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Abstract

We experimentally test the seminal platform selection model of Farrell and Saloner (1985). At the
core of this model is the presence of irreversible actions and private valuations. In general, our data
support the model. While complementarities in actions strongly determine follower behavior, there
is a reluctance to lead not accounted for by theory. We explain observed deviations from the neo-
classical equilibrium by injecting some noise in the equilibrium concept. We find that allowing cheap
talk messages improves efficiency while policies aimed at insuring failed leadership or subsidizing joint
choice of the challenger platform reduce efficiency.
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1 Introduction

New and superior technology platforms may fail in the market for a number of reasons. In this paper, we
focus on the role of information in an environment in which switching to a new platform is irreversible.
In the presence of network externalities and private valuations of available technologies, beliefs about the
valuations of others become a critical determinant of whether new technologies succeed or fail. Beliefs
may be too pessimistic to support switching to mutually preferred platforms. However, early switching
by high valuation users may induce users with lower valuations to follow, resulting in mutually beneficial
coordination of actions.

But, how large is the causal effect of private valuations on the switching probability? And to what
extent does early switching by high valuation users cause users with lower valuations to follow? We
address these questions by investigating the seminal network model of Farrell and Saloner (1985) in a
controlled laboratory experiment.1 In this model, the combination of a specific information structure and
sequence of moves produces a unique equilibrium.2 This equilibrium provides an unequivocal benchmark
for our analysis and facilitates separate assessment of the role of strategic uncertainty and the role of
complementarity in actions.3

In the model, players make platform choices in the presence of network externalities and incomplete
information about types. The key decision is whether to “lead” and commit to a platform in the first
stage or to “follow” and delay the decision to the second stage. Due to complementarity in actions,
when a player leads, this creates incentives for other players to “jump on the bandwagon” and choose the
same platform. However, a player may regret the decision to lead if other players fail to follow. Hence,
players face a clear decision: “Should I Stay or Should I Go?” Our experiment allows us to tease out
the relative importance of leader and follower behavior, and the associated efficiency consequences. In
general, we find substantial support for the model in data. However, the deviations that we do observe
are systematic. We show that they can be accounted for by introducing some noise in the equilibrium
concept.

The dynamics that characterize the model are present in a wide range of economic interactions.
The benefits of a platform to a user depend in part on idiosyncratic technological and institutional
characteristics. However, the value of a platform also depends on the extent of the user base. Consider
the example of the Open Handset Alliance (OHA). The OHA is an initiative to develop open standards for
mobile devices based on the Android platform.4 Members of the OHA include developers of applications
and hardware, in addition to network operators. After the initial launch of the OHA in 2007, there have
been subsequent rounds in which the OHA has expanded its membership.5 This includes a number of
companies that have deprecated or de-prioritized their own platforms in favor of the Android platform.6

As is captured by the model, some firms switched to the OHA early on, before there was a critical mass
of users, while other firms adopted the platform only after it had gained traction in the market.

1For textbook treatments see Shy (2001) and Belleflamme and Peitz (2015).
2Coordination problems are defined by the presence of multiple, Pareto-ranked equilibria. Coordination failure result if

players beliefs lead them to play a payoff dominated equilibrium. Thus, in a strict sense, there are no coordination problems
in the game we use.

3We follow Morris and Shin (2002) in defining strategic uncertainty as “uncertainty concerning the actions and beliefs
(and beliefs about the beliefs) of others.” According to Cooper and John (1988) strategic complementarities arise “when
the optimal strategy of an agent depends positively upon the strategies of the other agents.”

4The stated goal of the OHA is “to accelerate innovation in mobile and offer consumers a richer, less expensive, and
better mobile experience”

http://www.openhandsetalliance.com/
5For instance, a Reuters article from December 10, 2008 reports that companies such as Sony Ericsson and Vodaphone

are joining the OHA. It concludes by citing a web analyst from Sterling Market Intelligence who predicts that “...more
people will jump on the bandwagon.”

http://www.reuters.com/article/us-openhandset-idUSTRE4B86M120081210
6Other examples of platform technologies include payment card systems, electronic medical records, or even launch

stations for space travel.
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We make two main contributions. Foremost, we find that the effect of complementarity in actions
is strong. If a subject takes the lead, other subjects follow with high probability. Second, we find that
subjects often do not lead when it is a conditional best reponse. This reluctance to lead reduces efficiency
and is not accounted for by the model. Leading carries the risk of failure; the leader might end up alone
on the new platform. It is the variation in the cost of failed leadership, rather than the sharp cut-off
between dominant and non-dominant equilibrium strategies, that appears to cause the reluctance to lead.
We clarify this argument by introducing some noise in the decision making process. Such noise makes
beliefs relevant everywhere, eroding the sharp divide between dominant and non-dominant equilibrium
strategies. In particular, we show that an agent quantal response equilibrium (AQRE) organizes our data
well. In addition we investigate a simple extension of the basic model which permits cheap talk. We find
that cheap talk boosts efficiency, as it should do in the equilibrium of Farrell and Saloner (1985).

We also analyze how a policy maker can use simple subsdies to promote technology adoption both in
the context of the basic model as well as in the model with noise. Although the exact choice of subsidy
does not matter, the effect of subsidies is reduced in the presence of noise. We conclude that policy-
makers should be especially careful about attempts to induce technology uptake when the benefits are
more uncertain. In addition, as the size of the subsidy increases, the return on investment falls.

