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1 Introduction

Macroeconomic variables are sampled at different frequencies. In empirical studies,
the econometrician has thereby to choose the sampling frequency of the model. The first
solution consists in aggregating all the high-frequency variables to the frequency of the
lowest frequency variable. This is a common choice in VAR studies. Another solution is to
interpolate the low-frequency variable to the frequency of the high-frequency variable, which
is usually done with the Kalman filter (see e.g., Aruoba et al. (2009), Giannone et al. (2008),
Mariano and Murasawa (2003), Frale et al. (2011), and Foroni et al. (2013)). Kuzin et al.
(2011) and Bai et al. (2013) use the Kalman filter for VAR forecasting with mixed-frequency
data. See also Foroni et al. (2013) for an overview. Ghysels (2012) recently introduced a
mixed-frequency VAR model where the vector of dependent variables includes both the
low-frequency variable and the high-frequency variables, the latter stacked depending on
the timing of the release. The advantage of this approach is to avoid the estimation of a
mixed-frequency VAR model via the Kalman filter that often proves to be computationally
cumbersome. Alternatively, in a Bayesian context, Chiu et al. (2011) developed a Gibbs
sampler that allows to estimate VAR models with irregular and mixed-frequency data, see
also Schorfheide and Song (2012). Finally, one can work directly with mixed-frequency
data. This is the approach that is used by MIDAS specifications where the aggregation of
the high-frequency variable is carried out in a parsimonious and data-driven manner (see
e.g., Ghysels et al. (2004), Andreou et al. (2013) and Francis et al. (2011)). Banbura et al.
(2012) and Foroni and Marcellino (2013c) provide overviews on the use of mixed-frequency
data in econometric models.

An increasing number of works specifically evaluates the effects of the choice of the
sampling frequency in a macroeconomic forecasting context (starting with Clements and
Galvao (2008), see also e.g. Foroni and Marcellino (2013a), Foroni et al. (2012), Banbura
et al. (2012)) but also in structural studies (Foroni and Marcellino (2013b) and Kim (2011)).
However, relatively few studies consider the issue of time variation in models dealing with
mixed-frequency data (see e.g., Galvão (2013), Guérin and Marcellino (2013), Carriero
et al. (2013), Marcellino et al. (2013) and Camacho et al. (2012)), and most of these few
studies only consider the univariate case.

In this paper, we allow for regime switching parameters in the mixed-frequency VAR
model, introducing the Markov-Switching Mixed-Frequency VAR model (MSMF-VAR).
The relevance of Markov-Switching models in econometrics is now well established and a
large number of studies have been published after the seminal paper by Hamilton (1989),
see in particular Krolzig (1997) in a VAR context, but all these studies are based on
same frequency variables. The MSMF-VAR model permits us to explicitly model time
variation in the relationship between the high- and low-frequency variables. As a by-
product of our estimation, we also obtain high-frequency estimates of the low-frequency
variable(s) in the case of the mixed-frequency VAR model estimated via the Kalman filter.
For example, in a system with quarterly GDP and monthly indicators, we can obtain
monthly estimates of GDP, which are of direct interest. Modeling time variation through
Markov-Switching models is also attractive since it allows us to endogenously estimate and
forecast the probabilities of being in a given regime.
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We introduce regime switching parameters in the mixed-frequency VAR model esti-
mated via the Kalman filter as well as in the mixed-frequency VAR model of Ghysels (2012)
that does not require to estimate a state-space model and thereby permits a straightforward
estimation. We compare these new models with the Markov-Switching MIDAS model of
Guérin and Marcellino (2013), and discuss the distinctive features of these models.

The paper is structured as follows. The second section introduces the Markov-Switching
Mixed-frequency VAR models and discusses their use for forecasting the variables of interest
and the underlying unobservable states. The third section evaluates in a Monte-Carlo ex-
periment the forecasting performance of the MSMF-VAR models compared with a number
of alternative forecasting models. The fourth section presents an empirical application for
the prediction of GDP growth and business cycle turning points in the euro area. Section
5 concludes.

2 Modeling and Forecasting with Markov-Switching

Mixed-Frequency models

2.1 Markov-Switching Mixed-Frequency VAR

In this subsection, we introduce two alternative Markov-Switching mixed-frequency
VAR (MSMF-VAR) models. First, we present the MSMF-VAR model cast in state-space
form so as to accommodate the different frequency mixes. This model is labeled MSMF-
VAR (KF), where KF stands for Kalman filter. Second, we introduce regime switching
parameters in the mixed-frequency VAR model recently proposed by Ghysels (2012) where
mixed frequency data are analyzed through a stacked-vector system. This model is labeled
MSMF-VAR (SV), where SV stands for stacked-version.

2.1.1 Mixed-frequency data modeled via a state-space representation

For the sake of clarity, we illustrate the model using a single low-frequency variable,
sampled at the quarterly frequency, and a single high-frequency variable, sampled at the
monthly frequency. This corresponds to the standard macroeconomic forecasting context
where one wants to forecast a quarterly variable, say GDP growth, with a monthly indicator,
such as industrial production, an interest rate spread, or a survey on economic conditions.
Models with more low- or high-frequency variables can be specified along the same lines.

A key feature of the Mixed-Frequency VAR (MF-VAR) model is to work at the frequency
of the high-frequency variable. Quarterly GDP is thus disaggregated at the monthly fre-
quency using the geometric mean:

Yt = 3(Y ∗t Y
∗
t− 1

3
Y ∗
t− 2

3
)
1
3 , (1)
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where Yt is the observed quarterly GDP in quarter t and Y ∗t−h is the unobserved monthly
GDP of the months h = {0, 1

3
, 2

3
} belonging to quarter t. Taking logarithms and after some

transformation, this yields:

yt =
1

3
y∗t +

2

3
y∗
t− 1

3
+ y∗

t− 2
3

+
2

3
y∗t−1 +

1

3
y∗
t− 4

3
, (2)

where yt is the observed quarterly growth rate in quarter t and y∗t−h is the monthly growth
rate of GDP in months t− h.

Note that we use the geometric mean rather than the arithmetic mean. Using the arith-
metic mean rather than the geometric mean would involve the estimation of a non-linear
state space model, which would complicate the estimation. Besides, the approximation in-
volved by the use of the geometric mean is typically small when dealing with GDP growth
in developed economies. Finally, it is the approach commonly used in the literature, see
e.g. Mariano and Murasawa (2003).1

The state vector of unobserved variables st includes the monthly changes in GDP growth
y∗t−h as well as the high frequency indicator xt−h. It is defined as follows:

st =


zt
.
.
.

zt− 4
3

 ,
where:

zt−h =

[
y∗t−h
xt−h

]
.

The state-space representation of the MF-VAR(p) is described by the following transi-
tion and measurement equations:

st+h+ 1
3

= Ast+h + Bvt+h+ 1
3
, (3)[

yt+h
xt+h

]
=

[
µy
µx

]
+ Cst+h, (4)

where vt+h ∼ N(0, I2) and the system matrices A, B and C are given by:

A =

[
A1

A2

]
,

A1 = [Φ1...Φp 02∗2(5−p)],

1Note that one could also handle missing observations by varying the dimension of the vector of observ-
ables as a function of time t (see e.g., Schorfheide and Song (2012)).
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A2 = [I8 08∗2],

B =

[
Σ1/2

08∗2

]
,

and,
C = [H0...H4],

where the matrix C contains the coefficient matrices in the lag polynomial H(Lm) =∑4
i=0HiL

i
m, which is defined according to the aggregation constraint defined in equation

(2):

H(Lm) =

(
1
3

0
0 1

)
+

(
2
3

0
0 0

)
Lm +

(
1 0
0 0

)
L2
m +

(
2
3

0
0 0

)
L3
m +

(
1
3

0
0 0

)
L4
m.

Note that this specification of the MF-VAR differs from the one reported in Camacho
and Perez-Quiros (2010) and Bai et al. (2013), where the low-frequency variable is related
to the high-frequency indicators through common factors (i.e., they use a mixed-frequency
factor model). By contrast, the specification we consider is similar to the one in Zadrozny
(1990) and Kuzin et al. (2011).

