1 in Ballester
et al. [2006] to the weighted symmetric matrix M(G, ρ, ϕ), we get

mjk(G
−i, ρ, ϕ) = mjk(G, ρ, ϕ)− mij(G, ρ, ϕ)mik(G, ρ, ϕ)

mii(G, ρ, ϕ)

For equilibrium output we have that q = bµ = Mµ, so that we obtain for the output of firm j after
the removal of firm i

qj(G
−i) =

n−1∑

l=1

mjl(G
−i)µ−i

l (G)

=

n−1∑

l=1

(
mjl(G)− mij(G)mil(G)

mii(G)

)
µ−i
l (G)

=

n∑

l=1

mjl(G)µl −
mij(G)

mii(G)

n∑

l=1

mil(G)µl

= (M(G)µ)j −
mij(G)bµ,i(G)

mii(G)
.

Moreover, we have that

n−1∑

j=1

qj(G
−i) = u⊤M(G)µ(G)− bu,i(G)bµ,i(G)

mii(G)

We then have that

q(G−i)⊤B−iq(G−i) =

n∑

j,k=1

qj(G
−i)b−i

jk qk(G
−i)

=

n∑

j,k 6=i

bjk

(
qj(G)− mij(G)qi(G)

mii(G)

)(
qk(G)− mik(G)qi(G)

mii(G)

)

=

n∑

j,k 6=i

bjkqj(G)qk(G)− bµ,i(G)

mii(G)

n∑

j,k 6=i

bjk(qj(G)mik(G) + qk(G)mij(G))

+
bµ,i(G)2

mii(G)2

n∑

j,k 6=i

bjkmij(G)mik(G).

This can be simplified to

q(G−i)⊤B−iq(G−i) = q(G)⊤Bq(G) − qi(G)

mii(G)

(
2(M(G)Bq(G))i −

qi(G)

mii(G)
(M(G)BM(G))ii

)
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In the special case of B = In this is

q(G−i)⊤q(G−i) = q(G)⊤q(G)− qi(G)

mii(G)

(
2(M(G)q(G))i −

qi(G)

mii(G)
(M(G)2)ii

)
.

We then obtain

W (G) −W (G−i) = (q⊤(G)q(G) − q⊤(G−i)q(G−i)) +
ρ

2
(q⊤(G)Bq(G) − q⊤(G−i)Bq(G−i))

=
qi(G)

mii(G)

(
(M(G)(2In + ρB)q(G))i −

1

2

qi(G)

mii(G)
(M(G)(2In + ρB)M(G))ii

)

=
bµ,i(G)

mii(G)

(
(M(G)(2In + ρB)bµ(G))i −

1

2

bµ,i(G)

mii(G)
(M(G)(2In + ρB)M(G))ii

)
.

Proof of Proposition 6. (i) The FOC of profits in Equation (17) with respect to effort is

∂πi

∂ei
= qi − ei + s = 0,

so that equilibrium effort is
ei = qi + s.

The FOC with respect to output is given by

∂πi

∂qi
= (ᾱ− c̄i)− 2qi − ρ

∑

j 6=i

bijqj + ei + ϕ
n∑

j=1

aijej = 0.

Inserting equilibrium efforts, rearranging terms and introducing the reduced from variable µi ≡ ᾱ− c̄i
gives

qi = µi − ρ
∑

j 6=i

bijqj + ϕ

n∑

j=1

aijqj + s+ ϕdis.

where di =
∑n

j=1 aij is the degree (or total number of links) of firm i. In vector-matrix notation this
is

(In + ρB− ϕA)q = µ+ su+ ϕsAu.

We then can write equilibrium quantities as follows

q = q̄+ sr,

where we have denoted by

q̄ ≡ (In + ρB− ϕA)−1µ = Mµ

r ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
u = Mu+ ϕMd,

where M = (In+ρB−ϕA)−1. The vector q̄ gives equilibrium quantities in the absence of the subsidy
and is derived in Section 3. The vector r has elements ri for i = 1, . . . , n. Furthermore, equilibrium
profits are given by

πi =
1

2
q2i +

1

2
s2,

(ii) Net social welfare is given by

W (G, s) = W (G, s)− s
n∑

i=1

ei =
n∑

i=1

(
q2i + πi − sei

)
=

n∑

i=1

q2i − s
n∑

i=1

qi −
n

2
s2.
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Using the fact that qi = q̄i + sri, where

q̄ = (In − ϕA)−1µ = Mµ

r = ϕ(In − ϕA)−1

(
1

ϕ
In +A

)
u = µ+ ϕd,

we can write net welfare as follows

W (G, s) =

n∑

i=1

(q̄i + ris)
2 −

n∑

i=1

(q̄i + ris)−
n

2
s2.

