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Abstract

In this paper we derive a general parametric bootstrapping approach to compute density

forecasts for various types of mixed-data sampling (MIDAS) regressions. We consider both

classical and unrestricted MIDAS regressions with and without an autoregressive component.

First, we compare the forecasting performance of the different MIDAS models in Monte Carlo

simulation experiments. We find that the results in terms of point and density forecasts

are coherent. Moreover, the results do not clearly indicate a superior performance of one

of the models under scrutiny when the persistence of the low frequency variable is low.

Some differences are instead more evident when the persistence is high, for which the AR-

MIDAS and the AR-U-MIDAS produce better forecasts. Second, in an empirical exercise

we evaluate density forecasts for quarterly US output growth, exploiting information from

typical monthly series. We find that MIDAS models provide accurate and timely density

forecasts.

JEL codes: C10, C53, E37

Keywords: Mixed Data Sampling, Density Forecasts, Nowcasting

∗The views expressed are those of the authors and do not necessarily reflect those of Norges Bank. We
would like to thank Todd Clark, Mike Clements, Eric Ghysels, Anne Sofie Jore, James Mitchell, Anders Rygh
Swensen, Christian Schumacher and seminar and workshop participants at Norges Bank, the Macroeconomic and
Econometric Conference in Birmingham, the 22nd Annual Symposium of the Society for Nonlinear Dynamics and
Econometrics in New York, the IAAE 2014 Annual Conference in London, the 34th International Symposium on
Forecasting in Rotterdam and the 68th European Meeting of the Econometric Society for useful comments.
†Knut-Are.Aastveit@norges-bank.no
‡Claudia.Foroni@norges-bank.no
§Francesco.Ravazzolo@norges-bank.no

1



1 Introduction

Economic time series are often available at different frequencies. As an example, while Gross

Domestic Product (GDP) is released quarterly and with a substantial delay, many indicators

are available at a monthly frequency and in a more timely manner. These timely indicators

often contain important indications of the current state of the economy.

In order to obtain good nowcasts and short-term forecasts, it is therefore crucial to exploit

the information from high-frequency data, see e.g. Evans (2005) and Banbura et al. (2011).

Hence, methods that can deal with mixed-frequency data are becoming increasingly popular for

nowcasting and short-term forecasting. Factor models and mixed-frequency VARs are examples

of models that can deal with mixed-frequency data when cast in a state-space form with time

aggregation scheme, see e.g. Mariano and Murasawa (2010) and Kuzin et al. (2011) for examples

of mixed-frequency VARs, and Giannone et al. (2008) and Banbura and Modugno (2014) for

examples of mixed-frequency dynamic factor models.1 An alternative univariate approach is

the mixed data-sampling (MIDAS) regression proposed by Ghysels et al. (2005, 2006) in the

context of financial applications and extended to a macroeconomic context by Clements and

Galvão (2008, 2009).

Policymakers and forecasters are increasingly interested in forecast metrics that require den-

sity forecasts of macroeconomic variables, as complete probability distributions over outcomes

provide information helpful for making economic decisions, see e.g. Tay and Wallis (2000),

Garratt et al. (2003), Gneiting (2011) and Clark (2011). Accordingly, several central banks,

including the Bank of England, Norges Bank and Sveriges Riksbank have committed to publish-

ing density or interval forecasts for macroeconomic aggregates in recent years. However, despite

the flourishing theoretical and empirical literature on the use of mixed-frequency approaches,

the focus has so far mainly been on point forecasts, Aastveit et al. (2014), Mazzi et al. (2013)

and Carriero et al. (2014) being notable exceptions.2

In this paper, we extend the existent literature by using the MIDAS approach to obtain

density forecasts. As a first contribution, we compute density forecasts from different MIDAS

1See also Kuzin et al. (2013) and Aastveit et al. (2014) for applications that combine nowcasts from different
models that use mixed-frequency data.

2Aastveit et al. (2014) study combinations of density nowcasts from a wide set of factor models, mixed-
frequency VARs and bridge equation models, while the two latter studies focus on either combining density
nowcasts from a small set of bridge equation models, Mazzi et al. (2013), or density nowcasts from models with
time-varying parameters and volatility, Carriero et al. (2014).
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model specifications. In particular, we consider the classical MIDAS model, introduced by

Ghysels et al. (2004), and the extended version by Clements and Galvão (2008), which includes

an autoregressive component. These models rely on the exponential lag polynomials to exploit

high-frequency information while at the same time being parsimonious. Due to the non-linearity

of the lag polynomials, MIDAS regressions are typically estimated by non-linear least squares

(NLS). Furthermore, we also examine the unrestricted MIDAS regressions, U-MIDAS and AR-

U-MIDAS, introduced by Foroni et al. (2013). The U-MIDAS and AR-U-MIDAS approaches

do not resort to functional distributed lag polynomials and can be estimated by OLS.

We propose a general stochastic simulation method based on parametric bootstrapping

for computing predictive densities for both MIDAS and U-MIDAS regressions. Our method

accounts for both parameter and shock uncertainty and extends the bootstrapping procedures

in Berkowitz and Kilian (2000) and Clements and Taylor (2001) to the class of MIDAS models.

We evaluate our bootstrapping approach in Monte Carlo simulations as well as in an empirical

exercise applied to US real-time data.

First, we compare the forecasting performance of the different MIDAS models using Monte

Carlo simulations. The basic design of the exercise is similar to that of Foroni et al. (2013),

where a high-frequency VAR(1) is specified. We consider three different residual assumptions:

normal distributed residuals, Student’s t-distributed residuals with 5 degrees of freedom, and

residuals that have a time-varying variance modeled as a GARCH(1,1) process. We evaluate

density forecasts according to two different criteria, the Logarithmic Score (LS) and the Contin-

uous Rank Probability Score (CRPS). Point forecasts are evaluated based on root mean square

forecasting errors. Our findings indicate that the forecasting results in terms of point and den-

sity forecasts are coherent. Moreover, the results do not clearly indicate a superior performance

of one of the models under scrutiny, especially when the persistence of the low-frequency vari-

able is low. Some differences are instead more evident when the persistence is high. In this case,

the AR-U-MIDAS performs somewhat better, both in terms of point and density forecasts.

Second, in an empirical nowcasting exercise using US real-time data, we compute recursive

density forecasts from the various MIDAS regressions for quarterly real output growth for the

evaluation period 1985q2-2013q2. We consider 6 monthly explanatory variables. Following

Clements and Galvão (2008), we use industrial production, employment (nonfarm payrolls) and
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capacity utilization. In addition, we include the Purchasing Managers Index (PMI), the Chicago

Fed National Activity Index (CFNAI) and the Philadelphia Fed Business Outlook Survey for

general business activity (PFBOS). The monthly real-time vintages that we use correspond to

the information available around the 20-25th of each month in the quarter, i.e., just after the

release of the CFNAI.