We now include regime switches in potentially all the parameters of the MF-VAR(p)
model: the intercepts, the autoregressive parameters as well as the variance of the innova-
tions.2 The state-space representation of the Markov-Switching MF-VAR (MSMF-VAR) is
then given by:

st+h+ 1
3

= A(St+h+ 1
3
)st+h + B(St+h+ 1

3
)vt+h, (5)[

yt+h
xt+h

]
=

[
µy(St+h)
µx(St+h)

]
+ Cst+h, (6)

where St is an ergodic and irreducible Markov-chain with a finite number of states St = {1, ...,M}
defined by the following constant transition probabilities:

pij = Pr(St+h = j|St+h− 1
3

= i), (7)

M∑
j=1

pij = 1 ∀i, jε{(1, ...,M)}. (8)

Following Mariano and Murasawa (2003), we replace the missing observations with
zeros, and we rewrite the measurement equation in such a way that the Kalman filter skips
the missing observations.

The model is estimated with the Kalman filter combined with the Hamilton filter for
Markov-Switching models (see Appendix A for details). We also need to make an approx-
imation at the end of the Kalman and Hamilton filters to avoid the proliferation of cases

2Note that Camacho (2013) also considers regime switches in a mixed-frequency VAR similar to ours.
However, he concentrates on the in-sample performance of the MSMF-VAR model for estimating business
cycle turning points in the US and does not perform a forecasting exercise.
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to be considered as in Kim and Nelson (1999). Appendix A reports the equations of the
Kalman filter as well as the Kim and Nelson (1999) approximation necessary for state-space
models with regime switches. The model parameters are estimated by maximum likelihood
using the Expectation Maximization (EM) algorithm. The expectation step (”E” step)
applies the Kalman and Hamilton filter to obtain an estimate of the log-likelihood, and the
maximization step (”M” step) maximizes the log-likelihood obtained from the expectation
step using the BFGS algorithm from the OPTMUM library of the Gauss software. We
iterate over the ”E” and ”M” steps until the algorithm has converged.

2.1.2 Mixed-frequency data modeled via a stacked-vector system

We present here the regime switching version of the mixed-frequency VAR model of Ghy-
sels (2012). In this case, the high-frequency variable is stacked in the vector of dependent
variables depending on the timing of the release of the high frequency data. This permits
to avoid the estimation via the Kalman filter that often proves to be computationally de-
manding. As in the previous subsection, we describe the model with a single low-frequency
variable and a single high-frequency variable to facilitate the notation. In particular, we
illustrate the model in the case where one wants to forecast one quarterly variable using
one monthly variable that is released three times a quarter. However, extensions to larger
systems involving more low- or high-frequency variables naturally follow. Alternatively, a
model considering more than two different sampling frequencies could be specified along the
same lines. The crucial point of this type of mixed-frequency VAR model is to stack obser-
vations from the high-frequency variable xt in the vector of dependent variables depending
on the timing of the release of the high-frequency indicator.

Denote as yt the quarterly variable, xt− 2
3
, xt− 1

3
, xt the release of the monthly indicator in

the first, second and third month of quarter t, respectively. This class of mixed-frequency
VAR model can therefore be written as follows:

zt = A0 +

p∑
j=1

Ajzt−j + ut, (9)

where zt = (xt− 2
3
, xt− 1

3
, xt, yt)

′ is the vector of observable time series variable, A0 is the

vector of intercepts, the Aj’s (j = 1, ..., p) are the coefficient matrices and ut is the white
noise error term with mean zero and positive definite variance covariance matrix Σu, that
is ut ∼ (0,Σu).

Regime switching can be included in possibly all parameters of the model: intercepts,
autoregressive coefficient matrices and the variance-covariance matrix of the error term, so
that the MSMF-VAR (SV) model can be specified as follows:

zt = A0(St) +

p∑
j=1

Aj(St)zt−j + ut(St), (10)

where St is an ergodic and irreducible Markov-chain with a finite number of states as
defined in equations (7) and (8). The conditional distribution of ut given St is assumed to

be normal ut|St
i∼ N(0,Σu(St)).
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In the Monte-Carlo experiments and the empirical application, we consider two different
versions for the MSMF-VAR (SV) model. The first version assumes no restrictions on
the coefficient matrices Aj, this model is therefore denoted as MSMF-VAR(SV-U). The
second version instead assumes that the coefficient matrices have particular structures. In
detail, we assume that the high-frequency indicator follows an ARX(1) process, following
an example in Ghysels (2012). More details about the restrictions we impose are reported
in Appendix B. The restricted version of the MSMF-VAR (SV) model is therefore denoted
as MSMF-VAR(SV-R).

The estimation of this type of MSMF-VAR is similar to the estimation of a single
frequency MS-VAR and it is done in a classical maximum likelihood framework, as discussed
in Ghysels (2012) for the linear case.3 We therefore use the EM algorithm without requiring
the Kalman filter, as in Krolzig (1997).

2.2 Markov-Switching MIDAS model

Markov-Switching parameters were first introduced in MIDAS models by Guérin and
Marcellino (2013). The Markov-Switching MIDAS model can be written as follows:

yt = β0(St) + β1(St)B(L1/m; θ(St))x
(m)
t−h + εt(St), (11)

whereB(L1/m; θ(St)) =
∑K

j=1 b(j; θ(St))L
(j−1)/m, Ls/mx

(m)
t−1 = x

(m)
t−1−s/m and εt|St

i∼ N(0, σ2(St)).

The MIDAS weight function b(j; θ(St)) aggregates the high-frequency variable to the
frequency of the dependent variable yt through a parametric weight function. The MIDAS
parameters θ govern the aggregation process so that one can include a large number of lags
for the high frequency variable with only a limited number of parameters. A key feature
of the MIDAS aggregation scheme is therefore to aggregate the high frequency variable in
a parsimonious way.

Two common choices for the weight function b(j; θ(St)) (see e.g. Ghysels et al. (2007))
are the exponential Almon lag specification and the beta weight function. A standard choice
in the literature is to use two parameters for the MIDAS weight function (i.e., θ = {θ1, θ2}).
The exponential Almon lag specification and the beta weight function can then be written
as follows:

b(j; θ(St)) =
exp(θ1(St)j + θ2(St)j

2)∑K
K=1 exp(θ1(St)j + θ2(St)j2)

, (12)

3Chauvet et al. (2013) study the link between economic fluctuations and financial markets using the
MF-VAR(SV-R) model estimated via seemingly unrelated regressions (see e.g., Greene (2011)). However,
their specification of the MF-VAR(SV-R) differs from ours in that they assume that the indicator follows
an ARX(1) process but they also make use of MIDAS restrictions for the equation describing the relation
between the low-frequency and high-frequency variables. Also, they consider a mix of monthly and daily
data so that the dimension of their models is very large. As a result, they implement a two-step estima-
tion procedure to facilitate the estimation. In our case, however, we do not impose MIDAS restrictions
and consider a relatively small system (i.e., a mix of quarterly and monthly data). Maximum likelihood
estimation therefore remains fairly straightforward.
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b(j; θ(St)) =
(d/D)θ1(St) − (1− d/D)θ2(St)−1∑K
j=0(j/D)θ1(St) − (1− j/D)θ2(St)−1

. (13)

As in the VAR case, the regime generating process is an ergodic Markov-chain with
a finite number of states St = {1, ...,M} defined by the following constant transition
probabilities:

pij = Pr(St+1 = j|St = i), (14)
M∑
j=1

pij = 1∀i, jε{1, ...,M}. (15)

ADL-MIDAS type of specifications introduce autoregressive dynamics in MIDAS models
in a straightforward manner (see e.g. Andreou et al. (2013)) so that the MSADL-MIDAS
model can be written as follows:

yt = β0(St) + β1(St)B(L1/m; θ(St))x
(m)
t−h + λ(St)yt−d + εt(St). (16)

In the rest of the paper we will use the MIDAS and ADL-MIDAS with exponential
Almon lag specification.

2.3 Comparison between MS-MIDAS and MSMF-VAR models

The main differences between MS-MIDAS and MSMF-VAR models are the following.

First, MIDAS models make direct forecasts whereas forecasts from MF-VAR models
(both state-space and stacked vector system versions) are usually calculated as iterated
forecasts. A comparison between direct and iterated forecasts can be found, e.g., in Chevil-
lon and Hendry (2005) and Marcellino et al. (2006).