The FOC of net welfare W (G, s) is given by

∂W (G, s)

∂s
= 2

n∑

i=1

q̄i (2ri − 1) + s
n∑

i=1

(
2r2i − 2ri − 1

)
= 0,

from which we obtain the optimal subsidy level

s∗ =

∑n
i=1 q̄i (1− 2ri)∑n

i=1 (ri (2ri − 2)− 1)
,

where the equilibrium quantities are given by Equation (18). For the second-order derivative we obtain

∂2W (G, s)

∂s2
= −

n∑

i=1

(
−2r2i + 2ri + 1

)
,

and we have an interior solution if the condition
∑n

i=1

(
−2r2i + 2ri + 1

)
≥ 0 is satisfied.

(iii) Net welfare can be written as

W (G, s) =
1

2

n∑

i=1

q2i +
ρ

2

n∑

i=1

n∑

j 6=i

bijqiqj +

n∑

i=1

πi − s

n∑

i=1

ei

=

n∑

i=1

q2i +
n

2
s2 +

ρ

2

n∑

i=1

n∑

j 6=i

bijqiqj −
n∑

i=1

(qi + s)s.

Using the fact that qi = q̄i + sri, where

q̄ ≡ (In + ρB− ϕA)−1µ

r ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
u,

we can write net welfare as follows

W (G, s) =

n∑

i=1

(q̄i + ris)
2 − ns2 +

ρ

2

n∑

i=1

n∑

j 6=i

bij(q̄i + sri)(q̄j + srj)−
n∑

i=1

(q̄is+ ris
2).

The FOC of net welfare W (G, s) is given by

∂W (G, s)

∂s
=

n∑

i=1

(
2q̄iri − q̄i +

ρ

2
bij(q̄irj + q̄jri)

)
+ s

n∑

i=1


2r2i − 2ri − 1 + ρ

n∑

j=1

bijrirj


 = 0,
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Figure F.1: The concave welfare function W̄ (G, s) for different years and different subsidy levels s. The
location of the maximum s∗ for each year is indicated with a vertical line.

from which we obtain the optimal subsidy level

s∗ =

∑n
i=1

(
q̄i(2ri + 1) + ρ

2

∑n
j=1 bij(q̄irj + q̄jri)

)

∑n
i=1

(
1 + ri

(
2− 2ri − ρ

∑n
j=1 bijrj

)) ,

where the equilibrium quantities are given by Equation (18). The second-order derivative is given by

∂2W (G, s)

∂s2
= −

n∑

i=1


−2r2i + 2ri + 1− ρ

n∑

j=1

bijrirj .


 .

Hence, the solution is interior if
∑n

i=1

(
−2r2i + 2ri + 1− ρ

∑n
j=1 bijrirj

)
≥ 0.

The concave welfare function W̄ (G, s) for different years and different subsidy levels s is shown in Figure
F.1. The location of the maximum s∗ for each year is indicated with a vertical line.

Proof of Proposition 7. (i) The FOC of profits from Equation (20) with respect to effort is

∂πi

∂ei
= qi − ei + si = 0,

so that equilibrium effort is
ei = qi + si.

The FOC with respect to output is given by

∂πi

∂qi
= (ᾱ− c̄i)− 2qi − ρ

∑

j 6=i

bijqj + ei + ϕ

n∑

j=1

aijej = 0.

Inserting equilibrium efforts and rearranging terms gives

qi = µi − ρ
∑

j 6=i

bijqj + ϕ

n∑

j=1

aijqj + si + ϕ

n∑

j=1

aijsj .

In vector-matrix notation this is

(In + ρB− ϕA)q = µ+ s+ ϕAs.
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We then can write equilibrium quantities as follows

q = q̄+Rs,

where we have denoted by

q̄ ≡ (In + ρB− ϕA)−1µ = Mµ

R ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
= M+ ϕMA,

with M = (In + ρB− ϕA)−1. The matrix R has elements rij for 1 ≤ i, j ≤ n. Furthermore, one can
show that equilibrium profits are given by

πi =
1

2
q2i +

1

2
s2i .