Looking ahead to the results, we find that the use of within-quarter information on monthly

indicators can result in marked improvements in density forecast accuracy, with reductions

in CRPS and increases in LS compared to the benchmark quarterly-frequency AR and AR

distributed-lag (ADL) models. In particular, models that use the CFNAI index substantially

improve the forecast accuracy relative to the benchmark models. However, gains are smaller

when focusing on more traditional macroeconomic series such as industrial production, em-

ployment (nonfarm payrolls) and capacity utilization. The results are robust to ending the

evaluation sample in 2007q4, i.e. prior to the Great Recession.

The plan of the rest of our paper is as follows. Section 2 provides an overview of the different

MIDAS models that we consider in our analysis. Section 3 describes our bootstrapping approach

for computing density forecasts for MIDAS models and how these forecasts are evaluated. In

Section 4, results from our Monte Carlo experiments are presented, while results from the

empirical application are presented in Section 5. Finally, Section 6 concludes.

2 Mixed-data Sampling

To take into account mixed-frequency data, Ghysels et al. (2004) introduced the mixed-data

sampling (MIDAS) approach, in which the dependent variable ytq , sampled at a lower frequency,

is regressed on a distributed lag of xtm , which is sampled at a higher frequency.

In this section, we present the two main MIDAS approaches that have been suggested in

the literature; the standard MIDAS regression introduced by Ghysels et al. (2004) and the

unrestricted version as in Foroni et al. (2013). For each of the two approaches, we present the

basic model and their extension with an AR component.

In the rest of the paper, we define tq = 1, ..., Tq as the basic (quarterly) time unit and

tm = 1, ..., Tm as the higher frequency (monthly) time unit. In every basic time unit we observe

the high frequency unit m = 3 times (e.g. 3 months in a quarter).

4



2.1 The MIDAS model

As introduced by Ghysels et al. (2004), MIDAS regressions are reduced form regressions that

involve processes sampled at different frequencies. Highly parsimonious distributed lag polyno-

mials are used to link the higher-frequency variable to the low-frequency one. These polynomials

are chosen in such a way to prevent the proliferation of parameters while at the same time being

very flexible, allowing for various shapes, where only a few parameters need to be estimated.

The basic MIDAS model for a single explanatory variable, and hq-step-ahead forecasting,

with hq = hm/m, is given by:

ytq+mhq = ytm+hm = β0 + β1b (Lm; θ)x
(m)
tm+w + εtm+hm (1)

where b
(
L1/m; θ

)
=

K∑
k=0

c (k; θ)Lk
m, and Lx

mx
(m)
tm = x

(m)
tm−x. x

(m)
tm+w is skip-sampled from the high

frequency indicator xtm .

Different choices for c (k; θ) have been proposed in the literature. The most common one is

the exponential Almon lag, defined as:

c (k; θ) =
exp

(
θ1k + ...+ θQk

Q
)

K∑
k=1

exp (θ1k + ...+ θQkQ)

(2)

The key advantage of this specification is that it allows for long lags with a limited number

of parameters. It also allows for different values of the parameters to take various shapes.

Therefore, estimating the parameters from the data automatically determines the shape of the

weights and the number of lags to be included in the regression. The MIDAS model is estimated

using nonlinear least squares (NLS) in a regression of yt onto x
(m)
t−h.

Notice that the MIDAS model is h−dependent, and thus needs to be re-estimated for each

forecast horizon. It is therefore a model which provides direct and not recursive forecasts. There

is therefore no need to have forecasts of the independent variable, but the model is adjusted

accordingly to include the very last observations of the x(m) available. The forecast is given by

ŷT y
m+hm|Tx

m
= β̂0 + β̂1b

(
Lm; θ̂

)
x

(m)
Tx
m
. (3)
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2.2 The AR-MIDAS model

The main extension to the MIDAS model is the inclusion of an autoregressive term. However,

this is not straightforward, since it would result in the creation of seasonal patterns in the

explanatory variables, as highlighted in Clements and Galvão (2009).

To avoid the inconvenience of seasonal effects, Clements and Galvão (2009) suggest the

introduction of the AR dynamics as a common factor:

ytm = β0 + λytm−hm + β1b (Lm; θ)
(

1− λLhm
m

)
x

(m)
t+w−hm

+ εtm . (4)

In this way, the response of y to x(m) remains non-seasonal.

To estimate the AR-MIDAS model, we follow the procedure described in Clements and

Galvão (2009), for which we briefly highlight the steps. First, estimate the standard MIDAS

(the basic model), take the residuals ε̂tm and estimate an initial value for λ, say λ0, where

λ̂0 =
(∑

ε̂2
tm+w−hm

)−1∑
ε̂tm ε̂tm+w−hm . Then construct y∗tm = ytm−λ̂0ytm−hm and x

∗(m)
tm+w−hm

=

x
(m)
tm+w−hm

−λ̂0x
(m)
tm−(hm−w)−hm

. The estimator θ̂1 is obtained by applying nonlinear least squares

to:

y∗tm = β0 + β1b (Lm; θ)x
∗(m)
tm+w−hm

+ εtm . (5)

A new value of λ, λ̂1, is obtained from the residuals of this regression. Then a new step is run,

using λ̂1 and θ̂1 as the initial values. In this way, the procedure gets the estimates of λ̂ and θ̂

which minimize the sum of squared residuals.

2.3 The Unrestricted MIDAS model

Foroni et al. (2013) study the performance of MIDAS regressions that do not resort to functional

distributed lag polynomials, referred to as the U-MIDAS. The U-MIDAS model is based on a

linear lag polynomial such that

c(Lm)ω(L)ytm = δ1(L)x1tm−1 + ...+ δN (L)xNtm−1 + εtm , (6)

t = 1, 2, 3, ...
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where c(Lm) = (1− c1L
m − ...− ccLmc), δj(L) = (δj,0 + δj,1L+ ...+ δj,vL

v), j = 1, ..., N .

Under the assumption that the lag orders c and v are large enough to make the error term εtm

uncorrelated, then all the parameters in the U-MIDAS model, equation (6), can be estimated

by simple OLS, while the aggregation scheme ω(L) is assumed known. The lag order can be

selected according to any information criteria.

The simple U-MIDAS model, which represents the unrestricted counterpart of the MIDAS

model with one explanatory variable is, therefore, as follows:

ω(L)ytm = δ1(L)x1tm−1 + εtm , (7)

with δ1(L) = (δ1,0 + δ1,1L+ ...+ δ1,vL
v), and ν selected according to the BIC criterion.

The direct forecast in this case is constructed as:

yTx
m+hm|Tx

m
= δ1(L)x1Tx

m
, (8)

where δ̃1(L) is obtained by projecting ytm on the last information available.

2.4 The Unrestricted MIDAS model with an AR component

In the U-MIDAS it is straightforward to add an autoregressive component to derive the AR-

U-MIDAS (see Foroni et al. (2013) for further details). In contrast with the MIDAS with

polynomial restrictions, the autoregressive term in this case, can be included easily without any

common factor restriction as in Clements and Galvão (2009).