Second, MIDAS models do not model the behavior of the high-frequency variable
whereas MF-VAR models explicitly model the dynamics of the high frequency variable.
As a result, provided that MF-VAR models are well specified, one can expect to achieve
more precise forecasts with respect to MIDAS models. However, MIDAS models are more
parsimonious and are thus less prone to misspecifications than MF-VAR models. In par-
ticular, the MF-VAR model version from Ghysels (2012) is typically subject to parameter
proliferation, especially in systems with different frequency mixes and a large number of
lags.

Third, the estimates and forecasts for the regime probabilities from MS-MIDAS models
are made at the quarterly frequency, albeit they can be updated on a monthly basis. The
MSMF-VAR (SV) models also estimate the regime probabilities at the quarterly frequency.
By contrast, MSMF-VAR models estimate and forecast the regime probabilities directly at
the monthly frequency.

Fourth, the MSMF-VAR (KF) model permits to obtain a monthly estimate of the
quarterly variable, which is often of interest by itself.

Finally, by construction the regime predictions from the MS-MIDAS and MSMF-VAR
(SV) models are necessarily lower than the last estimate of the regime probabilities, and do
not use the most timely information from the monthly indicator. MSMF-VAR (KF) models
instead run a combination of the Kalman and Hamilton filter forward for computing the
regime forecasts so that MSMF-VAR (KF) models include the latest information from the
high-frequency indicator to predict the regime probabilities.
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3 Monte-Carlo experiments

3.1 In-sample estimates

Our first Monte-Carlo experiment is designed to check how well our estimation algorithm
performs in finite samples.

First, we assume that the data are generated by a regime-switching VAR(1) process.
The population model is defined as follows:(

yt
xt

)
=

(
µ1(St)
µ2(St)

)
+

(
0.5 α
0.1 0.5

)(
yt−1

xt−1

)
+ εt(St)

where

µ1(St) = {−1, 1},
µ2(St) = {−1, 1},

εt|(St = 1) ∼ N(

(
0
0

)
,

(
1 0.3

0.3 1

)
),

εt|(St = 2) ∼ N(

(
0
0

)
,

(
2 0.4

0.4 2

)
),

α = {0.1, 0.5}.

The parameter α therefore governs the degree to which the first dependent variable is
affected by the second dependent variable. Note that, unlike the model generally discussed
in section 2, we only consider here switches in the intercepts and in the variance-covariance
matrix of the shocks, but not in the autoregressive matrix. There are no conceptual issues
in terms of estimation which prevent us from having switches in the autoregressive term.
We consider changes in the intercepts because they are the most common sources of forecast
failures (see, e.g, Clements and Hendry (2001)). Moreover, considering regime changes in
the autoregressive coefficient matrix for all the regime switching models we analyze would
substantially complicate the estimation by increasing computational time and convergence
problems of the algorithm.

We also consider differences in the regimes’ duration. The first set of transition proba-
bilities is defined as follows:

(p11, p22) = (.95, .95).

The second set of transition probabilities instead implies that the first regime has a lower
duration than the second regime:

(p11, p22) = (.85, .95).

Second, we assume that the data are generated by two distinct DGPs, one for the
low-frequency variable yt and one for the high-frequency variable xt, that is we consider
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a mixed-frequency DGP. The population models for yt and xt are autoregressive models
defined as follows:4

yt = µ1(St) + 0.5yt−1 + εyt (St)

xt = µ2(St) + 0.5xt−1 + εxt (St)

where µ1(St) = {−1, 1}, µ2(St) = {−1, 1},

εyt |(St = 1) ∼ N(0, 1), εxt |(St = 1) ∼ N(0, 1)

εyt |(St = 2) ∼ N(0, 2), εxt |(St = 2) ∼ N(0, 2)

For each DGP, the sample size expressed at the frequency of the low frequency variable
is T = 250. As we consider the standard case of a mix between quarterly and monthly
variables, time series with length T ∗ 3 were initially generated so that the sample size
expressed at the frequency of the high frequency variable includes 750 observations.5

We compare the in-sample fit of the models under scrutiny calculating the in-sample
mean squared error defined as follows:

IS −MSE =
T∑
t=1

(ŷt − yt)2/T. (17)

The MSE is computed for each replication n = {1, .., N}, with N = 1000 being the number
of Monte-Carlo replications, and then averaged across replications.

Quadratic Probability Score (QPS) and Log Probability Score (LPS) can also be calcu-
lated for assessing the ability of non-linear models to detect turning points. QPS and LPS
are defined as follows:

QPS =
2

T

T∑
t=1

(P (St = 1)− St)2, (18)

LPS = − 1

T

T∑
t=1

(1− St)log(1− P (St = 1)) + Stlog(P (St = 1)), (19)

where St is a dummy variable that takes on a value of 1 if the true regime is the first regime
in period t, and P (St = 1) is the smoothed probability of being in the first regime in period
t. The median across replications is then reported.

4Note that we assume that the same Markov chain St governs the parameter changes for both DGPs. As
such, this implies that both variables are driven by the same comovements, which is a common modelling
choice in business cycle analysis (see e.g., Chauvet (1998)).

5Note that for the mixed-frequency DGPs, time series with length T = 250 observations were generated
for yt and T = 750 for xt. Also, for each draw, we discarded the first 500 observations to account for
start-up effects.
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In this exercise, we consider fifteen different models, a list similar to that used in the em-
pirical application in section 4. Specifically, we have AR(1), ADL(1,1), linear MIDAS, linear
ADL-MIDAS, MS-MIDAS, MSADL-MIDAS, univariate MS model, linear VAR, regime-
switching VAR, linear mixed-frequency VAR (both the state-space and the stacked-vector
system versions) and regime switching mixed-frequency VAR models (both the state-space
and the stacked-vector system versions). For the SV models, we consider both the restricted
(R) and unrestricted (U) versions. Appendix B provides more details about each model
under scrutiny.

Table 1 presents the results for the Monte Carlo experiments. Panel A and Panel C
report the results for the DGP with equal transition probabilities for the single-frequency
DGP and the mixed-frequency DGP, respectively. Panel B and Panel D show the results
for the DGP that implies a lower duration for regime 2 compared to regime 1 for both
types of DGP. For panels A and B, we present results with the two different parameter
values for α (i.e., α = 0.1 and α = 0.5).

Several main findings emerge from Table 1. First, for the single-frequency DGP, across
the four different cases, the MSMF-VAR model estimated via the Kalman filter (i.e., the
MSMF-VAR(KF) model) obtains the best results in terms of QPS and LPS. In other
words, our simulation results indicate that - based on these DGPs - the MSMF-VAR
(KF) model yields the best estimates of the in-sample regime probabilities. Second, the
MSMF-VAR(SV-R) model yields the best in-sample estimates across all four DGPs, with
the MS-MIDAS a very close second best for α = 0.1 and the MSADL-MIDAS model a
very close second best for α = 0.5. Third, in the case of a mixed-frequency DGP, the
univariate MS-AR model performs best followed by the MSADL-MIDAS model, which
is not surprising given that the true model for yt is generated from a univariate model.
Fourth, also in the case of the mixed-frequency DGP, the best estimate for the regime
probabilities are obtained by the single-frequency MS-VAR model and it is closely followed
by the MSMF-VAR (SV-R) model. As such, this can be explained by the fact that since
both yt and xt are generated from the same Markov-chain, using both variables in a model
helps for the inference on regimes. Also, note that conditional on these mixed-frequency
DGPs, the MSMF-VAR(KF) model performs relatively poorly for estimating the regimes
compared with the other models. Finally, it is also worth mentioning that linear models fit
the data much worse than MS specifications. As we will see, this finding no longer generally
holds in an out-of-sample context.

3.2 Out-of-sample estimates

We now assess the finite sample forecasting performance for the low frequency variable
of the Markov-Switching Mixed-Frequency VARs, comparing it with a number of competing
forecasting models in a controlled setup.

The design of this Monte Carlo experiment is the following. For each draw, we set the
evaluation sample to Teval = 50 and we calculate recursively one-step-ahead forecasts until
we reach the end of the full estimation sample. When calculating one-step-ahead forecasts,
we make sure that all forecasting models use the same information set. Therefore, when
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we forecast the next quarter we do not use any monthly information on that quarter.
As a result, the design of our Monte-Carlo experiment is relatively unfavorable to mixed-
frequency data models in that this class of models could explicitly accommodate more
timely information. Also, to reduce the computational time, we fix the parameter estimates
at the values obtained with the first estimation sample, rather than recursively updating
the values. Limited evaluation of fully recursive estimation has produced similar results.

