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1. Introduction

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models have featured

prominently in the analysis of financial time series. The last twenty years have witnessed

significant research devoted to the multivariate extension of the concepts and models ini-

tially developed for univariate GARCH. Among the numerous specifications of multivariate

GARCH (MGARCH) models, the most popular seem to be the Constant Conditional Cor-

relations (CCC) model introduced by Bollerslev (1990) and extended by Jeantheau (1998),

the Baba, Engle, Kraft and Kroner (BEKK) model of Engle and Kroner (1995), and the

Dynamic Conditional Correlations (DCC) models proposed by Tse and Tsui (2002) and

Engle (2002). Reviews on the rapidly changing literature on MGARCH are Bauwens, Lau-

rent and Rombouts (2006), Silvennoinen and Teräsvirta (2009), Francq and Zakoïan (2010,

Chapter 11), Bauwens, Hafner and Laurent (2012), Tsay (2014, Chapter 7).

The complexity of MGARCH models has been a major obstacle to their use in applied

works. Indeed, in asset pricing applications or portfolio management, cross-sections of

hundreds of stocks are common. However, as the dimension of the cross section increases,

the number of parameters can become very large in MGARCH models, making estimation

increasingly cumbersome. This "dimensionality curse" is general in multivariate time series,

but is particularly problematic in GARCH models. The reason is that the parameters of

interest are involved in the conditional variance matrix, which has to be inverted in Gaussian

likelihood-based estimation methods. Existing approaches to alleviate the dimensionality

curse rely on either constraining the structure of the model in order to reduce the number

of parameters (see e.g. Engle, Ng and Rotschild (1990), van der Weide (2002), Lanne and

Saikkonen (2007)), or using an alternative estimation criterion (see Engle, Shephard and

Sheppard (2008)). An approach combining the two concepts, was recently proposed by

Engle and Kelly (2012).

A solution to the high-dimension problem which does not preclude a high-dimensional

parameter set relies on two steps. In the first stage, univariate GARCH models are esti-

mated for each individual series, equation by equation, and in the second stage, standardized

residuals are used to estimate the parameters of the dynamic correlation. This approach,

initially proposed by Engle and Sheppard (2001) and Engle (2002) in the context of DCC

models, was advocated by Pelletier (2006) for regime-switching dynamic correlation models,

by Aielli (2013) for DCC models, and it was used in several empirical studies (see e.g. Hafner

and Reznikova (2012), Sucarrat, Grønneberg and Escribano (2013) for recent references).
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However, the statistical properties of such two-step estimators have not been established.1

The first goal of the present paper is to develop asymptotic results for the Equation-

by-Equation (EbE) estimator of the volatility parameters, based on the Quasi-Maximum

Likelihood (QML). Our framework for the individual volatilities specification is extremely

general. First, the conditional variance of component k is a parametric function of the

past of all components of the vector of returns. This allows to capture serial dependencies

between components, that do not appear in the conditional correlation matrix. Second,

the volatilities, being specified as any parametric functions of the past returns, are able to

accommodate leverage-effects or any other type of "nonlinearity". One issue of interest,

that we will also investigate, is whether individual estimation of the conditional variances

necessarily entails an efficiency loss (asymptotically and/or in finite sample) with respect

to a global QML method which estimates them jointly.

Apart from the numerical simplicity, one advantage of this approach is that the deriva-

tion of EbE estimators (EbEE) is independent from the specification of a conditional corre-

lation matrix. It can therefore be employed for CCC as well as for DCC GARCH models,

leading to the same estimators of the individual volatilities.

Another aim of this paper is to provide asymptotic results for the second step of the

two-stage approach, that is the estimation of a time-varying correlation matrix using the

standardized returns obtained in the first step. At this stage, a specification of the condi-

tional correlation dynamic is required. For CCC models, the constant conditional correlation

matrix can be estimated by the empirical correlation matrix of the EbEE residuals. In this

article, we derive asymptotic results for this estimator, which can be seen as an extension

of the two-step estimator proposed by Engle and Sheppard (2001) in the case where the

individual volatilities have pure GARCH forms with iid innovations. For DCC models, the

structure of the time-varying correlation can also be estimated.

The paper is organized as follows. Section 2 presents the main assumptions and no-

tations. In Section 3, we study the estimation of the volatility parameters without any

assumption on Rt. Particular parameterizations are discussed in Section 4. Section 5 de-

velops the two-step estimation method when the correlation matrix Rt is parameterized.

Numerical illustrations are presented in Section 6. Section 7 concludes. The most technical

assumptions and the proofs of the main theorems are collected in the Appendix. Other

proofs, along with additional numerical illustrations, are included in a supplementary file.