(ii) Net welfare can be written as follows

W (G, s) =
n∑

i=1

(
q2i
2

+ πi − siei

)

=

n∑

i=1

q2i −
n∑

i=1

qisi −
1

2

n∑

i=1

s2i .

Using the fact that qi = q̄i + rijsj , with

q̄ = (In − ϕA)−1µ = Mµ

R = ϕ(In − ϕA)−1

(
1

ϕ
In +A

)
= µ+ ϕd,

where R is symmetric, i.e. rij = rji, we can write net welfare as follows

W (G, s) =

n∑

i=1

q̄2i −
n∑

i=1

q̄isi −
1

2

n∑

i=1

s2i +

n∑

i=1




n∑

j=1

rijsj




2q̄i +

n∑

j=1

rijsj − si


 . (59)

Equation (59) can be written in vector-matrix notation as follows

W (G, s) = q̄⊤q̄− 1

2
s⊤ (In − 2R(R− In)) s− q̄⊤(In − 2R)s.

Denoting by Q ≡ In − 2R(R − In) and c⊤ ≡ q̄⊤(In − 2R) we find that maximizing net welfare
is equivalent to solving the following quadratic programming problem: mins∈Rn

+

{
c⊤s+ 1

2s
⊤Qs

}
[cf.

Boyd and Vandenberghe, 2004]. The FOC for net welfareW (G, s) of Equation (59) yields the following
system of linear equations

∂W (G, s)

∂si
= −q̄i − si +

n∑

k=1

rki


2q̄k +

n∑

j=1

rkjsj − sk




+

n∑

k=1




n∑

j=1

rkjsj



(
1

2
rki − δki

)
= 0.

In vector-matrix notation this can be written as

(In + 2R− 2R2)s = (2R− In)q̄.

When the conditions for invertibility are satisfied, it then follows that the optimal subsidy levels can
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be written as

s∗ = (In + 2R− 2R2)−1(2R− In)q̄, (60)

with q̄ = (In − ϕA)−1µ = bµ. The second-order derivative is given by

∂2W (G, s)

∂si∂sj
= −δij − 2rij + 2

n∑

k=1

rkirkj .

In vector-matrix notation this can be written as

∂2W (G, s)

∂s∂s⊤
= −In + 2R− 2R2.

Hence, we obtain a global maximum for the concave quadratic optimization problem if the matrix
In + 2R − 2R2 = In − 2R2 + 2R is positive definite, which means that it is also invertible and its
inverse is also positive definite.

(iii) In the case of interdependent markets, when goods are substitutable, net welfare can be written as

W (G, s) =
1

2




n∑

i=1

q2i + ρ

n∑

i=1

n∑

j 6=i

bijqiqj


+

n∑

i=1

πi −
n∑

i=1

siei

=

n∑

i=1

q2i −
n∑

i=1

qisi −
1

2

n∑

i=1

s2i +
ρ

2

n∑

i=1

n∑

j 6=i

bijqiqj .

Using the fact that qi = q̄i + rijsj , with

q̄ ≡ (In + ρB− ϕA)−1µ

R ≡ ϕ(In + ρB− ϕA)−1

(
1

ϕ
In +A

)
,

where R is in general not symmetric, unless AB = BA,65 we can write net welfare as follows

W (G, s) =
n∑

i=1


q̄i +

n∑

j=1

rijsj




2

−
n∑

i=1


q̄i +

n∑

j=1

rijsj


 si −

1

2

n∑

i=1

s2i

+
ρ

2

n∑

i=1

n∑

j=1

bij

(
q̄i +

n∑

k=1

riksk

)(
q̄j +

n∑

l=1

rjlsl

)
. (61)

In vector-matrix notation we can write Equation (61) as follows

W (G, s) = q̄⊤q̄+
ρ

2
q̄⊤Bq̄− 1

2
s⊤
(
In + 2R⊤(In −R− ρ

2
BR)

)
s− q̄⊤ (In − 2R− ρBR) s.