The one-step-ahead forecasts are generated from the fifteen forecasting models described
in the previous subsection. Forecasts for regime switching models are calculated in the
standard way by weighting the conditional forecasts upon each regime by the predicted
probabilities of being in a given regime. In the case of two regimes, one-step-ahead forecasts
are calculated as:

ŷt+1|t = ŷt+1|t,1P (St+1|t = 1) + ŷt+1|t,2P (St+1|t = 2) (20)

where:

• ŷt+1|t,i is the one-step-ahead forecast for the dependent variable yt conditional on the
process being in state i at time t+ 1 given the past observable information.

• P (St+1|t = i) is the conditional probability of the process being in state i at time t+1
given the past observable information.

Generalizing to h-step-ahead forecasts and M regimes, equation (20) becomes:

ŷt+h|t =
M∑
i=1

ŷt+h|t,iP (St+h|t = i). (21)

We compare the forecasting performance for the levels of the low-frequency variable
using the Mean Squared Forecast Error (MSFE). When using a regime switching model,
we also calculate the in-sample Quadratic Probability Score (QPS) and Log Probability
Score (LPS) to assess the ability of non-linear models to predict turning points in a real-time
context. QPS and LPS are then defined as follows:

QPS =
1

Teval

Teval∑
i=1

(
2

Ti

Ti∑
t=1

(P (St = 1)− St)2), (22)

LPS =
1

Teval

Teval∑
i=1

(− 1

Ti

Ti∑
t=1

(1− St)log(1− P (St = 1)) + Stlog(P (St = 1))), (23)

where St is a dummy variable that takes on a value of 1 if the true regime is the first regime
in period t, and P (St = 1) is the smoothed regime probability of being in the first regime
in period t. Ti is the size of the sample for evaluation period i of the estimation sample
and Teval is the size of the evaluation sample.
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Table 2 reports results with N = 1000 Monte Carlo replications. Conditional on the
single-frequency DGP with equal transition probabilities and α = 0.1, the best forecasting
model is the MSMF-VAR(SV-U) model (Panel A). The MSMF-VAR(SV-U) also obtains
the best forecasting results with α = 0.5. Besides, conditional on the single-frequency
DGP with transition probabilities p11 = 0.85 and p22 = 0.95 with α = 0.1, the MS-VAR
model yields the best continuous forecasts, while for α = 0.5 the best model in terms of
continuous forecasts is again the MSMF-VAR (SV-U) model. For the mixed-frequency
DGPs with equal transition probabilities, the best forecasting model is the MS-VAR model
and it is closely followed by the ADL and ADL-MIDAS models. The stacked-vector system
version of the MF-VAR instead perform best for the mixed-frequency DGP with different
transition probabilities. Table 2 also shows the QPS and LPS for each model across the
four DGPs. The figures indicate that the MSMF-VAR (KF) model yields systematically
the best discrete estimates of the regimes with the single-frequency DGP (Panels A and
B). Instead, the MSMF-VAR (SV) models tend to obtain the best estimates of the regimes
with the mixed-frequency DGP (Panels C and D).

Overall, the results of the Monte Carlo experiments suggest that our estimation proce-
dure for MSMF-VARs performs well also in finite samples. Moreover, not accounting for
MS features deteriorates the in- and out-of-sample performance of all models, the former
more than the latter.

4 Empirical application

4.1 Data

The empirical application focuses on euro area macroeconomic variables. In particular,
we use the euro area GDP growth as quarterly variable, and a set of four monthly indicators
often considered as good predictor for growth: the Economic Sentiment Indicator (ESI), the
M1 monetary aggregate, headline industrial production and the slope of the yield curve, see
Table 3. We use real-time data obtained from the ECB real time database (see Giannone
et al. (2012) for a description of the database) except for the slope of the yield curve where
data were downloaded from Haver Analytics.6

Our full estimation sample ranges from 1986:Q1 to 2012:Q2. Euro area GDP is taken as
400 times the quarterly change in the logarithm of GDP to obtain quarterly GDP growth
at an annual rate. Note that euro area GDP values before 1995Q1 are taken from the euro
area business cycle network backcasted GDP series. This allows us to have a long enough
sample, which is helpful for the inference on regimes.

6The slope of the yield curve is defined as the difference between the yields on a 10-year government
bond (national data are aggregated at the euro area level by Eurostat) and the yields on a 3-month money
market interest rate (i.e., the EURIBOR).
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4.2 In-sample estimates

First, we focus on the in-sample analysis. Table 4 reports the in-sample parameter
estimates obtained with a MSMF-VAR(KF) model for the four indicators. The second
regime is associated with higher volatility and lower GDP growth across all four indicators
so that this regime can be interpreted as the recessionary regime.

Figure 1 shows the monthly estimates of GDP growth we obtain from the MSMF-VAR
(KF) model with the ESI. These estimates are a byproduct of our estimation. We also
report in Figure 1 the Eurocoin indicator, which is a monthly estimate of the medium-
long run component of quarterly euro area GDP growth, see Altissimo et al. (2010). Our
monthly estimates of GDP growth are relatively close to the Eurocoin indicator, albeit as
expected they tend to be more volatile than Eurocoin.

Figure 2 shows the in-sample monthly probability of recession from the MSMF-VAR
(KF) model with the ESI. The recession and expansion phases of the euro area economic
activity are all very well captured by the MSMF-VAR (KF) model, including the latest euro
area recession. However, note that this model identifies the 2001-03 period as recession,
while the CEPR qualifies this episode as being a ”prolonged pause in the growth of economic
activity”.7

In Table 5 we report the in-sample QPS and LPS for each model with MS parameters
using the four indicators sequentially. We also report the QPS and LPS for an average
(equal weights) of the smoothed probability over all models for a given indicator (see the
last row of Panel A and Panel B)8 and the LPS and QPS for an average (equal weights)
of the smoothed probability over all indicators for a given model (see the last column of
Panel A and Panel B). First, the ESI yields the best discrete estimates of the business cycle
conditions pooling across all models (i.e., the lowest QPS and LPS, see the last row of Panel
A and Panel B). Second, pooling across all indicators the MSMF-VAR (KF) obtains on
average the lowest QPS, while the MSMF-VAR (SV-R) gets the lowest LPS (see the last
column of Panel A and Panel B). Third, for a given indicator, taking a simple average of
the smoothed probability over all models in general permits to substantially improve the
classification of economic activity. Finally, and in line with the results for the US in Guérin
and Marcellino (2013), the MS-MIDAS with the slope of the yield curve performs very well
in terms of both LPS and QPS.

4.3 Forecasting results

The available sample is split between an estimation sample and an evaluation sample.
The first estimation sample runs from 1986Q1 to 2006Q1 and it is recursively expanded

7One reason for differences in estimating turning points is that the CEPR business cycle dating com-
mittee concentrates on dating the classical business cycle (i.e., based on the level of economic activity),
whereas regime-switching models estimate growth cycle where turning points are defined in deviations from
trend.

8In this case, we exclude the probability from the standard univariate Markov-switching model (MS-AR)
when taking the average.

14



until 2011Q2. Within the evaluation sample, we calculate three nowcasts as well as six
forecasts, reflecting the information set available at the end of each month m of quarter t,
m = {1, 2, 3}. For example, for the initial evaluation quarter 2006Q2, three nowcasts for
quarter 2006Q2 are calculated corresponding to the information set available at the end of
the months of April, May and June. Three forecasts for quarter 2006Q3 and three forecasts
for quarter 2006Q4 are accordingly calculated using the information set available at the
end of the months of April, May and June. As a result, the forecasting evaluation sample is
[T1, T2 +h] where T1 is 2006Q2, T2 is 2011Q3, and h denotes the maximum forecast horizon
in quarters (i.e., 2).

Our forecasting exercise uses real-time data and takes into consideration the different
publication lags for the monthly indicators we consider.9 Actual GDP growth for evalu-
ating our forecasts is taken from the September 2012 data vintage, with last observation
T=2012:Q2. Forecasts are evaluated based on the RMSE, using an AR(1) model as the
benchmark model.

Our forecasting exercise considers linear MIDAS models, Markov-Switching MIDAS
models, linear MF-VAR models (also in stacked version), Markov-Switching MF-VAR
models (both in state space and in stacked version). For the stacked version we have
both restricted and unrestricted specifications. We also include as competitors a bivariate
Markov-Switching model as well as an ADL(1,1) model and a VAR(1) model. Overall,
we estimate for each indicator 14 models as well as an AR(1) model. We use the Clark
and West (2007) test to compare the predictive accuracy for a given model against the
more parsimonious (nested) AR(1) model.10 Table 6 reports the out-of-sample forecasting
results, in terms of RMSE.