1See the recent survey by Caporin and McAleer (2012) for a discussion of the existence, or the

absence, of asymptotic results for multivariate GARCH models.
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2. Models and assumptions

Let ǫt = (ǫ1t, · · · , ǫmt)
′ be a R

m-valued process and let Fǫ
t−1 be the σ-field generated by

{ǫu, u < t}. Assume

E(ǫt | Fǫ
t−1) = 0, Var(ǫt | Fǫ

t−1) = Ht exists and is positive definite. (2.1)

Denoting by σ2
kt the diagonal elements of Ht, that is the variances of the ǫkt conditional on

Fǫ
t−1, let η∗

t = D−1
t ǫt = (ǫ1t/σ1t, . . . , ǫmt/σmt)

′
where Dt = diag(σ1t, . . . , σmt). By (2.1)

we have, E(η∗
t | Fǫ

t−1) = 0 and the conditional correlation matrix of ǫt is given by

Rt = Var(η∗
t | Fǫ

t−1) = D−1
t HtD

−1
t . (2.2)

It follows that the components η∗kt of η∗
t satisfy, for k = 1, . . . ,m,

E(η∗kt | Fǫ
t−1) = 0, Var(η∗kt | Fǫ

t−1) = 1. (2.3)

Introducing the vector ηt such that η∗
t = R

1/2
t ηt, the previous equations can be summarized

as follows. The square root has to be understood in the sense of the Cholesky factorization,

that is, R
1/2
t (R

1/2
t )′ = Rt and H

1/2
t (H

1/2
t )′ = Ht.

Assumptions and notations: The R
m-valued process (ǫt) satisfies















ǫt = H
1/2
t ηt, E(ηt | Fǫ

t−1) = 0, Var(ηt | Fǫ
t−1) = Im,

Ht = H(ǫt−1, ǫt−2, . . .) = DtRtDt,

(2.4)

where Ht is positive definite, Dt = {diag(Ht)}1/2 and Rt = Corr(ǫt, ǫt | Fǫ
t−1).

We assume that σ2
kt is parameterized by some parameter θ

(k)
0 ∈ R

dk , so that







ǫkt = σktη
∗
kt,

σkt = σk(ǫt−1, ǫt−2, . . . ; θ
(k)
0 ),

(2.5)

where σk is a positive function. In view of (2.3), the process (η∗
t ) can be called the vector

of EbE innovations of (ǫt).

Remark 2.1. In Model (2.4)-(2.5), the volatility of any component of ǫt is allowed to

depend on the past values of all components. This assumption represents an extension of

the classical set up of univariate GARCH models and, for this reason, Model (2.5) can

be referred to as an augmented GARCH model in the terminology of Hörmann (2008).
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This extension is firstly motivated by the sake of generality: it seems very restrictive to

assume that the conditional variance of a component is not influenced by the past of other

components. On the other hand, the EbE estimation approach of the paper makes this

extension amenable to statistical inference, without causing an explosion in the number of

parameters. For instance, if the individual volatilities have GARCH(1,1)-type dynamics,

σ2
kt = ωk +

m
∑

ℓ=1

αk,ℓǫ
2
ℓ,t−1 + βkσ

2
k,t−1, ωk > 0, αk,ℓ ≥ 0, βk ≥ 0, (2.6)

increasing by K the number of components entails an additional number of K parameters

by equation. Finally, this extension allows to tackle the problem of asynchronous data by

allowing each conditional variance to depend on the most recent observations. See Section

6.2.1 for more details on this issue.

Remark 2.2. A variety of parametric forms of function H have been introduced in the

literature. In particular, a standard specification of diag(Ht) is, in vector form, given by

ht = ω +

q
∑

i=1

Aiǫt−i +

p
∑

j=1

Bjht−j (2.7)

where ht =
(

σ2
1t, · · · , σ2

mt

)′
, ǫt =

(

ǫ21t, · · · , ǫ2mt

)′
, Ai and Bj are m×m matrices with pos-

itive coefficients and ω = (ω1, · · · , ωm)′ is a vector of strictly positive coefficients. Conrad

and Karanasos (2010) provide less restrictive assumptions that ensure the positive definite-

ness of Ht, and also show that there exists a representation of the form (2.7) in which the

Bj’s are diagonal. When p = q = 1 and B1 is diagonal, the individual volatilities satisfy a

dynamic of the form (2.6).

Remark 2.3. The positivity of the function σk generally entails restrictions on the pa-

rameter values which cannot be made explicit under the general formulation. For particular

models such constraints can be explicited, as in (2.6). Note that the EbE innovations η∗kt

are not iid in general, and thus (2.5) is not a Data Generating Process (DGP).

GARCH-type models constitute the most important class of DGP satisfying the previous

assumptions. Consider a GARCH process, defined as a non anticipative2 solution of

ǫt = DtR
1/2
t ηt, where (ηt) is an iid sequence. (2.8)

Obviously, (ǫt) thus satisfies (2.4). In this paper, we will distinguish CCC models, for which

Rt = R is a constant correlation matrix, (2.9)

2that is ǫt ∈ Fη

t , the σ-field generated by {ηu, u ≤ t}.
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from DCC models where Rt is a non constant function of the past of ǫt, that is,

Rt = R(ǫt−1, ǫt−2, . . .) 6= R.

Note that in the case of CCC models, the sequence (η∗
t ) is iid which is generally not the

case for DCC models. In the econometric literature, CCC models are generally introduced

under the specification (2.7) of the individual conditional variances.3 To avoid confusion,

we will refer to (2.7)-(2.9) as the CCC-GARCH(p, q) model.