To the best of our knowledge ours is the first experiment to address the model of Farrell and Saloner
(1985). The paper closest to ours is Brindisi et al. (2014).7 While they use the same sequence of
moves as we do, type uncertainty is replaced by uncertainty about fundamentals. Agents get a private
signal about the true state of fundamentals, resembling the global games set-up. In contrast to us,
they find that strategic complementarity does not strongly determine outcomes. This indicates that
the information structure is crucial in determining the strength of bandwagon behavior in the presence
of complementarities and irreversible choices. While complementarities in actions are a strong force in
environments with private information about types, they appear not to be so under private information
about fundamentals.

More generally, most, if not all, economic situations of interest will embody both type uncertainty
and uncertainty about fundamentals. Usually, it is not evident what the crucial source of uncertainty is
in a particular situation. Accordingly, the choice of information structure should be determined with a
view to the context.8 For these reasons, we believe that models such as the one analyzed in this paper
have the potential to shed further light on situations in which the current practise is to rely on a global
games approach.9

The remainder of the paper is organized as follows. In the next section, we describe the model.
For concreteness, we present the model using the parameters of the experiment. Thereafter, in the
third section, we review our design and the experimental procedures. In section four, we present the
experimental results. The fifth section considers how noisey behavior impacts the equilibrium and the
sixth section presents additional analyses related to efficiency. The final section concludes.

2 Model

We investigate a parameterized version of the bandwagon game with incomplete information. We consider
the case with two players, i = {1, 2}, and two stages, t ∈ {1, 2}.10 When referring to the generic player
i, the other player will be referred to as the player’s “match” and denoted by j.

7Brindisi et al. (2009) provides a thorough exposition of the theory.
8This is also the view taken in the seminal work on global games (see the discussion in Carlsson and Van Damme

(1993)pp.251-2).
9A few prominent examples include bank runs (Goldstein and Pauzner, 2005); speculative currency attacks (Morris and

Shin, 1998); and political revolutions (Egorov and Sonin, 2011).
10The model can be generalized to the case with n players and n stages. The essential conclusions translate to that

setting.
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In this game, players choose to either stay with an incumbent platform x or switch to an entrant
platform y. We denote the actions by xti and yti where the superscript specifies the stage in which the
action is chosen and the subscript indicates the player. Payoffs in the game only depend on the outcome
at t = 2 . For expositional purposes, we refer to action y and x as respectively Go and Stay. In addition,
we refer to action y1as a decision to Lead and action y2i |y1j (choosing y in the second period conditional
on the match choosing y in the first period) as a decision to Follow.

The game has the following timeline:

0. Prior to first stage, nature draws a type θi for each player. Type draws are i.i.d from a uniform
distribution: θi ∼ U [0, 10]. Each player’s type is private information and is revealed to the player
but not to the player’s match. θ parameterizes preferences, with higher realizations associated with
higher payoffs from platform y.

1. In the first stage, players simultaneously select action x1 or action y1. The choice of y1 also commits
a player to y2. Players observe the stage 1 action of their match at the conclusion of the stage. A
player who observes that their match has chosen y1 thus knows that action y2 is played by their
match in the second stage.

2. In the second stage, players who chose x1 in stage 1 choose between x2 and y2. Players who chose
y1 do not make a decision in the second stage. If both players chose x1, second stage decisions are
taken simultaneously.

A key feature of our implementation is the choice of simple, linear payoff functions: πθi(x
2
i , x

2
j ) =

7;πθi(y
t
i , x

2
j ) = αθi;πθi(x

2
i , y

t
j) = 5;πθi(y

t
i , y

t
j) = θi + 2. In our two main treatments, D and N , α = 1

and α = 1/2, respectively.11

A strategy in the bandwagon game specifies an action in both stages of the game. Formally, a strategy
for player i consists of a mapping from θi to a first stage action and a mapping from θi and j’s first stage
action (x1j or y1j ) to a second stage action.

In the unique symmetric equilibrium of the game, players use a bandwagon strategy governed by the
thresholds θ and θ∗.12 These thresholds divide the players into three strategic regions: A Stay range
[0, θ) in which players use strategy s1 = (x1i , x

2
i ), a Lead range [θ∗, 10] in which players use strategy

s2 = y1i , and a Follow range [θ, θ∗) in which players use strategy s3 =
(
x1i , (x

2
i |x1j ; y2i |y1j )

)
.13 Notice that

players who use strategy s3 condition their second stage action on the first stage action of their match.
In addition to the bandwagon thresholds, we identify the thresholds θ̄ and θ◦. A player with a type
below θ◦ prefers a joint choice of platform x while a player with a type above θ◦ prefers a joint choice
of platform y. The threshold θ̄ defines the region in which Lead is a dominant strategy; a player with a
type greater than θ prefers a unilateral choice of Go rather than a joint decision to Stay. This threshold
isθ̄ = 7 in the D treatment but 10 in the N treatment. This means that no players in the N treatment
have a dominant strategy to Lead.

11The parameterizations of the treatments and the associated predictions are presented in table 1. Linear payoff functions
are a special case. The equilibrium described exists and is unique for any πθi (yti , y

t
j) and πθi (x2i , y

t
j) that are continuous

and strictly increasing in θ, as long as πθi (yti , y
t
j)−πθi (x2i , x

2
j ) is monotone in θ.

12This is an ex-ante strategy. It prescribes a strategy for each possible type realization; that is, prior to that agent
observing their type. We may refer to the strategy after the agent observes their type as an interim strategy. In a slight
overburdening of language, we also refer to this as a strategy.