For forecast horizons h = {0 − 5}, the ESI is the best indicator when combined with
MSMF-VAR (SV-R) (h = {0, 1}), or MSMF-VAR (SV-U) (h = {2, 4, 5}) or MF-VAR (SV-
R) (h = {3}). The good performance of the MSMF-VAR (SV) model is also in line with
the Monte Carlo results.

Interestingly, for 2-quarter ahead forecasts (h = 6− 8), M1 becomes the best indicator,
in particular when combined with an ADL-MIDAS specification.

Overall, the results for nowcasting and short term forecasting GDP growth provide
good support for the MSMF-VAR, with the MSMF-VAR (SV) best or second best for
h = {0, 1, 2, 3, 4, 5}, in combination with the ESI. This is even more noticeable since there
are a limited number of observations on regime 2 (recessions) in the sample, and as we have
seen from the Monte Carlo experiments in this case simpler models, possibly even without
MS, perform well.

To assess whether the MSMF-VAR also performs well at predicting turning points,
Figures 3-8 report the recursively estimated vintages of the real-time probability of a euro

9Specifically, the economic sentiment indicator and the slope of the yield curve are readily available
at the end of each month. We consider that industrial production and M1 monetary aggregate have a
two-month publication lag (since we assume that forecasts are generated on the last day of each month).

10Admittedly, this test overlooks the real-time nature of the data. However, the Clark and McCracken
(2009) test of equal predictive ability with real-time data is not straightforward to implement in the context
of MIDAS models.

15



area recession obtained from the various MS specifications. The different vintages for
the probabilities are obtained from the recursive forecasting exercise. Table 7 reports the
average of the QPS and LPS calculated for each quarter of the evaluation sample. First, a
simple univariate MS-AR model performs best in terms of QPS when compared to models
that use the M1 monetary aggregate and industrial production as a monthly indicator.
However, a visual inspection of Figure 4 shows that the model performs relatively poorly
to detect the beginning of recessions. Second, when pooling the results across indicators,
the MSMF-VAR (KF) model yields the best results in terms of QPS and LPS (see the last
column of Table 7). In particular, Figure 3 shows that the MSMF-VAR (KF) model can
indeed very well capture euro area recessionary episodes in a pseudo real-time forecasting
context, including the ongoing euro area recession. Third, the stacked-system version of
the MSMF-VAR is nearly always outperformed by its Kalman filter version counterpart
(except when compared with the MSMF-VAR(SV-R) with the slope of the yield curve as a
monthly indicator) in line with the simulation results. Fourth, as in Guérin and Marcellino
(2013) for the US, the MS-MIDAS model with the slope of the yield curve also works very
well for the euro area.

On balance, our results suggest that there are advantages in using both simple models
based on GDP alone and more elaborated models involving different frequency mixes such
as the MSMF-VAR(KF) model for detecting business cycle turning points. This is in line
with the Monte Carlo results and the conclusions from Hamilton (2011).

5 Conclusions

In this paper we introduce regime switching parameters in the Mixed-Frequency VAR
model. We first discuss estimation and inference for the resulting Markov-Switching Mixed
Frequency VAR (MSMF-VAR) model, based either on a combination of the Kalman and
Hamilton filters, as in Kim and Nelson (1999), or on the Hamilton filter applied on a stacked
version of the MF-VAR.

Next, we assess the finite sample performance of the technique in Monte-Carlo exper-
iments, relative to a large set of alternative models for mixed frequency data, with or
without Markov Switching. We find that the estimation of the MSMF-VAR is fairly com-
plex, such that its forecasting performance for the variables in levels is not so good unless
there are frequent changes in regimes and a fairly long estimation sample. The MSMF-
VAR (SV) seems to work better than the MSMF-VAR (KF), while the opposite is true
when estimating regime changes. For the latter target, the MSMF-VAR (KF) becomes
very competitive.

Finally, the MSMF-VAR model is applied to predict GDP growth and business cycle
turning points in the euro area. Its performance is again compared with that of a number
of competing models, including linear and regime switching mixed data sampling (MIDAS)
models. In line with the Monte Carlo experiments, the MSMF-VAR (KF) is particularly
useful to estimate the status of economic activity, while the MSMF-VAR (SV) seems to
work well for nowcasting and short term forecasting the euro area GDP growth (when using
the ESI as a timely monthly indicator).
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Appendix A: Kalman and Hamilton filters to estimate state-space models
with regime switching

The equations of the basic Kalman filter can be found in a standard time series textbook
such as Luetkepohl (2005). The general representation for a state-space model with regime
switching in both measurement and transition equations is given by:

yt = H(St)βt + A(St)zt + et

βt = µ̃(St) + F (St)βt−1 +G(St)vt

where et ∼ N(0, R(St)), vt ∼ N(0, Q(St)), and et and vt are not correlated.

Kim and Nelson (1999) show how to combine the Kalman and Hamilton filters in a
tractable way. The equations of the Kim and Nelson (1999) filtering procedure for state-
space models with regime switching are:

β
(i,j)
t|t−1 = µ̃j + Fjβ

i
t−1|t−1

P i,j
t|t−1 = FjP

i
t−1|t−1F

′
j +GQjG

′
j

η
(i,j)
t|t−1 = yt −Hjβ

(i,j)
t|t−1 − Ajzt

f
(i,j)
t|t−1 = HjP

(i,j)
t|t−1H

′
j +Rj

β
(i,j)
t|t = β

(i,j)
t|t−1 + P

(i,j)
t|t−1H

′
j[f

(i,j)
t|t−1]−1η

(i,j)
t|t−1

P
(i,j)
t|t = (I − P (i,j)

t|t−1H
′
j[f

(i,j)
t|t−1]−1Hj)P

(i,j)
t|t−1

When there is regime switching, it is also necessary to introduce approximations at the end
of the Kalman and Hamilton filters to avoid the proliferation of cases to be considered:

βjt|t =

∑M
i=1 Pr[St−1 = i, St = j|Ψt]β

(i,j)
t|t

Pr[St = j|Ψt]

P j
t|t =

∑M
i=1 Pr[St−1 = i, St = j|Ψt]{P (i,j)

t|t + (βjt|t − β
(i,j)
t|t )(βjt|t − β

(i,j)
t|t )′}

Pr[St = j|Ψt]
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Appendix B: Additional details on the Monte Carlo experiments

In the Monte-Carlo experiments, we estimate 15 models to evaluate the forecasting
performance of the Markov-Switching Mixed Frequency VAR models. Denote yt the low
frequency variable sampled at the low frequency unit, y∗t the low frequency variable at the
high frequency unit, xt the high frequency variable aggregated at the low frequency unit via
a simple arithmetic mean, and x∗t the high frequency variable sampled at the high frequency
unit. Also, assuming a mix of quarterly and monthly variables, denote x∗,1t , x∗,2t and x∗,3t ,
the releases of the high frequency variable in the first, second and third month of quarter
t. When considering regime switches, we assume that St is an ergodic and irreducible
Markov-chain with two regimes. The models under comparison are listed below.