3. Equation-by-equation estimation of volatility parameters in MGARCH models

In this section, we are interested in estimating the conditional variance of each component

of ǫt satisfying (2.4). In other words, we study the estimation of the parameter θ
(k)
0 in the

augmented GARCH model (2.5), under (2.3), for k = 1, . . . ,m. We will use the Gaussian

QML, but other methods could be considered as well (for instance the weighted QML

studied by Ling (2007), the non Gaussian QML studied by Berkes and Horváth (2004)).

In view of Remarks 2.1 and 2.3, the augmented GARCH model (2.5) is not, in general, a

univariate GARCH and we cannot directly rely on existing results for its estimation.

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, we define

σ̃kt(θ
(k)) = σk(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ

(k)) for k = 1, . . . ,m and θ(k) ∈ Θk, as-

suming that Θk is a compact parameter set and θ
(k)
0 ∈ Θk. This random variable will be

approximated by σkt(θ
(k)) = σk(ǫt−1, ǫt−2, . . . ; θ

(k)).

Let θ̂
(k)
n denote the equation-by-equation estimator of θ

(k)
0 :

θ̂(k)
n = arg min

θ(k)∈Θ(k)
Q̃(k)

n (θ(k)), Q̃(k)
n (θ(k)) =

1

n

n
∑

t=1

log σ̃2
kt

(

θ(k)
)

+
ǫ2kt

σ̃2
kt

(

θ(k)
) .

3.1. Consistency and asymptotic normality of the EbEE

We make the following assumption on the process (ǫt).

A1: (ǫt) is a strictly stationary and ergodic process satisfying (2.4), with E|ǫkt|s < ∞ for

some s > 0. Moreover, E log σ2
kt < ∞.

This assumption will be made more explicit for specific models in Section 4 (see also The-

orem 2.1 and Corollary 2.2 in Francq and Zakoïan (2012)). Technical assumptions on the

3Bollerslev (1990) introduced this model in the case of diagonal matrices Ai and Bj . Ling and

McAleer (2003) proved the asymptotic properties of a general version of this model (without any

diagonality assumption) subsequently called the Extended CCC model by He and Teräsvirta (2004).
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function σk are relegated to Appendix A. We also assume the existence of a lower bound,

ensuring that the criterion be well defined for any parameter value.

A4: we have σkt(·) > ω for some ω > 0.

To prove the asymptotic normality, we need to assume

A7: θ
(k)
0 belongs to the interior of Θ(k),

A8: E |η∗kt|
4(1+δ)

< ∞, for some δ > 0,

and some additional technical assumptions A9-A12.

Theorem 3.1. If A1 and A4-A6 hold, the EbEE of θ
(k)
0 in the augmented GARCH

model (2.5) is strongly consistent: θ̂
(k)
n → θ

(k)
0 , a.s. as n → ∞.

If, in addition, A7-A12 hold, then

√
n
(

θ̂(k)
n − θ

(k)
0

)

L→ N
{

0,J−1
kk IkkJ

−1
kk

}

,

where Ikk = E
(

{η∗4kt − 1}dktd
′
kt

)

, Jkk = E (dktd
′
kt) , dkt =

1
σ2
kt

∂σ2
kt

(θ
(k)
0 )

∂θ(k) .

Remark 3.1. The sequence (ηt) in (2.4) is only assumed to be a conditionally ho-

moscedastic martingale difference (not necessarily iid), as in Bollerslev and Wooldridge

(1992). An analogous result was established, in the case of univariate GARCH(p, q) mod-

els, by Escanciano (2009) as an extension of Berkes, Horváth and Kokoszka (2003) and

Francq and Zakoïan (2004).

Remark 3.2. The EbE approach is particularly suited for the specification (2.7) with

diagonal matrices Bj , for which each component of θ0 is only involved in one volatility

equation. If in addition the matrices Ai are diagonal, more primitive assumptions can be

given in Theorem 3.1 (see the supplementary file).

3.2. Comparison with the theoretical QML estimator

A question of interest is whether the EbEE approach necessarily entails an efficiency loss

(the price paid for its simplicity) with respect to a QML method in which the volatility

parameters are jointly estimated. To be able to write the global quasi-likelihood, it is

necessary to specify the conditional correlation matrix. Because we wish to compare the

estimators of the volatility parameters, we consider the global QML estimator (QMLE) of

θ0 based on the assumption that the matrix Rt is constant and is known.4

4We can thus call this estimator theoretical QMLE, or infeasible QMLE.
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A theoretical QMLE of θ0 is defined as any measurable solution θ̂QML
n of

θ̂QML
n = arg min

θ∈Θ
n−1

n
∑

t=1

ℓ̃t(θ), ℓ̃t(θ) = ǫ′tH̃
−1
t ǫt + log |H̃t|,

where H̃t = D̃tRD̃t and D̃t = diag(σ̃1t(θ
(1)), . . . , σ̃mt(θ

(m))). Let R−1 = (r∗kℓ). Let the

d × d matrix M = (Mkℓ) where Mkℓ = τkℓJkℓ −
∑m

i,j=1 ξkiξjℓ(κij − 1)JkiJ
−1
ii JijJ

−1
jj Jjℓ,

and

κkℓ = E
(

η∗2kt η
∗2
ℓt

)

, ξkℓ =
1

2







r∗kk + 1 if k = ℓ

rkℓr
∗
kℓ if k 6= ℓ

, τkℓ =

m
∑

i,j=1

r∗kir
∗
ℓjE(η∗ktη

∗
itη

∗
jtη

∗
ℓt)− 1.