The hm-step ahead forecasts given information in T x
m are given in this case by:

yTx
m+hm|Tx

m
= c(Lk)yTx

m
+ δ1(L)x1Tx

m
+ ...+ δN (L)xNTx

m
, (9)

where the polynomials c(Z) and δi(L) are obtained by projecting ytm on information dated

mt− hm or earlier, for t = 1, 2, ..., T x
m.
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3 Introducing density forecasts in MIDAS models

So far in the literature, MIDAS models have been evaluated based on their point forecasting

performance. Policymakers and forecasters are increasingly interested in forecast metrics that

require density forecasts of macroeconomic variables. Moreover, if the decision maker’s loss

function is not quadratic, then it no longer suffices to focus solely on the first moments of

possible outcomes (point forecasts). To ensure appropriate decision making, the decision maker

should be given suitable characterizations of forecast uncertainty. Density forecasts provide an

estimate of the probability distribution of forecasts (see Gneiting (2011) for a detailed discussion

of the difference between point forecasting and density forecasting).

In this section, we first derive a bootstrapping approach that can be used to compute density

forecasts for the different MIDAS models, described in the previous section, and then we present

how we evaluate the forecast densities.

3.1 Bootstrapping MIDAS density forecasts

Forecast uncertainty cannot be derived analytically in the case of non-linear models, as in the

MIDAS and AR-MIDAS models.3 We propose a stochastic simulation method based on para-

metric bootstrapping to forecast densities accounting for both parameter and shock uncertainty

and thereby extend the bootstrapping procedures in Berkowitz and Kilian (2000) and Clements

and Taylor (2001) to the class of MIDAS models. Our method relies on the algorithm in Davi-

son and Hinkley (1997) (section 7.2.4) for prediction in generalized linear models. Recall the

general MIDAS model:

ytm = β0 + λytm−hm + δ (Θ)x
(m)
t+w−hm

+ εtm , (10)

where δ (Θ) is the polynomial which describes the impact of the high-frequency variable on

the low-frequency one. Depending on the functional form, we have the MIDAS or U-MIDAS

specification. When the coefficient λ = 0, we obtain the models with no autoregressive terms.

Then, we assume that:

3Note that the U-MIDAS and AR-U-MIDAS models are linear regression models. Assuming a normal distri-
bution of the random shocks would yield future outcomes that have a normal distribution. However, in order to
account for parameter uncertainty, we also apply our bootstrap procedure to these models.
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(A1) εtm are i.i.d. with E(εtm) = 0, E(ε2
tm) = σ2 with σ2 <∞, and E(ε

2(s+1)
tm ) <∞ for s ≥ 3.

(A2) (ε1m , ε
2
1m) satisfies Cramer’s condition, i.e., for every d > 0, there exists δ such that

sup||t||>d|E exp(it′(ε1m , ε
2
1m))| ≤ exp(−δ).

(A3) x
∗(m)
tm+w−hm

are exogenous fixed variables.

(A4) |λ| < 1 for the AR-MIDAS and AR-U-MIDAS models.

The steps conducted in the bootstrap are as follows.

1. Estimate equation (10) using the adequate least square or nonlinear least square method,

and obtain β̂0, λ̂, δ̂ (Θ).

2. For r = 1, ..., R, simulate ỹr,tm = β̂0 + λ̂ỹr,tm−hm + δ̂ (Θ)x
(m)
t+w−hm

+ ε̃r,tm , where ε̃r,tm is

resampled from ε̂tm .

3. Reestimate eq. (10) for each ỹr,tm , and obtain ỹr,Tx
m+hm|Tx

m
, where the shock uncertainty

is included by resampling from ε̂tm .

Following Davison and Hinkley (1997), we fix the value of yT equal to the value of the

original series.

In practice, R vectors of pseudo-random numbers are generated to replicate the same prop-

erties of the residuals of the model, via the bootstrapping technique. For each r = 1, ..., R repli-

cations, a new set of simulated data is generated, and based on that a new forecast ỹr,tm+hm is

obtained. The empirical distribution of {ỹr,tm+hm}
R
r=1 is then our density.

Given the assumptions (A1)-(A4), Davison and Hinkley (1997) discuss how the method is a

generalization of the bootstrapping algorithm for linear models and Bose (1988) provides proofs

of its convergence.4

4Bose (1988) focuses on linear AR models with imposed stationarity (see assumption (A4) above). For an
extension accounting for a possible unit root, see Inoue and Kilian (2002). Moreover, relaxing assumption (A1)
by allowing for conditional heteroskedasticy or serial correlation could be done by applying a wild bootstrap
procedure, see, e.g., Goncalves and Kilian (2004).
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3.2 Evaluating the density forecasts

As a conventional measure for point forecast accuracy, we use the Mean Squared Predictive

Error (MSPE), which is defined as:

1

TS
m

TS
m∑

s=Tm+1

e2
s, (11)

where etm is the forecast error, and TS
m and Tm denote the starting period for the forecasts and

the number of observations in the estimation sample.

Following Gneiting and Raftery (2007), Billio et al. (2013) and Clark and Ravazzolo (2014)

for the evaluation of the density forecasts, we provide two metrics, the logarithmic score (LS)

and the continuous ranked probability score (CRPS).

The LS is defined as the logarithm of the probability density function evaluated at the

outturn of the forecast and is given by

lnSi,h =
1

Tm − hm − TS
m + 1

Tm−hm∑
t=TS

m

ln ftm+hm,tm,i (yt+hm) , (12)

where ln ftm+hm,tm,i (ytm+hm) denotes the density for Ytm+hm conditional on some information

set available i at time tm, and TS
m and Tm are defined as above. The LS chooses the model that

on average gives the higher probability to events that actually occurred. The LS is related to

the Kullback Leibler Information Criterion (KLIC), see Mitchell and Hall (2005) and Hall and

Mitchell (2007), which measures the distance between the true unknown density forecast and

the one proposed.5 Since we do not know the true density, we cannot use the KLIC, but we

can still compare different densities by searching for the maximum log score.

We also evaluate our forecasts based on a second metric, the Continuous Rank Probability

Score (CRPS). The CRPS for a specific model measures the average absolute distance between

the empirical cumulative distribution function (CDF) of ytm+hm , which is simply a step function

in ytm+hm , and the empirical CDF that is associated with the model predictive density. Formally,

5See also Amisano and Giacomini (2007), Kascha and Ravazzolo (2010) and Jore et al. (2010).
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the CRPS of a component density for a particular observation can be defined as:

CRPS =

∫ (
F (z)− I[yt+hm ,+∞)(z)

)2
dz (13)

where F is the CDF from the predictive density ftm+hm,tm,i defined above,see Panagiotelis

and Smith (2008) for more formal details and Ravazzolo and Vahey (2013) for an illustrative

example. The expectation terms are approximated using the draws from the forecast density.

Smaller CRPS values imply a higher precision of the model.

The CRPS circumvents some of the drawbacks of the LS, as the latter does not reward

values from the predictive density that are close but not equal to the realizations (see, e.g.,

Gneiting and Raftery (2007)). In the rest of the paper we will analyze the results both in terms

of CRPS and in terms of LS.

4 Monte Carlo experiments

In this section, we present Monte Carlo experiments, which focus on the performance of different

MIDAS models, comparing them according to their point forecasting and density forecasting

performance. We first describe the simulation design, and then we present the results.