13There are only three combinations of actions that need to be compared: s1, s2, and s3. We may disregard strategies(
x1i , y

2
i

)
and

(
x1i , (y

2
i |x1j ;x2i |y1j )

)
as they are dominated by other combinations of actions. In the bandwagon equilibrium,

when a player chooses s3 it induces a joint switch to platform y if their match has a type in the range (3, 6]. In contrast,
when a player chooses strategy (x1i , y

2
i ), the player forgoes the opportunity to induce a joint switch to y. Moreover,(

x1i , y
2
i |x1j ;x2i , x2i |y1j

)
can never be an optimal strategy because it guarantees that players choose different platforms.
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The two strategically relevant thresholds, θ and θ∗, are defined by indifference conditions. θ is defined
as the point of indifference between staying on x alone and a joint switch to y, that is πθ(x

2
i , y

t
j) =

πθ(y
t
i , y

t
j). Given our specification, θ = 3 in all treatments. Because players with types less than θ prefer

to stay on x rather than a joint move to y, s1 is strictly dominant for players in the Stay range.
Although all players face strategic uncertainty, only those with types in the interval

(
θ, θ
)

face genuine
trade-offs. Players in this range have conditional best responses. In particular, players with types in the
interval θi ∈

(
θ◦, θ̄

)
prefer a joint move to platform y but would choose x if they knew that their match

was going to select x.14 These are players that ex post regret a decision to Lead if their match chooses
to Stay. These players therefore assess the expected benefits of s2 against their best alternative strategy
s3. Such a player balances the benefits of leading, in the hope of promoting a joint move to platform
y, with the cost of possibly ending up isolated on y. In the unique equilibrium of the bandwagon game,
θ∗ denotes the point at which a player is indifferent between leading and following. Players with types
greater than θ∗ should therefore Lead.

To compute θ∗, assume that players use the bandwagon strategy with thresholds θ and θ∗. Beyond
θ∗, players lead while players in the region [θ, θ∗) choose to follow. Next, let θ∗ denote the point of
indifference above which players use s2 and below which they use s3:

E [πθ∗(s2)] = E [πθ∗(s3)]

P(θj > θ)πθ∗(y
t
i , y

t
j) + (1− P(θj > θ))πθ∗(y

t
i , x

2
j ) = P(θj > θ∗)πθ∗(y

t
i , y

t
j) + (1− P(θj > θ∗))πθ∗(x

2
i , x

2
j )

Using the payoff functions from the D treatment (i.e. α = 1), this equation reduces to:

(10− θ)
10

(θ∗ + 2) +
θ

10
θ∗ =

(10− θ∗)
10

(θ∗ + 2) +
θ∗

10
7

θ∗2 − 5θ∗ − 2θ = 0

The only positive root of this equation is θ∗ = 6. The bandwagon strategy (θ = 3, θ∗ = 6) is thus a unique
best response to itself. Moreover, any equilibrium strategy must have the threshold form: Regardless of
a player’s beliefs, the benefits of leading are non-decreasing in the player’s type θ. As a consequence, if it
is optimal for a player of type θ

′
to Go in the first period, then it is optimal for any players θ > θ

′
to also

Go in the first period. All types above θ∗ will therefore switch in the first period, and the bandwagon
strategy (θ = 3, θ∗ = 6) completely characterizes the equilibrium. An analogous calculation establishes
that θ∗ = 7.3 for treatment N in which α = 1/2.

The model produces two varieties of inefficiencies, Pareto and Kaldor-Hicks. The first type of inef-
ficiency arises when both players have types in the range θo < θ < θ∗. In this range, both players use
strategy s2. Although the players would prefer a joint switch to platform y, neither player “gets the
bandwagon rolling,” and they remain on platform x. We refer to this as Pareto inefficiency because both
players would be better off if they could arrange a joint switch to y.

The second type of inefficiency arises when the players prefer different platforms and end up on the
platform that yields lower social surplus. We refer to this as Kaldor-Hicks inefficiency because agents
would choose a different platform if they were able to negotiate side-payments. Given our specification
of payoff functions, whenever the sum of the players’ types is greater than 10, efficiency requires a joint
switch to y. However, it is possible for players to remain on x even though the sum of type draws is
greater than 10 and for the players to switch to y even though the sum of type draws is less than 10.
The first situation will occur if a player just below θ∗ meets a player just below θ◦—in which case neither
player initiates a switch—and the second situation will occur if one player has a type just above θ∗—and
initiates a switch—while the other player follows but has a type just above θ̄.

14Symmetrically, players in the interval θi ∈ (θ, θ◦) prefer to stay jointly on platform x but will choose y if their match
chooses y.
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We also investigate a version of the bandwagon game with communication (a formal analysis of the
signaling equilibrium is provided in the supplementary materials). The game is identical to the basic
model but with the addition of a cheap talk stage after the agents have observed their type θi but prior
to the first stage. The message space is mi = {xi, yi}. This allows players to announce their preference
for one of the platforms. Importantly, this message is non-binding and the players know this.

In equilibrium players with types below θ◦ prefer x and will send the message x while types above
θ◦ prefer y and will send the message y.15 Based on this message, players can partially update their
beliefs about their match’s type. If both players send the same message, this indicates that they have
aligned preferences. In equilibrium, this eliminates Pareto inefficiency as players that send the same
message will choose the same action. In the case in which agents send conflicting signals, the agents use
a threshold strategy analogous to in the bandwagon game without communication. However, relative
to the basic model, the probability that a match will follow, conditional on giving signal x, is lower
than the unconditional probability.16 As a consequence, the threshold θ∗ is higher in the game with
communication.

3 Design and procedures

Design The design is organized around the comparison of three treatments: Two treatments without
pre-play communication, D and N , and a single treatment with pre-play communication, S. Table 1
summarizes the parameterization and predictions for these treatments. The payoff functions are identical
in the D, S, and N treatments except that the payoff of unilaterally switching is reduced by half in the
N treatment. The fourth and fifth columns in Table 1b indicate the regions in which the best response
to lead is, respectively, not dominant and dominant.