Proposition 3.1. Under the assumptions of Theorem 3.1, the QMLE of the volatility

parameters, assuming that Rt = R is known, is asymptotically more efficient (resp. less

efficient) than the EbEE if and only if M is negative definite (resp. positive definite).

When R is the identity matrix, M = 0 and the two methods are equivalent, producing the

same estimators. In practical implementation of the QML, matrix R has to be estimated,

which may lower the accuracy of the volatility parameters estimators. It is interesting to

note that the QMLE is not always asymptotically more efficient than the EbEE, even in the

favorable situation where R is known (which has no consequence for the EbEE). Calculations

reported in the supplementary file show that, in the particular case where the only unknown

coefficients are the parameters of the first volatility, M = {τ11 − ξ211(κ11 − 1)}J11. Thus

M is positive definite if and only if τ11 > ξ211(κ11 − 1), whatever θ0. It follows that

the EbEE may be asymptotically superior to the QMLE when the distribution of (η∗
t )

is sufficiently far from the Gaussian. In the general case, it does not seem possible to

characterize more explicitly the models and errors distribution for which one estimation

method asymptotically outperforms the other. However, matrix M can be consistently

estimated, making it possible to compare the two methods.

3.3. Asymptotic results for strong augmented GARCH models

The asymptotic distribution of the EbEE can be simplified under the assumption that

η∗kt is independent from Fǫ
t−1. (3.1)

Moreover, A8 can be replaced by the weaker assumption

A8
∗: E |η∗kt|

4
< ∞,
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and the technical assumptions A10 on the volatility function can be slightly weakened (see

A10
∗ in Appendix A). The asymptotic distribution of the EbEE is modified as follows.

Theorem 3.2. Under (3.1) and the assumptions of Theorem 3.1, with A8 replaced by

A8
∗ and A10 replaced by A10

∗, we have
√
n
(

θ̂
(k)
n − θ

(k)
0

)

L→ N
{

0, (Eη∗4kt − 1)J−1
kk

}

.

It can be noted that (3.1) is always satisfied in the CCC case, that is, under (2.8) and

Rt = R. The next result shows that (3.1) can be satisfied for other GARCH-type models.

Proposition 3.2. Assume that the distribution of ηt is spherical in Model (2.8). Then

(3.1) is satisfied. Moreover, (η∗kt) is an iid (0,1) sequence.

Remark 3.3. It is worth noting that, under the assumptions of Proposition 3.2, the

process (η∗
t ) is neither independent nor identically distributed in general (even if its com-

ponents are iid). To see this, consider for example, for λ1, λ2 ∈ R and for k 6= ℓ,

λ1η
∗
kt + λ2η

∗
ℓt

d
= ‖(λ1e

′
k + λ2e

′
ℓ)R

1/2
t ‖η1t = {λ2

1 + λ2
2 + 2λ1λ2Rt(k, ℓ)}1/2η1t,

conditionally on Fǫ
t−1, where ek denotes the k-th column of Im. The variable in the right-

hand side of the latter equality is in general non independent of the past values of η∗
t .

3.4. Adding an intercept

We consider an extension of Model (2.4) in which an intercept is included. The R
m-valued

process (yt) is supposed to satisfy







yt = µ0 +H
1/2
t ηt, E(ηt | Fy

t−1) = 0, Var(ηt | Fy
t−1) = Im,

Ht = H(yt−1,yt−2, . . .) = DtRtDt,

where µ0 = (µ
(1)
0 , . . . , µ

(m)
0 )′ ∈ R

m, Dt = {diag(Ht)}1/2 and Rt = Corr(yt,yt | Fy
t−1).

Letting η∗
t = D−1

t (yt − µ0), we get







ykt = µ
(k)
0 + σktη

∗
kt,

σkt = σk(yt−1,yt−2, . . . ; θ
(k)
0 ),

(3.2)

and we study the estimation of the parameter γ
(k)
0 = (µ

(k)
0 , θ

(k)′

0 )′ in Model (3.2), under

E(η∗kt | Fy
t−1) = 0, Var(η∗kt | Fy

t−1) = 1.
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Given observations y1, . . . ,yn, and arbitrary initial values ỹi for i ≤ 0, we define

σ̃kt(θ
(k)) = σk(yt−1,yt−2, . . . ,y1, ỹ0, ỹ−1, . . . ; θ

(k)) for k = 1, . . . ,m. Let also σkt(θ
(k)) =

σk(yt−1,yt−2, . . . ; θ
(k)). Let γ̂

(k)
n = (µ̂

(k)
n , θ̂

(k)′

n )′ denote the EbEE of γ
(k)
0 :

γ̂(k)
n = arg min

γ(k)∈M(k)×Θ(k)
Q̃(k)

n (γ(k)), Q̃(k)
n (γ(k)) =

1

n

n
∑

t=1

log σ̃2
kt

(

θ(k)
)

+
{ǫkt(µ(k))}2
σ̃2
kt

(

θ(k)
) ,

where ǫkt(µ
(k)) = ykt − µ(k) and M (k) is a compact subset of R.