4.1 Simulation design

We follow the simulation design in Foroni et al. (2013) and consider a bivariate high-frequency

VAR as the Data Generating Process (DGP):

 ytm

xtm

 =

 ρ δl

δh ρ


 ytm−1

xtm−1

+

 ey,tm

ex,tm

 , (14)

where ytm is the low frequency variable and xtm is the high-frequency variable. tm is the high-

frequency time index with tm = 1, . . . , (T + ES) × k and T defines the size of the estimation

sample expressed in the low-frequency unit (quarters in our example). For forecasting purposes,

we generate an additional number of observations to define our evaluation sample, ES. The

Monte Carlo simulations are set to replicate monthly and quarterly data, assuming that the

quarterly variable is a monthly variable skip-sampled every third period and therefore available
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only for tm = k, 2k, . . . , (T + ES)× k. In our case, k is equal to 3, as there are three monthly

observations in a quarter.

In our first simulation design, the shocks ey,tm and ex,tm in the DGP are sampled indepen-

dently from normal distributions with mean zero for all tm = 1, . . . , (T + ES) × k, and the

variances are chosen such that the unconditional variance of y is equal to one and the explana-

tory power of x is high.6 For the persistence parameter, we choose different combinations of

ρ and δl to mimic different persistence and dependence in the process, see values in tables.

Moreover, we fix δh = 0, so that only y depends on x and not vice versa.

In our second simulation design, the set-up is similar to the first one except that the shocks

ey,tm and ex,tm are sampled independently from a Student’s t-distribution with 5 degrees of

freedom. The motivation behind this is to study the accuracy of our bootstrapping method

when the error terms have fat tails.

Finally, in our third simulation design the set-up is again similar to the first simulation exer-

cise, except that the shocks ey,tm now have a time-varying variance, modeled as a GARCH(1,1)

process:

ey,tm = σy,tmuy,tm , uy,tm ∼ N(0, 1),

σ2
y,tm = a0 + a1uy,tm−1 + b1σ

2
y,tm−1

with a0 > 0, a1 ≥ 0, b1 ≥ 0 and a1 + b1 ≤ 1. Since Assumption (A1) for our bootstrap method

implies homoscedasticity, results from the third simulation exercise will illustrate the accuracy

of our bootstrapping approach when this assumption is violated.

In both experiments, T is equal to 100 and ES is equal to 50 (both T and ES are indicated in

quarters). We produce one-step ahead forecasts for yT+es, where es = 1 : ES, using information

for y up to T + es− 1 (equivalently to 3T + 3es− 3 months). The monthly variable is available

up to 3T + 3es− 1 months. Our one-step ahead forecast corresponds therefore to a one-month

ahead forecast.

In this Monte Carlo experiment, the number of Monte Carlo replications is fixed at 1000. For

each replication we compute the point forecasts for the 4 MIDAS models described in Section

2 (MIDAS, AR-MIDAS, U-MIDAS, AR-U-MIDAS). The densities are constructed computing

6We have also tried different combinations in which the explanatory power of the x is low, and most of the
variation in y is due to noise. The results are essentially the same.
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1000 draws. The forecasts are then evaluated based on MSPE (point forecasts) and LS and

CRPS (density forecasts).

4.2 DGP with normally distributed shocks: results

The results for the Monte Carlo forecast experiments where the DGP has normally distributed

residuals, are summarized in Table 2. We compare the forecasting performance of the different

MIDAS models based on their (out-of-sample) MSPEs, CRPS, and LS computed over the 50

periods of the evaluation sample. Moreover, we report the results for two standard quarterly

benchmarks, an AR(1) process and a Random Walk (RW) process. The densities for the

benchmark are computed using our bootstrap method without the high frequency components,

therefore similar to Berkowitz and Kilian (2000) and Clements and Taylor (2001). In this way,

we are also able to compare the performance of our mixed-frequency models relative to models

that consider only quarterly information.

From Table 2, we observe several interesting results. First, when the persistence of the

low-frequency variable is low (ρ = 0.1, 0.5), using high-frequency information substantially

improves the forecasting performance relative to the AR and RW benchmarks. This is not very

surprising as these benchmarks discard the useful information provided by the high-frequency

variable. Moreover, by comparing the performance of the U-MIDAS vs. the AR-U-MIDAS

and the MIDAS vs. AR-MIDAS, including an AR-component in the mixed frequency models

does not substantially affect the forecasting performance. Obviously, results change when the

persistence is high, i.e. setting ρ = 0.9 in our simulations. In this case, only the AR-MIDAS

and the AR-U-MIDAS produce superior forecasts relative to the two benchmarks.

The results in terms of point and density forecasts are coherent: whenever we find a smaller

MSPE, the models also obtain an improvement in the density forecasts. We interpret this as

supporting evidence for our bootstrapping approach, which is then precise not only for the mean

part of the distribution but more importantly also for the full distribution.

When ρ = 0.9, the results do not change in the case of the U-MIDAS, but some issues arise

in the case of the AR-MIDAS. In a few of the bootstrapping replications, imposing the common

factor restriction in the AR component of the AR-MIDAS model to avoid seasonality effects

creates convergence issues and forecast performance deteriorates as a result.
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Finally, ranking the mixed-frequency models is not straightforward, as results do not clearly

indicate a superior performance to one of the models under scrutiny. However, we can highlight

some features that emerge from the table. First of all, when the persistence of the model is low,

there are no sizeable differences in performance across the models. Some differences are instead

more evident when the persistence is high. The AR-U-MIDAS seems to perform slightly better,

in terms of both point and density forecasts. This evidence is in line with the findings in Foroni

et al. (2013) in the case of point forecasts.

It is worth mentioning that the equally good or even superior performance of the AR-U-

MIDAS is obtained in a much shorter computational time and with no convergence issues, since

the model and bootstrap replications are estimated by a simple OLS.

4.3 DGP with Student’s t-distributed shocks: results

In this subsection, we present the results of the Monte Carlo forecast experiments for the second

DGP, in which the residuals are drawn from a Student’s t distribution. As in the previous

simulation design, we compare the forecasting performance of the different MIDAS models

based on their MSPEs, CRPS, and LS. The results of the mixed-frequency models, together

with the two benchmarks mentioned in the previous subsection, are reported in Table 3.

In general, the results display the same features as in the previous DGP, with shocks gen-

erated by a normal distribution. First, we can confirm that when the persistence of the low

frequency variable is low, using high-frequency information hugely improves forecasting per-

formance relative to a quarterly benchmark. Moreover, the different mixed-frequency models

perform in a very similar way, and ranking them is impossible because their forecasting ability is

nearly the same. In contrast, when the persistence is high, it is the AR component which turns

out to be necessary to have a forecasting performance able to compete with the benchmarks.

Therefore, the models that incorporate an AR term clearly outperform their counterparts that

do not.