If we denote by Q ≡ In+2R⊤(In−R− ρ
2BR) and c⊤ ≡ q̄⊤ (In − 2R− ρBR) we find that maximizing

net welfare is equivalent to solving the following quadratic programming problem: mins∈R
n
+

{
c⊤s + 1

2s
⊤Qs

}

[cf. Boyd and Vandenberghe, 2004], where we can replace Q with the symmetric matrix 1
2

(
Q⊤ +Q

)

65While the inverse of a symmetric matrix is symmetric, the product of symmetric matrices is not necessarily
symmetric.
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to obtain an equivalent problem. The FOC from Equation (61) is given by

∂W (G, s)

∂si
= −q̄i + 2

n∑

k=1

rkiq̄k − si − 2

n∑

k=1

rkisk + 2

n∑

k=1

n∑

j=1

rkirkjsj

+
ρ

2

n∑

l=1

n∑

j=1

bliq̄lrji +
ρ

2

n∑

l=1

n∑

j=1

blj q̄jrli +
ρ

2

n∑

l=1

n∑

j=1

blj

(
rli

n∑

k=1

rjksk + rji

n∑

k=1

rlksk

)
= 0.

In vector-matrix notation this can be written as follows

∂W (G, s)

∂s
= −q̄+ q̄⊤(2R+ ρBR)− s− 2R⊤

(
In − 1

2
(2In + ρB)R

)
s.

When the matrix In − 2R⊤ ( 1
2 (2In + ρB

)
R− In) is invertible, the optimal subsidy levels can then be

written as

s∗ =

(
In − 2R⊤

(
1

2
(2In + ρB

)
R− In)

)−1 (
R⊤(2In + ρB)− In

)
q̄, (62)

where the equilibrium quantities in the absence of the subsidy are given by

q̄ = (In + ρB− ϕA)−1µ.

The second-order derivative is given by

∂2W (G, s)

∂s∂s⊤
= −In + 2R⊤(In − 1

2
(2In + ρB)R).

Hence, we obtain a global maximum for the concave quadratic optimization problem if the matrix
In + 2R⊤(In − 1

2 (2In + ρB)R) is positive definite. Note that if this matrix is positive definite then it
is also invertible and its inverse is also positive definite.

Note that when the condition for concavity is not satisfied then we can sill use Equations (60) or (62),
respectively, as a candidate for a welfare improving subsidy program. However, there might exist other
subsidy programs that yield even higher welfare gains.

Proof of Proposition 8. In terms of the walk generating function welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2
NG(φ)

2

(
1−ρ
ρ +NG(φ)

)2

(
ρ

2− ρ
+

d
dφ (φNG(φ))

NG(φ)2

)

=
2− ρ

2

µ2

ρ2
(1− φλ1)

2NG(φ)
2

(
1−ρ
ρ (1 − φλ1) + (1 − φλ1)NG(φ)

)2

(
ρ

2− ρ
+

(1 − φλ1)
2 d
dφ (φNG(φ))

(1− φλ1)2NG(φ)2

)
.

Then the following limits for the walk generating function hold

lim
φ↑1/λ1

(1− φλ1)NG(φ) = lim
φ↑1/λ1

(1− φλ1)

n∑

i=1

(u⊤vi)
2

1− φλi
= (u⊤v1)

2

lim
φ↑1/λ1

(1− φλ1)
2NG(φ)

2 = lim
φ↑1/λ1

(1− φλ1)
2




n∑

i=1

(u⊤vi)
4

(1− φλi)2
+

n∑

i=1

n∑

j 6=i

(u⊤vi)
2(u⊤vj)

2

(1 − φλi)(1 − φλj)


 = (u⊤v1)

4

lim
φ↑1/λ1

(1− φλ1)
2 d

dφ
(φNG(φ)) = lim

φ↑1/λ1

(1− φλ1)
2

n∑

i=1

(u⊤vi)
2

(1− φλi)2
= (u⊤v1)

2.
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In the limit of φ ↑ λ1 we then get for welfare

lim
φ↑1/λ1

W (G) =
2− ρ

2

µ2

ρ2
(u⊤v1)

4

(u⊤v1)4

(
ρ

2− ρ
+

(u⊤v1)
2

(u⊤v1)4

)

=
2− ρ

2

µ2

ρ2

(
ρ

2− ρ
+

1

(u⊤v1)2

)
.

This expression is increasing with decreasing values of (u⊤v1)
2 = ‖v1‖21. We thus find that the welfare

maximizing graph G∗ is the one that minimizes the ℓ1-norm ‖v1‖1 of the principal eigenvector v1 associated
with the largest eigenvalue λ1.
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