Theorem 3.3. If A1 and A4-A6 hold, then γ̂
(k)
n → γ

(k)
0 , a.s. as n → ∞. If, in

addition, A7-A12 hold and µ
(k)
0 belongs to the interior of M (k), then

√
n
(

γ̂(k)
n − γ

(k)
0

)

L→ N {0,Υ} , where

Υ =







{

E
(

1
σ2
kt

)}−1

−
{

E
(

1
σ2
kt

)}−1

E
(

η∗3kt
1

σkt

d′
kt

)

J−1
kk

−
{

E
(

1
σ2
kt

)}−1

J−1
kk E

(

η∗3kt
1

σkt
dkt

)

J−1
kk IkkJ

−1
kk






.

It is interesting to note that, despite the presence of an intercept, the asymptotic variance

of θ̂
(k)
n is the same as in Theorem 3.1. Note also that µ̂

(k)
n and θ̂

(k)
n are not asymptotically

independent in general. A case where the asymptotic independence holds is when (3.1)

holds and E(η∗3kt ) = 0.

4. Inference in particular MGARCH models based on the EbE approach

Theorem 3.1 can be used for estimating the individual conditional variances in particular

classes of MGARCH models. It can also be used for testing their adequacy, preliminary

to their estimation. Indeed, most commonly used MGARCH specifications imply strong

restrictions on the volatility of the individual components. We focus on the classes of

DCC-GARCH and BEKK models.

4.1. Estimating the conditional variances in DCC-GARCH models

DCC-GARCH models are generally used under the assumption that the diagonal elements

of Dt follow univariate GARCH(1,1) models, that is,

σ2
kt = ωk + αkǫ

2
k,t−1 + βkσ

2
k,t−1, ωk > 0, αk ≥ 0, βk ≥ 0. (4.1)
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In the so-called corrected DCC (cDCC) of Aielli (2013),5 the conditional correlation

matrix is modelled as a function of the past standardized returns as

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Qt = (1− α− β)S + αQ

∗1/2
t−1 η∗

t−1η
∗′

t−1Q
∗1/2
t−1 + βQt−1, (4.2)

where α, β ≥ 0, α+β < 1, S is a correlation matrix, and Q∗
t is the diagonal matrix with the

same diagonal elements as Qt. No formally established asymptotic results exist for the full

estimation of the DCC and cDCC models. The strong consistency and asymptotic normality

of the EbEE of θ
(k)
0 = (ωk, αk, βk)

′ in (4.1) could be obtained by applying Theorem 3.1.

We establish them under more explicit conditions in the following theorem.

Theorem 4.1. Assume that α + β < 1, αℓ + βℓ < 1, and either αℓβℓ > 0 or βℓ = 0,

for ℓ = 1, . . . ,m. Let η1 admit, with respect to the Lebesgue measure on R
m, a positive

density around 0. Suppose that θ
(k)
0 ∈ Θk where Θk is any compact subset of (0,∞) ×

[0,∞) × [0, 1). Then θ̂
(k)
n → θ

(k)
0 , a.s. as n → ∞. If, in addition, θ

(k)
0 is an interior

point of Θk, and E ‖ηt‖4(1+δ)
< ∞, for some δ > 0, then the sequence

√
n(θ̂

(k)
n − θ

(k)
0 ) is

asymptotically normally distributed.

4.2. Estimating semi-diagonal BEKK models

Consider a BEKK-GARCH(p, q) model given by

ǫt = H
1/2
t ηt, Ht = Ω0 +

∑q
i=1 A0iǫt−iǫ

′
t−iA

′
0i +

∑p
j=1 B0jHt−jB0j , (4.3)

where (ηt) is an iid R
m-valued centered sequence with Eηtη

′
t = Im, A0i = (aikℓ)1≤k,ℓ≤m,

B0j = diag(bj1, . . . , bjm), and Ω0 = (ωkℓ)1≤k,ℓ≤m is a positive definite m ×m matrix. In

this model, which can be called "semi-diagonal" (as opposed to the diagonal BEKK in which

both the B0j and A0i are diagonal matrices), the conditional variance of any return may

depend on the past of all returns. We refer to McAleer, Chan, Hoti and Liebermann (2009)

for more details on BEKK models. The k-th diagonal entry of Ht satisfies a stochastic

5In the original DCC model of Engle (2002), the dynamics of Qt is given by

Qt = (1− α− β)S + αη
∗

t−1η
∗
′

t−1 + βQt−1.