The results in terms of point and density forecasts are also in this case coherent: whenever

a model performs well in terms of point forecasts, it also performs well in terms of densities.
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4.4 DGP with time-varying volatility shocks: results

As a final Monte Carlo experiment, we consider a DGP where the residuals of the low-frequency

variable are drawn from a GARCH(1,1) distribution. The design of the experiment is similar

to the previous subsections, except for the error distribution for the variable y. The results of

the mixed-frequency models, together with the two benchmarks, are reported in Table 4.

Even in this case, the results share the same features as in the previous two cases, where

the errors in the DGPs were distributed respectively as a Normal and as a Student’s t. Once

again, therefore, we confirm the importance of mixed-frequency information in both point and

density forecasting, especially in the case in which the persistence of the low frequency variable

is low.

5 An empirical application: nowcasting US output growth

In this section we provide an empirical application which focuses on the performance of different

MIDAS models for real-time out-of-sample nowcasting of quarterly US real output growth using

monthly information. By using real-time data, we take into account the publication lags of the

different series and ensure that we are only using data that were available on the date of the

forecast origin. We evaluate the performance of our models in terms of point and density

forecasts.

5.1 The data and design of the empirical exercise

Our dataset includes quarterly US real output growth and six monthly explanatory indica-

tors, which are recognized to be important predictors. Table 1 provides an overview of the

data and some of their real-time characteristics. Following Clements and Galvão (2008), we

consider industrial production, employment (nonfarm payrolls), and capacity utilization. The

three monthly indicators are converted to monthly growth rates by taking the log-differences

of the series. Quarterly real output growth is measured as the log-difference of the real GDP

series. We obtained the real-time data vintages of the aforementioned variables from the Federal

Reserve Bank of Philadelphia’s Real-Time Dataset for Macroeconomists (RTDSM), described in

Croushore and Stark (2001). Moreover, we include three additional indicators: the Purchasing

Managers Index (PMI), the Chicago Fed National Activity Index (CFNAI) and the Philadel-
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Table 1: Description of the data

Name Description Transf First vintage Timing Publishing lag
EMP Employment ∆ln 1985m1 1st Friday of month 1 month
IP Industrial Production ∆ln 1985m1 15-18th of month 1 month
CU Capacity Utilization ∆ln 1985m1 15-18th of month 1 month
PMI NAPM Purchasing Managers Index Level 2002m1 1st business day of month 1 month
CFNAI Chicago Fed National Activity Index Level 2001m1 22-25th of month 1 month
PFBOS Philly Fed’s Business Outlook Survey Level Last vintage 3rd Thursday of month Current month

Note: Variable names and variable descriptions are reported in Column 1 and 2. Column 3 reports the trans-
formation that is used for each of the explanatory variables in various MIDAS regressions. The first available
real-time vintage for each variable is reported in Column 4. Finally, Column 5 and Column 6 indicate the official
dates of the publication and the lag with which the data are reported, respectively.

phia Fed Business Outlook Survey for general business activity (PFBOS). Monthly real-time

vintages of PMI are available from the ALFRED (ArchivaL Federal Reserve Economic Data)

database maintained by the Federal Reserve Bank of St. Louis. The CFNAI is a coincident

indicator of the overall economic activity and is computed as a weighted average of 85 existing

monthly indicators of national economic activity. We include the CFNAI index, since Andreou

et al. (2013) find it useful for improving short-term forecasting. Real-time vintages of monthly

CFNAI are collected from the website of the Federal Reserve Bank of Chicago. Finally, the

PFBOS series is collected from the website of the Federal Reserve of Philadelphia. We include

the PFBOS since Giannone et al. (2008) find that in a dynamic factor model PFBOS is the

data release that has the largest impact on the nowcast and its precision. Real-time vintages of

the PFBOS are not available. However, this series only undergoes revisions due to changes in

seasonal factors. Since these revisions are substantially smaller than revisions in e.g. national

account data, we include this series in our empirical analysis.

We compute recursive point and density forecasts for US real GDP growth from the different

MIDAS regressions. As benchmarks, we consider quarterly-frequency AR and autoregressive

distributed lag (ADL) models.7 For the AR model we select the lag length according to the

BIC criterion, where the maximum lag is fixed to 4. For the ADL model, we fix the lag of GDP

growth equal to one and select the lags of the exogenous variables with a BIC criterion. Our

estimation sample covers the period 1970m1 to 2013m6. The full recursive forecast evaluation

period runs from 1985q1 to 2013q2. As robustness, we also provide results for an evaluation

sample that ends in 2007q4 (before the Great Recession). We use monthly real-time vintages

from 1985m2 to 2013m7 and compute forecasts using monthly vintages that correspond to the

7Notice that when the monthly exogenous variable is only available for the first month or the two first months
of the quarter, the quarterly ADL model ignores this information.

16



available information between the 20th and 25th of the month.8 More precisely, this corresponds

to the timing just after the release of the CFNAI. The quarterly US GDP is available as an

advance estimate at the end of the first month after the end of the referring quarter. Accordingly,

when computing the nowcasts at the second and third month of each quarter (e.g. February

and March), GDP growth for the previous quarter (e.g. q4 in our example) is available. On

the other hand, when we compute nowcasts in the first month of each quarter (e.g. January),

the GDP value for the pervious quarter is not available. Hence, the nowcasts are then two step

ahead forecasts.

For each monthly indicator we specify 4 different MIDAS regressions (MIDAS, AR-MIDAS,

UM-IDAS and AR-U-MIDAS). We compute a nowcast from each model specification for each

monthly vintage, i.e. 3 forecasts per quarter (which correspond to month horizons hm = 1, 2, 3).

Due to the release delay of US real output, we also compute a backcast of the previous quarter

for the first month of each quarter (we refer to this as hm = −1). A key issue in this exercise

is the choice of a benchmark for the “actual” measure of GDP. We follow Romer and Romer

(2000) in using the second available estimate of GDP as the actual measure. For a discussion

of alternative benchmark data vintages, see Stark and Croushore (2002)

The forecasting performance of the different models is assessed in terms of CRPS and LS for

the density forecasts. To provide a rough gauge of whether the differences in forecast accuracy

between the ADL model and the alternative MIDAS models are significant, we follow Clark and

Ravazzolo (2014) and apply a Diebold and Mariano (1995) t-tests for equality of the average

loss (with loss defined as LS, CRPS or RMSE).9 In the tables, differences in accuracy that

are statistically different from zero are denoted by one, two or three asterisks, corresponding

to significance levels of 10%, 5% and 1%, respectively. The underlying p-values are based on

t-statistics computed with a serial correlation-robust variance, using the pre-whitened quadratic

spectral estimator of Andrews and Monahan (1992).10 Since the AR-MIDAS and the AR-U-

MIDAS model nests the ADL model, for the comparison of these models to the ADL, we report

8For the PMI and CFNAI, real-time vintage data exist only for parts of the evaluation period, from 2002m1
and 2001m1, respectively. For these, we use the first available real-time vintage and truncate these series backward
recursively.

9Amisano and Giacomini (2007) extend the results of Giacomini and White (2006) for point forecasts to density
forecasts, developing a set of weighted likelihood ratio tests. In our application to tests for density forecasts, we
do not employ a weighting scheme (or put another way, we use equal weights).