Payoffs stage one

πθi(x
2
i , x

2
j ) πθi(x

2
i , y

t
j) πθi(y

t
i , x

2
j ) πθi(y

t
i , y

t
j)

D 7 5 θi θi + 2
N 7 5 θi/2 θi + 2
S 7 5 θi θi + 2

(a)

Predictions

Thresholds Best Response = y1i

θ̄ θ◦ θ∗ Conditional Dominant

D 3.0 5.0 6.0 θi ∈ [6.0, 7.0) θi ∈ [7.0, 10.0]
N 3.0 5.0 7.3 θi ∈ [7.3, 10.0] θi ∈ ∅
S 3.0 5.0 6.2 θi ∈ [6.2, 7.0) θi ∈ [7.0, 10.0]

(b)

Table 1: Payoffs (1a) and predictions (1b) for D, N , and S (i = {1, 2} ; t = {1, 2})
15It should be clear why truthful signaling is optimal: Because the message is costless, players should send the message

that promotes their highest payoff.
16The computations are analogous to those presented for the basic model, but take into account the partial updating that

results from observing the message of the match.
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Our key comparison is between behavior in the D and N treatments. The strategic difference between
these treatments is that θ∗ = 6.0 in the D treatment and θ∗ = 7.3 in the N treatment. The other
bandwagon threshold, θ, is the same in both treatments. Because the only strategically relevant threshold
that changes is θ∗, a comparison of D and N provides a clean test of the model. The basic analysis
compares the behavior of players in the strategic ranges Stay, Follow, and Lead. The model predicts that
behavior in the same range will be identical across treatments.

In the first stage, the crucial decision is whether to Lead. However, although the model predicts that
all players with types greater than θ∗ will lead, the relevance of beliefs is distinctly different in the D
and N treatments. In the D-treatment, the decision to lead is dominant for players with types greater
than θ̄ = 7.0 (see column five in table 1b). In contrast, the decision to lead in the N treatment is always
predicated on beliefs. Comparison of subjects in the D and N treatment thus facilitates a test of the
behavioral impact of beliefs on leadership.

In the second stage, the bandwagon equilibrium predicts that players in the Follow range will choose
the same action as their match chose in the first stage. We refer to this as a complementarity effect. In
particular, due to irreversibility, when a player’s match chooses y1, this resolves strategic uncertainty in
the second stage of the game. We therefore expect that leadership will powerfully determine behavior
because it eliminates the need for beliefs.

Our second stage analysis compares behavior of subjects conditioned on the first stage choice of their
match. Of special interest is the difference between the behavior of the subjects in the Stay and Follow
ranges: When a player’s match chooses to Stay, players in the two ranges should behave identically.
However, when a player’s match leads, players in the two ranges should make opposite choices. Hence,
a direct measure of the complementarity effect may be computed by comparing the difference of the Go
frequency in the presence and absence of a leader in the Stay and Follow ranges.

In the S treatment, players send a cost-free signal simultaneously, prior to taking their first stage
action. According to theory, access to a cost-free signal should eliminate Pareto inefficiency. We imple-
ment this treatment with the same parameters as the D treatment. This allows a direct assessment of
differences in efficiency, including Pareto inefficiency. We compute overall measures of efficiency and also
report the prevalence of specific varieties of inefficiency.

Moreover, in contrast to most other studies, we examine the role of complementarities in the presence
of conflicts of interest. For instance, players who prefer to remain on platform x will send the signal that
they intend to stay on this platform. However, if they are in the Follow range, they will Go if their match
leads. This preference flipping highlights the strength of complementarities in our setting.

Experimental procedures All sessions were conducted in research lab of BI Norwegian Business
school using participants recruited from the general student population at the BI Norwegian Business
School and the University of Oslo, both located in Oslo, Norway. Recruitment and session management
were handled via the ORSEE system (Greiner, 2004). In the D and N treatments we ran five sessions
per treatment with between 16 and 20 subjects per session. These data are supplemented with one
session of 20 subjects for the S treatment. No subject participated in more than one session. z-Tree was
used to program and conduct the experiment (Fischbacher, 2007). Anonymity of subjects was preserved
throughout.

On arrival, subjects were randomly allocated to cubicles in the lab in order to break up social ties.
After being seated, instructions were distributed and read aloud in order to achieve public knowledge of
the rules. All instructions were phrased in neutral language. Subjects were asked to choose either shape
Circle (that is, Stay) or shape Square (that is, Go). A goal was to avoid prioritizing one of the actions
as a default option.17 Sample instructions and screen shots are provided in the supplementary materials.

17For instance, if subjects were asked “would you like to stay with the incumbent technology or switch to the entrant
technology?” this may have affected subject decisions due to connotations associated with technology or as a consequence
of incumbency biases.
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Each session of the experiment began with two non-paying test games in which subjects could get
acquainted with the software. This was immediately followed by n−1 games in which the subjects earned
payoffs, where n is the total number of participants in the session.18 In each game, subjects were matched
with one other subject, their “match”, according to a highway protocol. Every subject thus met every
other subject once and only once.19 In total our data consists of 1913 unique games. Each game consisted
of a single repetition of the two-player, two-stage game with the rules and payoff functions outlined above.
Subjects earned experimental currency units (ECU). After the final game, accumulated earnings in ECU
were converted to NOK, using a fixed and publicly announced exchange rate. Subjects were paid in cash
privately as they left the lab. On average subjects earned 250 Norwegian Kroner (about 36 USD at the
time). A session lasted on average 50 minutes.