Aielli (2013) pointed out that the commonly used estimator of S defined as the sample second

moment of the standardized returns is not consistent in this formulation. Stationarity conditions

for DCC models have been recently established by Fermanian and Malongo (2014).
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recurrence equation of the form

hkk,t = ωkk +

q
∑

i=1

(

m
∑

ℓ=1

aikℓǫℓ,t−i

)2

+

p
∑

j=1

b2jkhkk,t−j . (4.4)

Let θ
(k)
0 = (ωkk,a

′
1k, . . . ,a

′
qk, bk)

′ for k = 1, . . . ,m, where a′
ik denotes the k-th row of the

matrix A0i, and bk = (b21k, . . . , b
2
pk). It is clear that an identifiability restriction is needed,

hkk,t being invariant to a change of sign of the k-th row of any matrix Ai. For simplicity,

we therefore assume that aik1 > 0 for i = 1, . . . , q. Let θ(k) = (θ
(k)
i ) ∈ R

1+mq+p denote a

generic parameter value. The parameter space Θk is any compact subset of






θ(k) | θ(k)1 > 0, θ
(k)
2 , θ

(k)
m+2, . . . , θ

(k)
(q−1)m+2 > 0, θ

(k)
1+mq+1, . . . , θ

(k)
1+mq+p ≥ 0,

p
∑

j=1

θ
(k)
1+mq+j < 1







.

Let

A0 =

q
∑

i=1

Hm(A0i ⊗A0i)K
′
m, B0 =

p
∑

j=1

Hm(B0j ⊗B0j)K
′
m

where ⊗ is the Kronecker product and Hm and Km are the usual elimination and duplica-

tion matrices.6

Theorem 4.2. Let the spectral radius of A0 + B0 be less than 1. Let η1 admit,

with respect to the Lebesgue measure on R
m, a positive density around 0, and suppose

that E |ηkt|4(1+δ)
< ∞ for some δ > 0. Suppose that θ

(k)
0 ∈ Θk. Then θ̂

(k)
n →

θ
(k)
0 , a.s. as n → ∞. If, in addition, θ

(k)
0 is an interior point of Θk, the sequence

√
n(θ̂

(k)
n − θ

(k)
0 ) is asymptotically normally distributed.

Full BEKK models are generally considered as unfeasible for large cross-sectional dimen-

sions (see for instance Laurent, Rombouts and Violante (2012)) and practitioners focus on

diagonal, or even scalar, models. It follows from Theorem 4.2 that the diagonal elements of

Ω0 and the matrices A0i and B0j can be consistently estimated by successively applying

the EbEE to each equation. Indeed, each parameter of the model appears in one, and only

one, equation. The next result shows that the semi-diagonal BEKK-GARCH(p, q) model

(4.3) can be fully estimated by the EbEE approach.

Corollary 4.1. Let Â and B̂ denote the EbEE estimators of A0 and B0, respectively.

Under the assumptions of Theorem 4.2, a consistent estimator of Ω0 is obtained from

vech(Ω̂) =
(

Im(m+1)/2 − Â− B̂
)−1

vech

(

1

n

n
∑

t=1

ǫtǫ
′
t

)

.

6Hm and Km are m(m+1)
2

× m2 matrices such that HmK′

m = Im(m+1)/2 and vec(A) =

K′

mvech(A), vech(A) = Hmvec(A) for any symmetric m×m matrix A.
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For the general BEKK (without assuming diagonality of the matrices B0j), the asymptotic

properties of the QML method were derived by Comte and Lieberman (2003), though under

some high-level assumptions.7

4.3. Testing adequacy of BEKK models

Equation (4.4) can be viewed as a restricted form, implied by the BEKK model, of a more

general volatility specification. Testing for such a restriction in this more general framework

can thus be used to check the validity of the BEKK specification. For ease of presentation,

we focus on the case m = 2 and p = q = 1. Letting θ
(k)
0 = (ωkk, a

2
1k, 2a1ka2k, a

2
2k, b

2
1k)

′

for k = 1, 2, the validity of Model (4.3) can be studied by estimating Model (2.5) for each

component of ǫt with, in view of (4.4),

σ2
kt = θ

(k)
01 + θ

(k)
02 ǫ21,t−1 + θ

(k)
03 ǫ1,t−1ǫ2,t−1 + θ

(k)
04 ǫ22,t−1 + θ

(k)
05 σ2

k,t−1, k = 1, 2, (4.5)

under the positivity constraints θ
(k)
01 > 0, θ

(k)
0i ≥ 0, i = 2, 4, 5. The restrictions implied by

the BEEK-GARCH(1,1) model (4.3) are of the form:

H
(k)
0 : |θ(k)03 | = 2

√

θ
(k)
02 θ

(k)
04 , k = 1, 2.

Let

Θ
(k) = Θ

∗
k ∩

{

θ(k); |θ(k)3 | ∈
[

0, 2

√

θ
(k)
2 θ

(k)
4

]}

,

where Θ
∗
k is a compact subset of {θ(k)1 > 0, θ

(k)
i ≥ 0, for i = 2, 4 and θ

(k)
5 ∈ [0, 1)}. Note

that, under H
(k)
0 , the true parameter value is at the boundary of the parameter set.