10The issue of real-time data complicates any assessment of whether the resulting differences in forecast accuracy
between models are significant, see Clark and McCracken (2009).
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p-values based on one-sided tests, taking the ADL as the null and the AR-MIDAS/AR-U-

MIDAS as the alternative. Because the ADL and the MIDAS/UMIDAS models are not nested,

for these model comparisons we report p-values based on two-sided tests.

5.2 Results

Table 5 presents real-time density forecasting performance for the different MIDAS models for

the evaluation sample 1985q2-2013q2. Density forecast performance is measured in terms of

CRPS and LS. In addition, we provide results for the two quarterly benchmarks (an AR model

and an ADL model).

The table reveals three interesting results. First, by comparing the forecasting performance

from the various MIDAS models with the AR and ADL benchmarks, the table shows sizeable

reductions in the CRPS and sizeable increases in the LS for the MIDAS models when monthly

data are available on the current quarter. For each model, there is a clear and steady increase

in forecasting performance as more information is available, i.e. the nowcasts produced in the

third month of the quarter (at horizon hm = 1) are better than the forecasts produced in the

first month of the quarter (at horizon hm = 3).11 Compared to the quarterly-frequency ADL

benchmark the density nowcasting improvements for the MIDAS models at horizon hm = 1 are

of the order of 15-20 percent in terms of LS and 10-15 percent in terms of CRPS. Results based

on the t-tests indicate a significant improvement for several of the models compared to the ADL

benchmark.12 In particular, this is the case for model specifications using the CFNAI.

Second, a comparison of the forecasting performance of the 4 different MIDAS models for

each of the 6 monthly indicators reveals very small differences in terms of forecasting perfor-

mance. There is a small tendency for MIDAS and AR-MIDAS models to perform relatively

better than the U-MIDAS and AR-U-MIDAS when applied to the CFNAI index and the PF-

BOS. However, the differences are not significant. Thus, in terms of model comparison, we do

not obtain clearly a superior approach. This is consistent with results in Foroni et al. (2013)

11We obtained qualitatively similar results for MIDAS specifications using either a credit spread, the S&P
500, the Chicago Fed’s National Financial Condition Index or the oil price. However, the relative nowcasting
performance from these model specifications where somewhat worse than those from the model specifications
reported here. Note that in model specifications that included financial variables, we used monthly averages of
the financial variables as predictors. Thus, we did not consider the use of daily financial data as in Andreou et al.
(2013).

12In most cases, the ADL and MIDAS models provide statistically superior forecasts, in terms of the t-type
test, to the AR model.
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based on point forecasts comparison.

Third, the CFNAI index is the single monthly indicator that improves the density forecasts

the most both in terms of LS and CRPS. This holds for all the 4 MIDAS models. This is

not very surprising as the CFNAI is a weighted average of 85 existing monthly indicators of

national economic activity. However, the PFBOS, IP and CU also provide useful information

that improves the forecasts.

As a robustness for our results, Table 6 reports results when the evaluation sample ends in

2007q4, i.e., prior to the Great Recession. The absolute performance of the individual models

is, as expected, superior compared with the performance when including the crisis period.

The table also shows that even when excluding the crisis period, the various MIDAS models

outperform the AR benchmark and in most cases also the ADL benchmark.

Figures 1 and 2 show how the relative cumulative LS and CRPS from the MIDAS and AR-

MIDAS regressions have evolved over time, relative to the AR benchmark model. The figures

describe the relative forecasting performance using each of the 6 monthly indicators and for each

of the 4 forecasting horizons. The measures are constructed so that an increase in the relative

value measures a relative improvement in the forecasting performance of the MIDAS and AR-

MIDAS regressions compared with the AR benchmark. The figures reveal three interesting

results. First, for all models and indicators, except for the AR-MIDAS model with the PMI,13

there has been a steady increase in the relative cumulative LS and CRPS. Second, for both

the MIDAS and the AR-MIDAS regressions the cumulative LS and CRPS increase the most for

CFNAI. This also holds for all forecast horizons and for most of the recursive time period. Thus,

the superior forecast performance from models that use the CFNAI is a robust finding. Third,

for all indicators and for both the MIDAS and AR-MIDAS regressions, the relative cumulative

LS and CRPS increase sharply during the Great Recession, but this increase is then followed

by a weak, but persistent, decrease during the recovery period. This may indicate that the

monthly indicators are particularly informative about sharp decreases in real output growth.

Finally, Table 7 reports real-time point forecasting performance for the different MIDAS

models for the evaluation samples 1985q2-2013q2 and 1985q2-2007q4. We measure point fore-

cast accuracy in terms of RMSE. As for the results obtained with density forecasting, there

13The AR-MIDAS with PMI seems to experience convergence issues similar to what we found in the Monte
Carlo experiments in the case of high persistence.
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are small differences between the different MIDAS specifications in terms of forecasting perfor-

mance and there is a clear and steady increase in forecasting performance as more information

is available. However, based on the t-test for equality of the average loss as well as the relative

forecasting performance of the different MIDAS specifications compared to the benchmarks, the

gains from using mixed-frequency information are smaller for point forecasting than for density

forecasting. This indicates that the gains in density forecast accuracy associated with having

more and more information on the quarter derive not only from better centering (i.e., better

point forecasts) of the forecast densities but also from improvement of the density shape.

6 Conclusions

In this paper, we extend the existent literature by using the MIDAS approach to obtain den-

sity forecasts. First, we compute density forecasts from different MIDAS models, the classical

MIDAS models and the unrestricted version, U-MIDAS. We derive a parametric bootstrap al-

gorithm to compute densities valid for both classes of models when accounting for parameter

uncertainty. To compare the different models, we run Monte Carlo simulations that provide evi-

dence on the forecasting performance of the models in finite samples. We find that the results in

terms of point and density forecasts are coherent, but do not clearly indicate a superior perfor-

mance of one of the models under analysis. Finally, in our empirical applications, we compute

density forecasts from the different mixed-frequency models for quarterly US output growth,

considering six monthly variables: industrial production, employment, capacity utilization, the

Purchasing Managers Index, the Chicago Fed National Activity Index and the Philadelphia

Fed Business Outlook Survey for general business activity. The results indicate that including

monthly indicators largely improves density forecasting performance.