Gameplay is formulated in the following fashion: At the beginning of each each new game, each
subject receives a private number drawn from a uniform distribution on the interval (0, 10) with two
decimal points of precision. This number corresponds to the subject’s type θi. A dedicated screen is
used to display this information. Thereafter, subjects observe a 2× 2 matrix with their own payoffs from
the four possible combinations of outcomes and a button to choose a first-stage action. The first stage
concludes when both subjects in the match have made their decisions. If both subjects choose to Go in
the first stage, they continue directly to the feedback and bypass the second stage.

The second stage begins with a screen that reveals the first stage actions of both subjects in the
match. Subjects who chose to Stay in the first stage make a decision. If a subject’s match chose Go in
the first stage, then the subject observes a truncated 2 × 1 matrix in which the payoffs conditioned on
the match choosing Stay is removed. This reflects the fact that the subject’s match has committed to
Go.

After all second stage decisions are resolved, the subjects move to a feedback screen. The feedback
displays payoffs from the current game as well as a history of type draws, choices, and outcomes in all
previous periods in which the subject participated.

The signal treatment S includes an additional stage between the type draw stage and the first stage
action choice. In this stage, subjects choose between two messages “I choose circle” or “I choose square”.
Next, the message is revealed to their match on a dedicated screen. Apart from this additional stage, the
screens and information are identical to those used in the two other treatments.

4 Results

First stage behavior The first stage behavior of the subjects is consistent with the use of bandwagon
strategies and the essential predictions of the model. Figure 1 shows first stage behavior of subjects in
the D and N treatments. On the horizontal axis is a set of twenty bins, corresponding to 0.5 intervals
over subject types: The first bin includes subjects with types θ ∈ [0, 0.5), the second bin includes subjects
with θ ∈ [0.5, 1), etc. Each of the bins shows the proportion of subjects in the given range who chose
to Go in the first period. We interpret this as a probability. The bubbles are scaled by the number of
observations within a bin, relative to the total number of observations within a treatment.

The theoretical prediction for the first stage behavior is a step function at θ∗: In the equilibrium of the
model, players with types below θ∗ Stay in the first period while those above θ∗ Go. For each treatment,
this threshold is indicated by a stapled line. The plots in figure 1 illustrate that subjects with low types
tend to Stay in the first period while subjects with high types tend to Go. Moreover, the frequency of
switching increases steeply in the vicinity of θ∗ in both treatments. This is consistent with the use of
bandwagon strategies.

18Hence, in a treatment with 20 participants, each participants played 19 rounds with payoffs.
19This protocol eliminates certain dynamic problems, such as strategic teaching and reciprocity (see Fréchette (2012) for

a discussion).
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Figure 1: First Stage Behavior

To formally assess the predictions of the model, we compare behavior across treatments using Wilcox-
son Rank Sum (WRS) tests. Throughout, we denote tables and figures in the supplementary materials
with the prefix “S-.” Using session level data, between treatment comparisons find no significant differ-
ences in behavior over the D and N treatments in either the Stay range or the Follow range (tables S1
and S2). In contrast, we reject the equality of treatments in the Go range. In the range [θ∗, 10], subjects
are significantly more likely to Go in the D treatment than the N treatment (table S3).

Our results suggest that beliefs have a behavioral impact on the decision to lead. While there is a
range of subjects in the D treatment for whom the decision to lead is strictly dominant, there is no such
region in the N treatment (see table (1b)). Hence, beliefs matter for high types in the N treatment but
not for high type in the D treatment. Although the model predicts that subjects in both treatments will
lead, subjects in the D treatment with types above θ̄ Go at a much higher rate than subjects in the N
treatment with equally high type draws (see table S4). Specifically, subjects Go 92 percent of the time
in the D treatment compared to 71 percent of the time in the N treatment. We attribute this to the
fact that test subjects in the D treatment have an unconditional best response that does not depend on
beliefs. Furthermore, in the region in which decisions are conditioned on beliefs (above θ∗ but below θ̄), we
do not identify a significant difference between treatments. We can not reject equality of behavior in the
vicinity of θ∗—regardless of whether implemented by a test around or just beyond this threshold (tables
S5 and S6)—or if we compare the D treatment subjects in the region [θ∗, θ̄) with subjects anywhere in
the Lead range of the N treatment.20 Thus, when beliefs are relevant, we find no difference in behavior.

We conclude that leadership is undermined when it is predicated on beliefs. When beliefs are relevant
for actions, subjects tend to be more tentative and adopt a “wait-and-see” approach.21 Below, we use
the (agent form) quantal response equilibrium—in which beliefs are relevant everywhere—to rationalize
observed deviations from the (subgame perfect) Bayesian Nash equilibrium of the model.

20This holds for a comparison of the range θDi ∈ (6, 7) with the range θNi ∈ (7.3, 10.0), as well as for a restricted

comparison using ten base points above the Go treshold in both treatments to get a balanced set of data (i.e θDi ∈ (6, 7)

vs. θDi ∈ (7.3, 8.3)).
21Duffy and Ochs (2012) observe a similar “wait-and-see” dynamic in a study of binary entry games.
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Relative to the model, subjects with types above θ∗ do not choose y1 often enough. In doing so,
subjects forgo an opportunity to induce their favored platform if their match is in the Follow range.22

This is costly. When we compare the payoff consequences a decision to Stay for players who have a
conditional best response to Lead, we find that on average players in the D treatment earn 3.6 ECU less
while players in the N treatment earn 1.6 less.23