• AR(1) model:
yt = α0 + α1yt−1 + εt, εt ∼ N(0, σ)

• ADL(1,1) model:
yt = α0 + α1yt−1 + β1xt + εt, εt ∼ N(0, σ)

• linear MIDAS model:

yt = β0 + β1B(L(1/m); θ)x∗t−h + εt, εt ∼ N(0, σ)

• linear ADL-MIDAS model:

yt = β0 + β1B(L(1/m); θ)x∗t−h + λyt−1 + εt, εt ∼ N(0, σ)

• Univariate Markov-Switching model:

yt = α0(St) + α1yt−1 + ε(St), εt|St ∼ N(0, σ(St))

• Markov-Switching MIDAS model

yt = β0(St) + β1B(L(1/m); θ)x∗t−h + εt(St), εt|St ∼ N(0, σ(St))

• Markov-Switching ADL-MIDAS model

yt = β0(St) + β1B(L(1/m); θ)x∗t−h + λyt−1 + εt(St), εt|St ∼ N(0, σ(St))

• Kalman filter version of the linear Mixed Frequency VAR (MF-VAR (KF)):

Y ∗t = A0 + A1Y
∗
t−1 + ut, ut ∼ N(0,Σ)

where Y ∗t = (y∗t , x
∗
t )
′

• Kalman filter version of the Markov-Switching Mixed Frequency VAR (MSMF-VAR
(KF)):

Y ∗t = A0(St) + A1Y
∗
t−1 + ut(St), ut|St ∼ N(0,Σ(St))

where Y ∗t = (y∗t , x
∗
t )
′
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• VAR(1) model:
Yt = A0 + A1Yt−1 + ut, ut ∼ N(0,Σ)

where Yt = (yt, xt)
′

• Markov-switching VAR(1) model:

Yt = A0(St) + A1Yt−1 + ut(St), ut|St ∼ N(0,Σ(St))

where Yt = (yt, xt)
′

• Stacked vector system version of the linear Mixed Frequency VAR with no restrictions
on the parameters (MF-VAR (SV-U)):

Zt = A0 + A1Zt−1 + ut, ut ∼ N(0,Σ)

where Zt = (x∗,1t , x∗,2t , x∗,3t , yt)
′

• Stacked vector system version of the Markov-Switching Mixed Frequency VAR with
no restrictions on the parameters (MSMF-VAR (SV-U)):

Zt = A0(St) + A1Zt−1 + ut(St), ut|St ∼ N(0,Σ(St))

where Zt = (x∗,1t , x∗,2t , x∗,3t , yt)
′

• Stacked vector system version of the linear Mixed Frequency VAR with restrictions
on some of the parameters (MF-VAR (SV-R)):

Zt = A0 + A1Zt−1 + ut, ut ∼ N(0,Σ) (24)

where Zt = (x∗,1t , x∗,2t , x∗,3t , yt)
′ and the A1 matrix has a particular structure. We as-

sume that the high frequency process is ARX(1) with the impact of the low frequency
series constant throughout the period. Then, following Ghysels (2012), equation (24)
can be rewritten as follows:


x∗,1t
x∗,2t
x∗,3t
yt

 =


0 0 ρH a1

0 0 ρ2
H a2

0 0 ρ3
H a3

b1 b2 b3 ρL

 ∗

x∗,1t−1

x∗,2t−1

x∗,3t−1

yt−1

+


ux

∗,1
t

ux
∗,2
t

ux
∗,3
t

uyt

 (25)

Likewise, in line with Ghysels (2012), we also impose the following restrictions on the
variance-covariance matrix of the residuals:

Σ =


σxx ρHσxx ρ2

Hσxx σxy
ρHσxx (1 + ρH)σxx ρHσxx σxy
ρ2
Hσxx ρHσxx (1 + ρH + ρ2

H)σxx σxy
σxy σxy σxy σyy

 (26)
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• Stacked vector system version of the Markov-Switching Mixed Frequency VAR with
restrictions on some of the parameters (MSMF-VAR (SV-R)):

Zt = A0(St) + A1Zt−1 + ut(St), ut|St ∼ N(0,Σ(St))

where Zt = (x∗,1t , x∗,2t , x∗,3t , yt)
′ and the A1 matrix has a structure similar to that in

equation (25) above.

The variance-covariance matrix of the residuals takes the following form:

Σ =


σxx(St) ρHσxx(St) ρ2

Hσxx(St) σxy(St)
ρHσxx(St) (1 + ρH)σxx(St) ρHσxx(St) σxy(St)
ρ2
Hσxx(St) ρHσxx(St) (1 + ρH + ρ2

H)σxx(St) σxy(St)
σxy(St) σxy(St) σxy(St) σyy(St)

 (27)
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Appendix C: Nowcasting exercise with the stacked vector system version of
the Mixed-frequency VAR model

In the case of the stacked vector system version of the mixed-frequency VAR model,
nowcasts are obtained as follows.

First, denote the reduced-form version of the VAR(1) model as follows:

Zt = AZt−1 + et (28)

Assume E(ete
′
t) = V and V = P−1D(P−1)′ where P has a unit main diagonal and D is a

diagonal matrix. Premultiplying equation (28) by P, we obtain the structural VAR:

PZt = PAZt−1 + εt (29)

The structural shocks, εt, are given by εt = Pet

For simplicity of notation, we assume in the sequel that there is only one low-frequency
variable and one high-frequency variable and we consider the standard macroeconomic
forecasting context of a mix between quarterly and monthly variables but note that this
framework can be easily extended to larger systems or different frequency mixes. We then
assume that Zt = (x

(1)
t , x

(2)
t , x

(3)
t , yt)

′, where:

• x(1)
t is the monthly indicator corresponding to the first month of the quarter.

• x(2)
t is the monthly indicator corresponding to the second month of the quarter.

• x(3)
t is the monthly indicator corresponding to the third month of the quarter.

• yt is the quarterly indicator.

The first possibility is that we want to forecast yt+k without knowing any observations

for x
(1)
t+k, x

(2)
t+k and x

(3)
t+k where k = {1, 2, 3, ..., H}. This is the standard case where one uses

the reduced-form VAR model described in equation (28).

By contrast, if one wants to forecast yt+k provided that the first release of the high

frequency indicator has been released (i.e. x
(1)
t+k), one can use certain elements of the

structural VAR matrix P to capture the contemporaneous correlation between the variables
for now-casting (and performing within quarter updates of the now-casts.

Let us define the P matrix of contemporaneous correlations that is obtained via a
Choleski decomposition as follows:

P =


1 0 0 0
A 1 0 0
B D 1 0
C E F 1

 .
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Then, equation (29) above can be rewritten as follows:
1 0 0 0
A 1 0 0
B D 1 0
C E F 1

 ∗

x

(1)
t

x
(2)
t

x
(3)
t

yt

 =


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 ∗

x

(1)
t−1

x
(2)
t−1

x
(3)
t−1

yt−1

+


εS,x

(1)

t

εS,x
(2)

t

εS,x
(3)

t

εS,yt

 (30)

where PA = [α]ij is the matrix of structural-form VAR coefficients.

From the last equation in (30), the optimal forecast for yt+1 given x
(1)
t+1 is

yt+1 = α41x
(1)
t + α42x

(2)
t + α43x

(3)
t + α44yt − Cx

(1)
t+1 +

−E(E(x
(2)
t+1|x

(1)
t+1)− FE(x

(3)
t+1|x

(1)
t+1),

where
E(x

(2)
t+1|x

(1)
t+1) = α21x

(1)
t + α22x

(2)
t + α23x

(3)
t + α24yt − Ax

(1)
t+1

and

E(x
(3)
t+1|x

(1)
t+1) = α31x

(1)
t + α32x

(2)
t + α33x

(3)
t + α34yt − Bx

(1)
t+1 −DE(x

(2)
t+1|x

(1)
t+1)

Along the same lines, the optimal nowcast for yt+1 given x
(1)
t+1 and x

(2)
t+1 is

yt+1 = α41x
(1)
t + α42x

(2)
t + α43x

(3)
t + α44yt − Cx

(1)
t+1 +

−Ex(2)
t+1 − FE(x

(3)
t+1|x

(2)
t+1),

where

E(x
(3)
t+1|x

(2)
t+1) = α31x

(1)
t + α32x

(2)
t + α33x

(3)
t + α34GDPt − Bx

(1)
t+1 −Dx

(2)
t+1.