Nowcasting real GDP growth is only one of many examples where our parametric bootstrap-

ping method can be applied to compute predictive densities. The generic question we address

is how density forecasts can be computed in a MIDAS model. There are many other macroeco-

nomic series to which our method can be applied and the method is therefore of general interest

beyond the specific application considered in the present article.
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Table 5: Forecast accuracy for US output. Evaluation sample: 1985q2:2013q2

CRPS Log Score

hm -1 1 2 3 -1 1 2 3
’EMP’ umidas 0.262 0.281 0.307 0.289 -0.683 -0.745* -0.837 -0.871

ar-umidas 0.261 0.281 0.309 0.293 -0.673 -0.726** -0.838 -0.866
midas 0.271 0.279 0.295 0.288 -0.739 -0.766 -0.802 -0.842
ar-midas 0.270 0.281 0.285 0.313 -0.738 -0.767 -0.758** -0.925
ADL 0.249 0.279 0.284 0.287 -0.640 -0.833 -0.842 -0.859

’IP’ umidas 0.240 0.251 0.270 0.276 -0.619 -0.668* -0.760 -0.821
ar-umidas 0.237 0.249 0.270 0.277 -0.618 -0.668** -0.763 -0.812
midas 0.235 0.248 0.267 0.265 -0.610 -0.661** -0.752 -0.782
ar-midas 0.237 0.244 0.261 0.301 -0.619 -0.649** -0.722 -0.869
ADL 0.220 0.256 0.257 0.261 -0.566 -0.750 -0.744 -0.756

’CU’ umidas 0.247 0.250 0.278 0.277 -0.665 -0.676 -0.775 -0.813
ar-umidas 0.242 0.248 0.274 0.275 -0.652 -0.663** -0.755 -0.814
midas 0.240 0.248 0.273 0.265 -0.646 -0.675 -0.764 -0.770
ar-midas 0.242 0.246 0.269 0.302 -0.643 -0.66** -0.748 -0.878
ADL 0.235 0.259 0.263 0.268 -0.619 -0.752 -0.769 -0.784

’PMI’ umidas 0.271 0.285 0.295 0.309 -0.781 -0.797** -0.824 -0.870
ar-umidas 0.271 0.282* 0.295 0.317 -0.791 -0.787*** -0.817* -0.902
midas 0.250* 0.259*** 0.272** 0.285 -0.738 -0.763*** -0.833 -0.880
ar-midas 0.352 0.391 0.417 0.410 -1.056 -1.175 -1.203 -1.188
ADL 0.271 0.304 0.300 0.305 -0.767 -0.883 -0.869 -0.883

’CFNAI’ umidas 0.213 0.221** 0.242 0.257 -0.519* -0.551*** -0.623** -0.734**
ar-umidas 0.213 0.220** 0.238* 0.256 -0.532* -0.545*** -0.598*** -0.749
midas 0.210 0.215*** 0.235 0.254 -0.507** -0.524*** -0.586*** -0.715**
ar-midas 0.208* 0.215*** 0.236* 0.284 -0.521** -0.543*** -0.587*** -0.825
ADL 0,225 0,260 0,261 0,262 -0,617 -0,743 -0,748 -0,758

’PFBOS’ umidas 0.267 0.268 0.265 0.277 -0.720 -0.729*** -0.745** -0.786
ar-umidas 0.267 0.268 0.274 0.280 -0.723 -0.718** -0.760* -0.800
midas 0.255 0.258 0.263 0.278 -0.684* -0.703*** -0.719** -0.795
ar-midas 0.256** 0.260 0.261 0.276 -0.692** -0.698*** -0.720*** -0.797
ADL 0.270 0.269 0.284 0.287 -0.732 -0.726 -0.851 -0.852

AR 0.319 0.318 0.317 0.352 -0.993 -0.996 -0.995 -1.095

Note: The table compares the forecasting performance of the four types of MIDAS models described in Section

2 (umidas, ar-umidas, midas, ar-midas), based on CRPS and LS for evaluating density forecasts. The criteria are

described in Section 3.2. The results are computed on an evaluation sample from 1985q2 to 2013q2. The results

are reported for each of the monthly indicators included in the models. Results for the corresponding ADL model

are reported for each indicator and serve as a comparison in our tests. Moreover, the results from an AR process

with lag length selected according to the BIC criterion are included for comparison. The table shows the results

for the backcast and nowcast. Bold numbers indicate that a MIDAS provide more accurate forecasts than the

ADL and AR benchmarks. Differences in accuracy that are statistically different from zero are denoted by one,

two or three stars corresponding to significance levels of 10%, 5% and 1%, respectively. The underlying p-values

are based on t-statistics computed with a serial correlation-robust variance, using the pre-whitened quadratic

spectral estimator of Andrews and Monahan (1992). Since the ar-umidas and ar-midas models nest the ADL

model, we report p-values based on one-sided tests, taking the ADL as the null and the MIDAS models as the

alternative. Because the umidas and midas models are not nested, for these model comparisons we report p-values

based on two-sided tests.
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Table 6: Forecast accuracy for US output. Evaluation Sample: 1985q2:2007q4

CRPS Log Score

hm -1 1 2 3 -1 1 2 3
’EMP’ umidas 0.260 0.276 0.294 0.271 -0.678 -0.735 -0.794 -0.817

ar-umidas 0.258 0.272 0.297 0.271 -0.668 -0.706** -0.798 -0.817
midas 0.261 0.268 0.280 0.268 -0.708 -0.733 -0.764 -0.807
ar-midas 0.259 0.271 0.272 0.288 -0.708 -0.740 -0.730** -0.863
ADL 0.250 0.261 0.264 0.268 -0.647 -0.787 -0.791 -0.814

’IP’ umidas 0.224 0.229 0.248 0.280 -0.570 -0.604** -0.693 -0.837
ar-umidas 0.222 0.229 0.250 0.280 -0.577 -0.602*** -0.686 -0.823
midas 0.220 0.229 0.246 0.264 -0.562 -0.601** -0.685 -0.783
ar-midas 0.220 0.226 0.243 0.276 -0.558 -0.585*** -0.658 -0.809
ADL 0.212 0.247 0.246 0.249 -0.549 -0.732 -0.721 -0.733

’CU’ umidas 0.226 0.227 0.257 0.275 -0.589 -0.601** -0.709 -0.807
ar-umidas 0.224 0.226 0.254 0.271 -0.583 -0.589*** -0.693 -0.801
midas 0.219 0.224 0.252 0.258 -0.571 -0.595** -0.693 -0.753
ar-midas 0.223 0.224* 0.252 0.277 -0.587 -0.587** -0.692 -0.816
ADL 0.217 0.246 0.248 0.250 -0.567 -0.714 -0.728 -0.734

’PMI’ umidas 0.261 0.275 0.275 0.305 -0.755 -0.76** -0.775** -0.858
ar-umidas 0.262 0.273* 0.278 0.315 -0.777 -0.755*** -0.77** -0.889
midas 0.24** 0.245*** 0.251** 0.262** -0.712 -0.729*** -0.790 -0.846
ar-midas 0.303 0.340 0.365 0.353 -0.927 -1.019 -1.076 -1.046
ADL 0.267 0.292 0.290 0.293 -0.758 -0.852 -0.839 -0.850

’CFNAI’ umidas 0.201 0.206** 0.229 0.245 -0.474** -0.499*** -0.594** -0.707**
ar-umidas 0.202 0.206** 0.221* 0.246 -0.477** -0.499*** -0.548*** -0.727
midas 0.193 0.197*** 0.219* 0.241 -0.454*** -0.451*** -0.539*** -0.689**
ar-midas 0.193*** 0.198*** 0.219* 0.251 -0.461*** -0.474 -0.549*** -0.753
ADL 0,221 0,252 0,251 0,253 -0,611 -0,723 -0,727 -0,739