Second Stage Behavior Figure 2 presents the second-stage behavior by treatment, conditional on
the match’s action. The figure includes only those subjects who take a second stage decision. On the
horizontal axis is subject type, grouped in half unit bins, and on the vertical axis is the proportion of
subjects that Go in the second stage. The left panel presents the second stage behavior for subjects whose
match stayed in the first stage while the right panel presents the second stage behavior for subjects whose
match chose to Go in the first stage. Data from the D treatment are presented as hollow bubbles and data
from the N treatment are presented as shaded bubbles. The size of the bubbles reflects the proportion
of observations in a bin relative to the total number of observations within a treatment. The thresholds
identified by the equilibrium are marked by vertical lines: θ, which is identical for both treatments,
is identified by a short dashed black line, while θ∗ is denoted by a short dashed black line for the D
treatment (θ∗ = 6) and a long dashed gray line for the N treatment (θ∗ = 7.3).
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Figure 2: Second Stage Behavior by Match Action

As is evident from figure 2, complementarity has a strong effect on the eventual outcomes in the
bandwagon game. When a subject in the Follow range has a match that stays in the first stage, the
subject also stays with high probability: In 0.92 of cases in the D treatment and in 0.93 of cases in the N
treatment. In contrast, when a subject in the follow range has a match that switches in the first stage,
the subject also tends to switch with a high probability: In 0.90 of cases in the D treatment and in 0.87
of cases in the N treatment. Subjects in the Follow range essentially mirror the first stage action of their
match. This is evidence of a strong complementarity effect. Furthermore, WRS tests do not identify

22Because types are distributed uniformly, subjects are in the Follow range 30% of the time in the D treatment and 43%
of the time in the N treatment. The actual rates realized in the treatments were 35% and 43%.

23These are subjects in the region θ ∈ [θ∗ = 6, θ̄ = 7) in the D treatment and θ ∈ [θ∗ = 7.3, 10] in the N treatment.
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differences in the behavior across treatments (see tables S8 and S9). This indicates that the second stage
actions are dictated by the bandwagon strategy.

These effects can be neatly summarized using a logistic regression (see figure S3). We find that the
strongest predictor of behavior is the interaction between range (Stay or Follow) and the first stage action
of the match. In both the D and N treatments, if a player is in the follow range, the probability that the
player will switch increases by about 80 percentage points if the match chooses to Go in the first stage
relative to the case when the match chooses to Stay. Moreover, although type is statistically significant—
thus implying that higher types Go more often regardless of other factors—this effect is dwarfed by the
effect of the match’s action.

Although the model predicts that all subjects with types above θ∗ will Go in the first period, some
fail to do so. These are subjects who have made “mistakes” relative to the equilibrium. Nevertheless, the
optimal second stage behavior for these subjects is easy to characterize: When a subject’s match chooses
to Go, all subjects above θ = 3—including those above θ∗—should choose to Go in the second stage. This
is due to the complementarity effect. Otherwise, if a subject’s match chooses to Stay in the first stage,
then only subjects who have dominant strategies should Go in the second stage.24 Since only players
in the D treatment have dominant strategies, we have distinct predictions for the D and N treatments:
When a subject’s match chooses to Go, behavior should be identical in the treatments. However, when a
subject’s match chooses to Stay, only subjects in the D treatment with types above θ̄ should Go. These
are subjects who have a dominant strategy, but made a mistake in the first round.

Consistent with these predictions, when a subject’s match has chosen to Go, subjects with types above
θ Go with high probability. In contrast, when a subject’s match chooses to Stay, behavior is less clearly
determined. However, consistent with the predictions, subjects with high types in the D treatment Go in
the second stage with higher probability than analogous subjects in the N treatment.25 This difference
is consistent with subjects in the D treatment realizing that they have a dominant strategy to Go.

Signal Results for the signal treatment are based on a single session of 20 students. In the signal
treatment, there are four possible outcomes from the communication stage: Two outcomes in which the
subjects give the same signal, either Go or Stay, and the two outcomes in which the subjects give opposite
signals. We present the first-period results in figure 3.

The opportunity for pre-play communication enables players to update their beliefs about their
match’s type (section S.4 shows the computation of the bandwagon thresholds in this case). If both
subjects signal the same action, then both subjects should choose that action in the first period. These
results are shown on the diagonal. In the top left panel, we see that when subjects with types below
θ < θ◦ = 5 meet each other they nearly always signal Stay and then Stay in the first period. Similarly,
on the bottom right, we see that when subjects with types θ > θ◦ = 5 meet each other they nearly
always send the signal of Go and then Go in the first period. Relative to the D and N treatments, the
coordination success of subjects in the signal treatment is meaningfully higher.

On the off diagonal, we see the instances in which subjects sent conflicting signals. In this case, the
subjects should play bandwagon strategies similar to the D treatment, with the exception that θ = 6.2 in
the S treatment. The pattern of behavior is similar to the D treatment: subjects with a dominant strategy
switch as predicted (respectively θ < θ and θ > θ) and there is an over eagerness for subjects just below
θ∗ to Go. Comparison of the D and S treatments suggests, therefore, that the information effect from
communication improves coordination substantially whenever subjects have the same preferred platform.

24There are of course beliefs that can support second stage switching. However, such beliefs require a large proportion
of subjects to switch in the second stage. This is not consistent with rational behavior nor with the observed switching
behavior. It should therefore be difficult for such beliefs to survive.

25see the left panel figure 2 in which players with dominant strategies correct their mistake in the second stage even if
their match choose to stay.

10



0
.2

.4
.6

.8
1

G
o 

P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

mi, mj=Stay

.2
.4

.6
.8

1
G

o 
P

ro
ba

bi
lit

y

0 2 4 6 8 10
Type

mi=Go, mj=Stay

0
.2

.4
.6

.8
1

G
o 

P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

mi=Stay, mj=Go

0
.2

.4
.6

.8
1

G
o 

P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

mi, mj=Go

Figure 3: First Stage GO by Signal

Summary of behavior We find that behavior is indistinguishable in the Stay and Follow ranges across
treatments. Behavior is also indistinguishable when Go is a best response but not a dominant action.
However, contrary to the prediction of the model, subjects in the Lead ranges who have a dominant
strategy switch at a much higher rate than subjects in the same range who do not have a dominant
strategy. We conclude that the model organizes the data well, but the need to condition the decision to
lead on beliefs has a significant and substantially negative effect on leadership.