Finally, if we know x
(1)
t+1, x

(2)
t+1 and x

(3)
t+1 the nowcast for yt+1 is given by:

yt+1 = α41x
(1)
t + α42x

(2)
t + α43x

(3)
t + α44yt − Cx

(1)
t+1 − Ex

(2)
t+1 − Fx

(3)
t+1,
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Figure 1: Monthly GDP from the Markov-switching Mixed-Frequency VAR
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CEPR Recessions Eurocoin Monthly GDP (MSMF-VAR model with ESI)

Note: This figure shows the monthly estimate of euro area quarterly GDP growth at an annual rate from

the MSMF-VAR (KF) model with quarterly GDP and monthly ESI along with the Eurocoin indicator also

at an annual rate.
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Table 3: List of monthly indicators

Indicator Transformation

Economic Sentiment Indicator quarterly change in the logarithm of monthly ESI

M1 Monetary Aggregate quarterly change in the logarithm of monthly M1

Industrial Production quarterly change in the logarithm of monthly IP

Slope of the yield curve quarterly change in the level of the slope of the yield curve

This table reports the list of monthly indicators we use in the empirical application. The second column

of the table shows the transformation we applied to each indicator. Data were downloaded from the ECB

real-time database and Haver Analytics.
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Table 4: In-sample results - MSMF-VAR (KF) model

ESI M1 Monetary Industrial Slope of the

Aggregate Production yield curve

p11 .975 .961 .992 .970

[.012] [.016] [.006] [.015]

p22 .922 .724 .904 .952

[.039] [.108] [.078] [.029]

µ1
y 2.597 2.096 2.053 2.234

[.239] [.280] [.242] [.227]

µ1
x -.458 1.628 .465 -0.067

[.800] [.141] [.171] [.069]

µ2
y -.999 .545 -.486 1.094

[.706] [1.383] [2.463] [.732]

µ2
x -1.868 2.880 -1.078 .131

[1.227] [.373] [1.296] [.145]

σ1
y .891 .962 1.819 .540

[.168] [.274] [.167] [.085]

σ1
x 1.131 .610 .693 .211

[.057] [.033] [.046] [0.013]

σ2
y 1.994 2.583 4.603 1.598

[.435] [.820] [1.024] [0.275]

σ2
x 2.993 1.854 2.244 .401

[.273] [.299] [.597] [.033]

This table reports the in-sample parameter estimates for the MSMF-VAR (KF) model with quarterly GDP

and monthly economic sentiment indicator. p11 is the transition probability of staying in the first regime.

p22 is the transition probability of staying in the second regime. The µ’s are the intercepts for each equation

of the VAR in each regime, while the σ’s are the estimates for the variance of the innovation in each regime.

Standard deviations are reported in brackets and are calculated from the outer product estimate of the

Hessian. 30



Table 5: In-sample QPS and LPS

ESI M1 Monetary Industrial Slope of the Pooling across

Aggregate Production yield curve indicators

Panel A: Quadratic Probability Score (QPS)

MS-AR .239 .239 .239 .239 .239
MSADL-MIDAS .289 .260 .223 .233 .245
MS-MIDAS .688 .457 .446 .159 .342
MS-VAR .489 .558 .354 .268 .227
MSMF-VAR (KF) .201 .364 .458 .390 .199
MSMF-VAR (SV-U) .273 .415 .637 .663 .255
MSMF-VAR (SV-R) .262 .494 .447 .305 .203
Pooling across models .172 .210 .341 .233 .191

Panel B: Log Probability Score (LPS)

MS-AR .601 .601 .601 .601 .601
MSADL-MIDAS .676 .686 .533 .554 .567
MS-MIDAS 1.673 1.101 1.033 .297 .581
MS-VAR 1.428 1.114 .867 .612 .363
MSMF-VAR(KF) .439 .784 .852 .632 .321
MSMF-VAR (SV-U) .699 1.449 1.845 2.452 .397
MSMF-VAR (SV-R) .596 1.800 1.265 .684 .316
Pooling across models .304 .347 .516 .404 .324

This table reports the in-sample quadratic probability score (QPS) and log probability score (LPS). We use

the chronology of the euro area business cycle from the CEPR business cycle dating committee to identify

the euro area expansions and recessions. This chronology is only available at the quarterly frequency. To

calculate QPS and LPS for MSMF-VAR (KF) models that directly estimate the model at the monthly

frequency, we disaggregated the CEPR business cycle chronology at the monthly frequency by assuming

that the euro area was in recession in month m belonging to quarter t if the CEPR business cycle dating

committee considered that the euro area was in recession in quarter t. The probabilities of a euro area

recession are from the September 2012 data vintage with last observation June 2012 for the MSMF-VAR

(KF) model and 2012Q2 for the other models. Bold entries are the smallest QPS and LPS for the indicated

indicator.
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Table 6: Forecasting euro area GDP growth - RMSE

Forecasting horizon 0 1 2 3 4 5 6 7 8
(months)

Economic Sentiment Indicator

MIDAS .890*** .804*** .805*** .650** .774** .820*** .873*** .893*** .902***
ADL-MIDAS .724*** .664*** .641** .557** .725** .811*** .836** .887*** .893**
MS-MIDAS .755** .720** .669** .772** .824** .810** .902** .979** .953**
MSADL-MIDAS .655** .623** .545* .595** .698** .817** .872** .912** .954**
VAR .796** .796** .796** .996 .996 .996 1.034 1.034 1.034
MS-VAR .773** .773** .773** 1.056 1.056 1.056 1.178 1.178 1.178
MF-VAR (KF) .651** .694** .836** .853** .955** 1.014 .952 .963** .958*
MSMF-VAR (KF) .673** .709** .894* .666* .942 1.018 1.084 1.085 1.114
MF-VAR (SV-U) .556** .545** .627** .630** .720** .846** .868*** .887*** .974**
MSMF-VAR (SV-U) .643** .542** .533*** .562** .592** .704** .844* .842** .908**
MF-VAR (SV-R) .429** .513** .626*** .528** .739** .866** .898*** 1.044** 1.081**
MSMF-VAR (SV-R) .413** .433** .539** .679** .737** .981** .908** .930** .998**
ADL(1,1) .781** .781** .781** .923** .923** .923** .973* .973* .973*

Industrial Production

MIDAS .552* .733 1.094 1.117 1.254 1.215 1.082 1.072 1.035
ADL-MIDAS .506* .733 1.061 1.125 1.231 1.203 1.106 1.082 1.025
MS-MIDAS .586* .977 1.200 .829 .929 .991 1.044 1.134 1.184
MSADL-MIDAS .590* 1.052 1.147 .911 .917 .952 1.023 1.157 1.148
VAR 1.121 1.121 1.121 1.183 1.183 1.183 1.205 1.205 1.205
MS-VAR .846 .846 .846 1.010 1.010 1.010 1.277 1.277 1.277
MF-VAR (KF) .662 .741 .733 .791** .831** .879** .826** .832** .831**
MSMF-VAR (KF) 1.093 1.251 1.362 .706* .867** .890** .900** .878** .885**
MF-VAR (SV-U) .729* 1.116 1.253 1.205 1.345 1.387 1.296 1.343 1.377
MSMF-VAR (SV-U) .853* 1.357 1.474 1.233 1.383 1.416 1.538 1.628 1.701
MF-VAR (SV-R) .703* 1.097 1.181 1.242 1.347 1.348 1.305 1.316 1.325
MSMF-VAR (SV-R) .678* .924 1.006 1.132 1.266 1.264 1.224 1.384 1.391
ADL(1,1) 1.029 1.029 1.029 1.088 1.088 1.088 .976* .976* .976*

Slope of the yield curve

MIDAS 1.156 1.144 1.317 1.046 1.042 1.033 1.050 1.048* 1.050
ADL-MIDAS .922** 1.020** 1.026 1.051 1.007* 1.000* .992 .994 .986
MS-MIDAS .994 .800 1.493 1.004 1.011 0.874 1.163 1.185 1.179
MSADL-MIDAS .749 .552 1.077 1.029 1.007 1.059* .980 1.094 1.066
VAR 1.011** 1.011** 1.011** 1.047* 1.047* 1.047* 1.025 1.025 1.025
MS-VAR .922** .922** .922** .988 .988 .988 1.018 1.018 1.018
MF-VAR (KF) 1.080 1.106 1.078 .944* .946 .955 .931** .932** .932**
MSMF-VAR (KF) 1.223 1.384 1.435 1.045 1.032 1.025 .994 .990 .992
MF-VAR (SV-U) 1.258 1.233 1.282 1.061 1.070 1.142 1.029 1.028 1.065
MSMF-VAR (SV-U) 1.173 1.136 1.268 1.048 1.046 1.060 1.073 1.074 1.112
MF-VAR (SV-R) 1.271 1.256 1.250 1.071 1.080 1.189 1.031 1.043 1.108
MSMF-VAR (SV-R) 1.162 1.156 1.130 1.028 1.036 1.005 1.030 1.044 1.062
ADL(1,1) 1.011 1.011 1.011 .978 .978 .978 .972* .972* .972*

Univariate MS model .851* .851* .851* .947 .947 .947 1.042 1.042 1.042

This table reports the relative mean squared forecast error (RMSE) for forecasting euro area GDP growth.