Proposition 4.1. Let θ
(k)
0 belong to the interior of Θ

∗
k for k = 1, 2 and let θ̂

(k)
n =

(θ̂
(k)
n1 , . . . , θ̂

(k)
n5 )

′ denote the EbEE estimator of θ
(k)
0 in (4.5). Let the Wald statistic for the

hypothesis H
(k)
0 ,

W (k)
n =

n
{

θ̂
(k)2

n3 − 4θ̂
(k)
n2 θ̂

(k)
n4

}2

X ′
nĴ

−1
kk ÎkkĴ

−1
kk Xn

, where Xn =
(

0, 4θ̂
(k)
n4 ,−2θ̂

(k)
n3 , 4θ̂

(k)
n2 , 0

)′

, η̂∗kt =
ǫkt

σ̃kt(θ̂
(k)
n )

and

Ĵkk =
1

n

n
∑

t=1

d̂ktd̂
′
kt, Îkk =

1

n

n
∑

t=1

{η̂∗4kt − 1}d̂ktd̂
′
kt, d̂kt =

1

σ̃2
kt(θ̂n)

∂σ̃2
kt(θ̂

(k)
n )

∂θ(k)
.

7In particular, the model was assumed to be identifiable and the existence of eight-order moments

was required for ǫt. On the other hand, Avarucci, Beutner and Zaffaroni (2013) showed that for the

BEKK, the finiteness of the variance of the scores requires at least the existence of second-order

moments of the observable process.
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Then, under the assumptions of Theorem 4.2, W
(k)
n asymptotically follows a mixture of the

χ2 distribution with one degree of freedom and the Dirac measure at 0:

W (k)
n

L→ 1

2
χ2(1) +

1

2
δ0, as n → ∞.

In view of this result, testing H
(k)
0 at the asymptotic level α ∈ (0, 1/2) can thus be achieved

by using the critical region {W (k)
n > χ2

1−2α(1)}.

5. Estimating conditional correlation matrices

Having estimated the individual conditional variances of a vector (ǫt) satisfying (2.4) in a

first step, it is generally of interest to estimate the complete conditional variance matrix

Ht, which thus reduces to estimating the conditional correlation Rt.

Suppose that matrix Rt is parameterized by some parameter ρ0 ∈ R
r, together with

the volatility parameter θ0, as

Rt = R(ǫt−1, ǫt−2, . . . ; θ0,ρ0) = R(η∗
t−1,η

∗
t−2, . . . ;ρ0).

Let Λ ⊂ R
r denote a parameter set such that ρ0 ∈ Λ. If the η∗

t were observed, in view of

(2.2) a QMLE of ρ0 would be obtained as any measurable solution of

arg min
ρ∈Λ

n−1
n
∑

t=1

η∗′

t R̃−1
t η∗

t + log |R̃t|,

where, introducing initial values η̃∗
i for i ≤ 0, R̃t = R(η∗

t−1,η
∗
t−2, . . . , η̃

∗
0 , η̃

∗
−1, . . . ;ρ).

We therefore consider the two-step estimation method of the parameters of Model (2.4).

(a) First step: EbE estimation of the volatility parameters θ
(k)
0 and extraction of the

vectors of residuals η̂∗
t = (η̂∗1t, . . . , η̂

∗
mt)

′ where η̂∗kt = σ̃−1
kt (θ̂

(k))ǫkt;

(b) Second step: QML estimation of the conditional correlation matrix ρ0 by EbE, as

a solution of

arg min
ρ∈Λ

n−1
n
∑

t=1

η̂∗′

t R̂−1
t η̂∗

t + log |R̂t|,

where R̂t = R(η̂∗
t−1, η̂

∗
t−2, . . . , η̂

∗
1 , η̃

∗
0 , η̃

∗
−1, . . . ;ρ).

We will establish the asymptotic properties of this approach in the case where Rt is constant,

that is for Model (2.8)-(2.9). The case of the classical CCC-GARCH(p, q) models will be

considered in Section 6.1.1.
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5.1. Estimating general CCC models

Let ρ = (R21, . . . , Rm1, R32, . . . , Rm2, . . . , Rm,m−1)
′ = vech0(R), denoting by vech0 the

operator which stacks the sub-diagonal elements (excluding the diagonal) of a matrix. The

global parameter is denoted

ϑ = (θ(1)′ , . . . , θ(m)′ ,ρ′)′ := (θ′,ρ′)′ ∈ R
d × [−1, 1]m(m−1)/2, d =

m
∑

k=1

dk,

and it belongs to the compact parameter set Θ =

m
∏

k=1

Θk × [−1, 1]m(m−1)/2. The second-

step estimator of the constant correlation matrix Rt is given by R̂n = 1
n

∑n
t=1 η̂

∗
t (η̂

∗
t )

′
. Let

ϑ̂n =
(

θ̂′
n := (θ̂

(1)′

n , . . . , θ̂
(m)′

n ), ρ̂′
n

)′

, where ρ̂n = vech0(R̂n).

Theorem 5.1. For the CCC model (2.8)-(2.9), if A1-A6 hold, then ϑ̂n →
ϑ0, a.s. as n → ∞.