Second stage behavior testifies to the strong influence that sequential interaction has on coordination.
If a match chooses Go in the first period, then nearly all subjects with types above θ choose to follow.
Conversely, if neither subject in a match choose to Go in the first period, it is unlikely that they will Go
in the second period.

Finally, cheap talk significantly promotes subjects ability to coordinate actions on mutually beneficial
outcomes. We discuss this further in section 6.

5 Agent Quantal Response Equilibrium

Although the predictions of the model tend to be supported by the data, behavior is not uniformly
consistent with the bandwagon equilibrium. In particular, the pattern of errors is asymmetric in the
vicinity of θ∗. By “errors,” we mean deviations from the prediction of the model. For example, if
the model predicts that subjects Go with certainty, an 80% frequency of Go is a 20% error rate. The
asymmetry is evident in figure S2 which plots the distribution of errors along with a smoothed trend.
Although it is natural for subjects to make mistakes in the computation of θ∗, we would expect a
symmetric pattern of error if mistakes were idiosyncratic. Asymmetry suggests instead a systematic
deviation from the equilibrium. The overall level of errors is also higher in the N treatment than the D
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treatment.
A key observation is that the frequency of errors is inversely related to their costs. Subjects with

types close to θ∗, who are nearly indifferent between Lead and Stay, often make mistakes while subjects
with extreme types, who strongly prefer one of the platforms, rarely do. This is consistent with the
core intuition for a quantal response equilibrium. We therefore estimate the agent quantal response
equilibrium (AQRE) of the model (McKelvey and Palfrey (1998)). This framework enables us to assess
whether the observed pattern of behavior is consistent with an equilibrium in which decisions are noisy.
Furthermore, the AQRE perspective emphasizes that beliefs are consequential everywhere. Since the
game we study has a unique equilibrium, this allows us to gauge the impact of beliefs on behavior in a
smooth way.

Employing the notation in Turocy (2010), let a, a′ denote actions and I(a) denote the information set
that includes action a. In a game of perfect recall, like the bandwagon game, any node appears at most
once along any path of play. Let ρ denote a behavior strategy profile. Such a profile denotes, for each
action a, the probability ρa that action a is played if information set I(a) is reached. Finally, let πa(ρ)
denote the expected payoff to the player of taking action a on reaching information set I(a), contingent
on the behavior profile ρ being played at all other information sets. We say that the strategy profile is a
logit AQRE if, for all players, for some λ ≥ 0, and for all actions a and every information set:

ρa =
eλπa(ρ)∑

a′∈I(a) e
λπa′ (ρ)

In an AQRE ρa > 0 for all actions a. Thus, beliefs are relevant everywhere. Equilibrium requires that
beliefs are correct at each information set. The set of logit AQRE maps λ ∈ [0,∞] into the set of totally
mixed behavior profiles. Letting λ→∞ identifies a subset of the set of sequential equilibria as limiting
points (McKelvey and Palfrey (1998)). Thus, when noise vanishes one is back in standard equilibrium
theory. On the other hand, and for a given game, moderate noise can get amplified in an AQRE, resulting
in substantial deviations from standard equilibrium theory.

We estimate the logit AQRE on 20 equally sized bins (i.e. the empirically observed switching frequency
in that range) for the three decision nodes: The first stage action and two second stage stage actions that
relate to whether the match chose Stay or Go in the first stage. Our estimation performs a fixed point
iteration in which we loop through the QREs for each stage, taking behavior in the other stages as given.
We fit λ by minimizing the distance between the binned empirical data and the QRE estimates. Figure
4 presents the best fit for each treatment individually. We choose to present the individually estimated
logit AQREs because the treatments are quite different, both in terms of the costs of ending on y alone
(which are higher for the N treatment) and in terms of the complexity of the environment (in the D
treatment the majority of the players have a dominant strategy whereas the majority of players in the N
treatment have only a conditional best response).26

The QRE reproduces key features of the data. Crucially, it captures the asymmetry around θ∗: The
AQRE correctly predicts that types just below θ∗ deviate from the model to a greater extent than types
just about this cut-off. The AQRE also identifies key features such as the stable level of switching for
high types in the D treatment.27 Between treatments, the AQRE correctly predicts that there should be

26Jointly estimated logit AQRE are presented in the supplementary materials figure S4. With joint fitting of the data, it
is primarily the fit for high types in the N treatment that suffers. Qualitatively, however, the jointly estimated logit AQREs
are consistent with the ones presented in the main text. Haile and Kosenok (2008) demonstrate the lack of falsifiability of
QRE when any error distribution is permitted. However, even a treatment by treatment estimation of the logit AQRE is
disciplined by the extreme value distributional assumption necessary to arrive at the logit form of choice probabilities.

27The flat (and even declining for high noise) Lead probability for players in the D treatment with high types is the
outcome of the subgame structure. For players with high types, if they fail to switch in the first period, there is still a
high probability of switching in the second (since they prefer y alone). The payoff consequence is therefore about the same
for all players in this range: It is the size of the payoff externality from not inducing the preferred platform. This predicts
similar behavior for these players. In addition, when behavior is noisy, lower types are less likely to correct their mistakes
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Figure 4: AQRE and Data by Treatment and Periods

a rapid change in behavior around the cut point θ∗ = 6 in the D treatment whereas behavior in the N
treatment should change more gradually. The AQRE thus predicts the difference in the level of errors we
observe in the data. Relative to our earlier discussion of the role of beliefs with regard to conditional and
unconditional best responses, the AQRE provides a more nuanced perspective: It suggests that beliefs
vary continuously and that this is an important feature for modelling actual behavior.