’PFBOS’ umidas 0.261 0.262 0.263 0.275 -0.708 -0.711 -0.740** -0.784
ar-umidas 0.262 0.263 0.271 0.275 -0.709 -0.703 -0.761* -0.796
midas 0.252 0.254 0.262 0.273 -0.681 -0.695 -0.723** -0.791
ar-midas 0.252* 0.253* 0.257 0.260 -0.675* -0.678** -0.719*** -0.772**
ADL 0.263 0.261 0.271 0.274 -0.712 -0.706 -0.830 -0.834

AR 0.301 0.300 0.301 0.345 -0.972 -0.975 -0.972 -1.107

Note: The table compares the forecasting performance of the four types of MIDAS models described in Section

2 (umidas, ar-umidas, midas, ar-midas), based on CRPS and LS for evaluating density forecasts. The criteria are

described in Section 3.2. The results are computed on an evaluation sample from 1985q2 to 2007q4. The results

are reported for each of the monthly indicators included in the models. Results for the corresponding ADL model

are reported for each indicator and serve as a comparison in our tests. Moreover, the results from an AR process

with lag length selected according to the BIC criterion are included for comparison. The table shows the results

for the backcast and nowcast. Bold numbers indicate that a MIDAS provide more accurate forecasts than the

ADL and AR benchmarks. Differences in accuracy that are statistically different from zero are denoted by one,

two or three stars corresponding to significance levels of 10%, 5% and 1%, respectively. The underlying p-values

are based on t-statistics computed with a serial correlation-robust variance, using the pre-whitened quadratic

spectral estimator of Andrews and Monahan (1992). Since the ar-umidas and ar-midas models nest the ADL

model, we report p-values based on one-sided tests, taking the ADL as the null and the MIDAS models as the

alternative. Because the umidas and midas models are not nested, for these model comparisons we report p-values

based on two-sided tests.
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Table 7: Forecast accuracy for US output. Point forecasts. Evaluation sample: 1985q2:2013q2
and 1985q2:2007q4

1985 - 2013 1985 - 2007

hm -1 1 2 3 -1 1 2 3
’EMP’ umidas 0.458 0.489 0.543 0.498 0.452 0.475 0.511 0.442

ar-umidas 0.457 0.494 0.547 0.505 0.452 0.477 0.521 0.446
midas 0.478 0.490 0.524 0.495 0.459 0.470 0.493 0.441
ar-midas 0.476 0.494 0.509 0.552 0.451 0.472 0.477 0.480
ADL 0.432 0.474 0.490 0.494 0.435 0.432 0.441 0.439

’IP’ umidas 0.419 0.437 0.471 0.462 0.383 0.388 0.427 0.467
ar-umidas 0.413 0.434 0.473 0.466 0.378 0.389 0.430 0.470
midas 0.408 0.430 0.465 0.445 0.371 0.388 0.425 0.440
ar-midas 0.414 0.429 0.457 0.535 0.370 0.385 0.416 0.470
ADL 0.369 0.433 0.436 0.447 0.350 0.404 0.403 0.409

’CU’ umidas 0.430 0.445 0.494 0.470 0.387 0.389 0.449 0.465
ar-umidas 0.421 0.436 0.484 0.466 0.381 0.384 0.440 0.460
midas 0.420 0.440 0.483 0.447 0.375 0.383 0.440 0.434
ar-midas 0.416 0.432 0.475 0.532 0.376 0.381 0.439 0.468
ADL 0.399 0.438 0.443 0.457 0.363 0.403 0.406 0.409

’PMI’ umidas 0.466 0.500 0.520 0.558 0.441 0.482 0.482 0.540
ar-umidas 0.467 0.495 0.521 0.579 0.447 0.479 0.488 0.569
midas 0.418** 0.437** 0.45** 0.473* 0.386** 0.405** 0.393** 0.405**
ar-midas 0.615 0.677 0.730 0.727 0.525 0.591 0.644 0.613
ADL 0.473 0.530 0.522 0.532 0.461 0.503 0.495 0.503

’CFNAI’ umidas 0.375 0.395 0.436 0.432 0.342 0.358 0.399 0.403
ar-umidas 0.379 0.392 0.426 0.432 0.347 0.355 0.386 0.402
midas 0.362 0.379 0.420 0.430 0.322 0.336* 0.380 0.397
ar-midas 0.361 0.378* 0.424 0.514 0.319** 0.335** 0.383 0.415
ADL 0.373 0.437 0.442 0.440 0.358 0.419 0.420 0.415

’PFBOS’ umidas 0.467 0.469 0.456 0.473 0.460 0.445 0.459 0.444
ar-umidas 0.468 0.471 0.476 0.477 0.458 0.469 0.474 0.451
midas 0.439** 0.445* 0.454 0.471 0.439 0.448 0.455 0.427
ar-midas 0.447** 0.455* 0.452 0.474 0.437* 0.447 0.449 0.402
ADL 0.476 0.471 0.489 0.496 0.462 0.457 0.440 0.450

AR 0.535 0.529 0.533 0.564 0.458 0.453 0.461 0.523

Note: The table compares the forecasting performance of the four types of MIDAS models described in Section 2

(umidas, ar-umidas, midas, ar-midas), based on RMSPE for evaluating point forecasts. The criterion is described

in Section 3.2. The results are computed on an evaluation sample from 1985q2 to 2013q2 and on 1985q2 to 2007q4.

The results are reported for each of the monthly indicators included in the models. Results for the corresponding

ADL model are reported for each indicator and serve as a comparison in our tests. Moreover, the results from an

AR process with lag length selected according to the BIC criterion are included for comparison. The table shows

the results for the backcast and nowcast. Bold numbers indicate that a MIDAS provide more accurate forecasts

than the ADL and AR benchmarks. Differences in accuracy that are statistically different from zero are denoted

by one, two or three stars corresponding to significance levels of 10%, 5% and 1%, respectively. The underlying

p-values are based on t-statistics computed with a serial correlation-robust variance, using the pre-whitened

quadratic spectral estimator of Andrews and Monahan (1992). Since the ar-umidas and ar-midas models nest

the ADL model, we report p-values based on one-sided tests, taking the ADL as the null and the MIDAS models

as the alternative. Because the umidas and midas models are not nested, for these model comparisons we report

p-values based on two-sided tests.
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Figure 1: Relative Cumulative CRPS
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Note: Relative Cumulative CRPS =
∑t+h(m)

1 (CRPSl
t+h(m) − CRPSi

t+h(m)), t = 1, ..., T , l = AR benchmark

model and i = alternative information set. The first column shows the results for the MIDAS model and the

second column the results for the AR-MIDAS models. The different rows show the results for different forecasting

horizons.
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Figure 2: Relative Cumulative Log Score
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Note: Relative Cumulative Log Score =
∑t+h(m)

1 (ln ftm+hm,tm,i (yt+hm) − ln ftm+hm,tm,l (yt+hm)), t = 1, ..., T ,

l = AR benchmark model and i = alternative information set. The first column shows the results for the MIDAS

model and the second column the results for the AR-MIDAS models. The different rows show the results for

different forecasting horizons.
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