The benchmark model is an AR(1) model. Bold entries are the smallest RMSE for the indicated horizon

and indicator. Asterisks *, **, *** indicate cases in which the Clark and West (2007) test rejected the null

hypothesis of equal forecast accuracy at the 10%, 5% and 1% significance levels, respectively (one-sided

tests, the parsimonious model is always the AR(1) model).
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Table 6: Forecasting euro area GDP growth - RMSE (continued)

Forecasting horizon 0 1 2 3 4 5 6 7 8
(months)

Monetary Aggregate M1

MIDAS .960* .980* .954* .793** .766** .736** .702** .698** .717**
ADL-MIDAS .772*** .782*** .875** .771** .733*** .713*** .692*** .675*** .702***
MS-MIDAS .839** .859*** .895*** .948** .946** .822*** .831*** .859*** .758***
MSADL-MIDAS .633* .871 .621** 1.007 .734*** .756*** .752*** .767*** .740***
VAR .920** .920** .920** .946 .946 .946 1.342 1.342 1.342
MS-VAR 1.111 1.111 1.111 .953* .953* .953* 1.007 1.007 1.007
MF-VAR (KF) .787** .722** .866*** .704** .714*** .831*** .854** .938** 1.030*
MSMF-VAR (KF) 1.273 1.266 1.226 1.037 1.039 .968 .951* .959* .953*
MF-VAR (SV-U) 1.129 .997 .989 .990 1.129 1.106 1.012 .931** .933**
MSMF-VAR (SV-U) .963* .933* .963 .937* .948* .940* 1.007 .962* .969*
MF-VAR (SV-R) 1.030 .957 .940 .875** .891** .889** .878*** .765** .789**
MSMF-VAR (SV-R) .895** .856*** .879** .783** .848** .927** .726** .706** .922**
ADL(1,1) 1.011 1.011 1.011 .819*** .819*** .819*** .847*** .847*** .847***

Model average across all indicators (equal weights)

MIDAS .732*** .783*** .828*** .721** .801*** .828*** .831*** .849*** .870***
ADL-MIDAS .627** .698** .782** .748** .801** .839** .842** .848** .855***
MS-MIDAS .530** .557** .725** .722** .803** .799** .863*** .909*** .893***
MSADL-MIDAS .471** .550* .636* .896 .793** .841** .835** .867** .873***
VAR .862** .862** .862** .955 .955 .955 1.059 1.059 1.059
MS-VAR .838** .838** .838** .956 .956 .956 1.076 1.076 1.076
MF-VAR (KF) .537** .644** .734** .698** .800* .865** .838** .844** .855**
MSMF-VAR (KF) .953 .955 1.063 .966 .969** .979 .984 .999* 1.007
MF-VAR (SV-U) .660** .683** .706** .781** .871** .920** .959** .946** .954*
MSMF-VAR (SV-U) .616** .658** .704** .798** .846** .850** 1.023 1.015 1.013
MF-VAR (SV-R) .623** .659** .683** .788** .858** .889* .926** .907** .931*
MSMF-VAR (SV-R) .547** .586** .613** .769** .852** .858* .912** .936* .965*
ADL(1,1) .900* .900* .900* .914** .914** .914** .927*** .927*** .927***

Univariate MS model .851* .851* .851* .947 .947 .947 1.042 1.042 1.042

This table reports the relative mean squared forecast error (RMSE) for forecasting euro area GDP growth.

The benchmark model is an AR(1) model. Bold entries are the smallest RMSE for the indicated horizon

and indicator. Asterisks *, **, *** indicate cases in which the Clark and West (2007) test rejected the null

hypothesis of equal forecast accuracy at the 10%, 5% and 1% significance levels, respectively (one-sided

tests, the parsimonious model is always the AR(1) model).
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Table 7: QPS and LPS - Recursive forecasting exercise

ESI M1 Monetary Industrial Slope of the Pooling across

Aggregate Production yield curve indicators

Panel A: Quadratic Probability Score (QPS)

MS-AR .201 .201 .201 .201 .201
MSADL-MIDAS .394 .254 .251 .205 .237
MS-MIDAS .615 .444 .486 .194 .353
MS-VAR .480 .624 .371 .422 .252
MSMF-VAR (KF) .236 .330 .379 .597 .187
MSMF-VAR (SV-U) .364 .444 .670 .895 .299
MSMF-VAR (SV-R) .276 .511 .454 .386 .217
Pooling across models .194 .211 .285 .294 .193

Panel B: Log Probability Score (LPS)

MS-AR .597 .597 .597 .597 .597
MSADL-MIDAS 1.018 .774 .668 .597 .636
MS-MIDAS 1.725 1.296 1.269 .451 .671
MS-VAR 1.480 1.272 .964 1.045 .401
MSMF-VAR(KF) .526 .769 .879 1.282 .313
MSMF-VAR (SV-U) 1.128 1.558 2.330 3.287 .488
MSMF-VAR (SV-R) .812 1.929 1.276 1.000 .336
Pooling across models .322 .348 .429 .461 .332

This table reports the quadratic probability score (QPS) and log probability score (LPS) calculated for

each quarter of the recursive forecasting exercise, then averaged over the size of the evaluation sample.

We use the chronology of the euro area business cycle from the CEPR business cycle dating committee

to identify the euro area expansions and recessions. This chronology is only available at the quarterly

frequency. To calculate QPS and LPS for MSMF-VAR (KF) models that directly estimate the model at

the monthly frequency, we disaggregated the CEPR business cycle chronology at the monthly frequency

by assuming that the euro area was in recession in month m belonging to quarter t if the CEPR business

cycle dating committee considered that the euro area was in recession in quarter t. Bold entries are the

smallest QPS and LPS for the indicated indicator.
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Figure 2: Monthly probability of recession - in sample estimates
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Note: The above probability of a euro area recession are from a MSMF-VAR model with quarterly GDP

and monthly ESI. The shaded areas represent the CEPR recessions. Note that the model identifies the

2001-2003 period as a recession while the CEPR qualifies this episode as being a ”prolonged pause in the

growth of economic activity”.
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Figure 3: Euro area probability of recession obtained from the recursive
forecasting exercise - MSMF-VAR (KF) model
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Note: This figure reports the monthly real-time probability of a euro area recession obtained from the

MSMF-VAR (KF) model with quarterly GDP and monthly ESI. The probabilities are from the recursive

forecasting exercise using real-time data vintages. For example, the June 2006 data vintage uses information

up to 2006:Q1 for GDP and March 2006 for ESI.
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Figure 4: Euro area probability of recession obtained from the recursive
forecasting exercise - Univariate MS model
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Note: This figure reports the quarterly real-time probability of a euro area recession obtained from a

univariate MS model. The probabilities are from the recursive forecasting exercise using real-time data

vintages. For example, the June 2006 data vintage uses information up to 2006:Q1 for GDP.
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Figure 5: Euro area probability of recession obtained from the recursive
forecasting exercise - MS-MIDAS model
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Note: This figure reports the quarterly real-time probability of a euro area recession obtained from a MS-

MIDAS model with quarterly GDP and monthly ESI. The probabilities are from the recursive forecasting

exercise using real-time data vintages. For example, the June 2006 data vintage uses information up to

2006:Q1 for GDP and March 2006 for ESI.
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Figure 6: Euro area probability of recession obtained from the recursive
forecasting exercise - Bivariate MS model
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Note: This figure reports the quarterly real-time probability of a euro area recession obtained from

a bivariate MS model with quarterly GDP and quarterly ESI. The probabilities are from the recursive

forecasting exercise using real-time data vintages. For example, the June 2006 data vintage uses information

up to 2006:Q1 for GDP and March 2006 for ESI.
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Figure 7: Euro area probability of recession obtained from the recursive
forecasting exercise - MSMF-VAR (SV-U) model)
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Note: This figure reports the quarterly real-time probability of a euro area recession obtained from

a MSMF-VAR (SV-U) model with quarterly GDP and quarterly ESI. The probabilities are from the

recursive forecasting exercise using real-time data vintages. For example, the June 2006 data vintage uses

information up to 2006:Q1 for GDP and March 2006 for ESI.
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Figure 8: Euro area probability of recession obtained from the recursive
forecasting exercise - MSMF-VAR (SV-R) model)
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Note: This figure reports the quarterly real-time probability of a euro area recession obtained from

a MSMF-VAR (SV-R) model with quarterly GDP and quarterly ESI. The probabilities are from the

recursive forecasting exercise using real-time data vintages. For example, the June 2006 data vintage uses

information up to 2006:Q1 for GDP and March 2006 for ESI.
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