The main feature not captured by the AQRE is the rate of Lead in the bin θ ∈ [5, 5.5). Subjects in
this range Lead at a higher rate than predicted. We conjecture that this is due to fact that 5 defines the
halfway point in the type draws and is the threshold above which a subject prefers a joint switch to y
rather than jointly sticking to x.

6 Efficiency and policy

The different treatments affect the incentives and ability of subjects to achieve efficient outcomes. Figure
5 presents the empirical and theoretical efficiency of each treatment, computed as the fraction of the
maximum possible payoffs.28 The realized efficiency is highest in the S treatment and lowest in the N
treatment. In addition, although players in all treatments earn less than predicted by the model, the
biggest difference between expected and realized earnings is in the N treatment.

The first comparison is between the S treatment, the treatment with communication, and the D
treatment. These treatments have an identical parameterization and differ only in regard to the presence
of the cheap talk stage. As can be seen in figure 3, subjects in the S treatment coordinate effectively in
the first period when they send the same message. But how much better off are these subjects relative to

in the second period than higher types. This can explain why for lower levels of noise it is actually types in the vicinity of
x̄ for whom a error to not Lead is most costly.

28The maximum payoff is computed as the payoff that would be realized if a social planner chose the subjects’ actions
to maximize total payoff; the maximum payoff is nearly identical across treatments. The theoretical maximum payoff is
computed as the payoff that would be realized if subjects played the bandwagon equilibrium. The empirical payoff is the
realized payoff from actual play.
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Figure 5: Efficiency

the same subjects in the D treatment? To assess this, we compare the realized efficiency of subjects in the
S treatment who send the same signal with subjects in the D treatment who, if they had an opportunity
to send a message, would send the same message. We find that the ability to send a message increases
payoffs by 6 percentage points, from 89% to 95% of the maximum. Communication therefore yields a
meaningful increase in payoffs.

The second comparison is between the D treatment and the N treatment. The sole difference between
these treatments is that the payoff from unilaterally choosing y is halved in treatment N . Payoffs in the N
treatment are thus smaller than in the D treatment because payoffs of failed leadership are reduced and
because θ∗ is higher and there are fewer joint moves to y. However, in addition, the realized outcomes in
the N treatment are relatively less efficient than in the D treatment as measured by a proportion of the
expected payoffs from the model. This appears to be due to the impact of beliefs: In the D treatment,
beliefs are sharper and this facilitates joints moves to y.

A question is what scope there is for policy and whether the effects of policy interventions are different
in the equilibrium of the standard model compared to the AQRE.

A conclusion from the signal treatment is that communication has a strong impact on realized payoffs.
Policies facilitating communication therefore make sense. In addition, we perform a number of policy
exercises to investigate the role of subsidies. In these excercises we consider a planner who faces the same
information asymmetry as agents but is permitted to adjust the payoffs from the different outcomes by
a fixed amount.29 Thus, the planner can influence the incentives of agents but not pick actions on their
behalf. We consider the effect of subsidies on behavior in the equilibrium of the standard model as well as
in the AQRE. Specifically, we analyze two policies: Subsidizing players for leading contingent on the final

29We do not allow the planner to condition the size of the subsidy on type, only on the realized outcome. In addition, in
the equilibrium with noise, we let the prize be awarded when a specific outcome arises—for example, the prize for a joint
switch to y is paid even if it occurs due to both players switching in the second period.
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outcome being (yt, yt), or subsidizing players for choosing yt contingent on the outcome being (yt, x2).30

We denote these as a “prize” and an “insurance,” respectively.
We find that the nature of the subsidy does not matter, even in the presence of noise: Prizes and

insurance have the same impact on payoffs per unit of financing.31 Quantitatively, we find that each
unit of financing increases payoffs by less than 1 and is declining as the size of the subsidy increases.
In addition, we find that subsidies are relatively less effective in the presence of noise: To achieve the
same increase in payoffs requires a larger expenditure when agents make mistakes. We conclude that
policy makers should be wary about using such instruments because they become less cost effective in
the presence of noise and as the size of the subsidies increase.

7 Conclusion

We have investigated the model of Farrell and Saloner (1985) in a controlled laboratory experiment. We
find that subjects by and large respond to the incentives of the model as predicted. However, there
is a reluctance to lead not accounted for by the model. This reluctance is most pronounced when a
leader’s best response is not a dominant strategy. We use a quantal response equilibrium to account
for this phenomenon. In the quantal response equilibrium beliefs are relevant everywhere. We find that
the observed deviations from neo-classical equilibrium is explained well by injecting some noise in the
equilibrium concept.

Once a leader switches he or she produces a strong incentive to follow for a match with moderate
valuation of the challenger platform. This is because the leader resolves all uncertainty on behalf of
potential followers. We find that these complementarities in actions strongly determine follower behavior.
Hence, the main driver of deviations from neo-classical equilibrium is weak leadership. As a consequence,
efficiency losses are greater when potential leaders have non-dominant best responses.

In terms of policy we demonstrate that cheap talk improves players’ ability to coordinate actions on
mutually beneficial outcomes. We also find that policies aimed at insuring failed leadership or subsidizing
joint choice of the challenger platform does not promote efficiency. Furthermore, noisy decisionmaking
exacerbates these problems.

30The criteria for “leading” is that players choose y without first observing a choice of y by their match. This allows for
the case in which players switch in the second period.

31The policy equivalence of the different instruments is the result of expected utility maximization and uniform type
draws.
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