For the asymptotic normality, we introduce the following notations. Let the d × d ma-

trix J∗ = ((κkℓ − 1)Jkℓ) for k, ℓ = 1, . . . ,m, and Jkℓ = E (dktd
′
ℓt) . Let, for J0 =

diag(J11, . . . ,Jmm) in bloc-matrix notation,

Σθ = J−1
0 J∗J−1

0 =
(

(κkℓ − 1)J−1
kk JkℓJ

−1
ℓℓ

)

.

Let also dt = (d′
1t, . . . ,d

′
mt)

′ ∈ R
d, Ωk = Edkt and Ω = (Ω′

1, . . . ,Ω
′
m)′ ∈ R

d. Let Γ =

var
(

vech0
{

η∗
t (η

∗
t )

′}) . For x ∈ R
m, let the d×d matrices F (x) = diag{(1−x2

1)j1, . . . , (1−
x2
m)jm}, where jk = (1, . . . , 1) ∈ R

dk , and Akℓ = E{η∗ktη∗ℓtF (η∗
t )}. Let, for k, ℓ = 2, . . . ,m,

the d× d matrix Mk,ℓ−1 = diag
(

M
(1)
k,ℓ−1, . . . ,M

(m)
k,ℓ−1

)

where

M
(i)
k,ℓ−1 =







0di×di
if i 6= k and i 6= ℓ

Rk,ℓ−1Idi
otherwise.

Let the d × dm(m − 1)/2 matrices A = (A21 . . .Am1 A32 . . .Am,m−1) and M =

(M21 . . .Mm1 M32 . . .Mm,m−1). Let the d × m(m − 1)/2 matrices L = A(Im(m−1)/2 ⊗
Ω), Λ = M(Im(m−1)/2 ⊗ Ω). Let Σθρ = − 1

2ΣθΛ − J−1
0 L, Σρ = 1

4Λ
′
ΣθΛ +

1
2

(

Λ
′J−1

0 L+L′J−1
0 Λ

)

+ Γ. We need an additional assumption.

A13: The distribution of vech(ηtη
′
t) is not supported on an hyperplane.

Theorem 5.2. For the CCC model (2.8)-(2.9), if A1-A13 hold, for k = 1, . . . ,m, and

ρ0 ∈ (−1, 1)m(m−1)/2, then




√
n
(

θ̂n − θ0

)

√
n(ρ̂n − ρ0)





L→ N







0,Σ :=





Σθ Σθρ

Σ
′
θρ Σρ











,
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and Σ is a non-singular matrix.

Remark 5.1. Even though the components of θ0 are estimated independently, the com-

ponents θ̂
(k)
n of θ̂n are asymptotically non independent in general. More precisely, it can be

seen that Σθ is bloc diagonal if Cov(η∗2kt , η
∗2
ℓt ) = 0 for any k 6= ℓ.

Remark 5.2. In the asymptotic variance Σρ of ρ̂n, the first two matrices in the sum

reflect the effect of the estimation of θ0, while the remaining matrix, Γ, is independent of θ0.

A limit case is when the components of η∗
t are serially independent, that is when η∗

t = ηt

and R is the identity matrix. Then, straightforward computation shows that L = Λ = 0

and thus, in bloc-matrix notation,

Σ =





Σθ 0

0 Im(m−1)/2



 and Σθ = diag((κ11 − 1)J−1
11 , . . . , (κmm − 1)J−1

mm).

Remark 5.3. It is worthnoting that all the matrices involved in the asymptotic covari-

ance matrix Σ take the form of expectations. A simple estimator of Σ is thus obtained by

replacing those expectations by their sample counterparts. For instance, it can be shown

that a consistent estimator of Akℓ is Âkℓ =
1
n

∑n
t=1 η̂

∗
ktη̂

∗
ℓtF (η̂∗

t ).

Remark 5.4. In financial applications, the different returns are generally not available

over the same time horizons. Discarding dates for which at least one return is not available

may entail a severe sample size reduction. Instead, the correlations can be estimated by

considering the returns pairwise (with different sample lengths for different pairs). Such

estimators of the correlations are consistent, even if the estimated global correlation matrix

may not be positive definite. This approach will be used in the empirical section.

5.2. Estimating DCC models

The asymptotic properties of the first-step EbEE were established in Theorem 4.1 for

diagonal first-order DCC models. The second step can be applied for estimating ρ =

(α, β, (vech0(S))′)′ in Model (4.2). The matrices R̃t involved in the second step are ob-

tained as R̃t = Q̃
∗−1/2
t (ρ)Q̃t(ρ)Q̃

∗−1/2
t (ρ), where the Q̃t(ρ) are computed recursively as

Q̃t(ρ) = (1− α− β)S + αQ̃
∗1/2
t−1 (ρ)η̂∗

t−1η̂
∗′

t−1Q̃
∗1/2
t−1 (ρ) + βQ̃t−1(ρ), t ≥ 1,

with initial value Q̃0(ρ) = S. The asymptotic properties of the second-step EbEE are an

open issue.
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6. Numerical Illustrations

The first part of the section presents a selection of Monte-Carlo experiments aiming at

studying the performance of the EbE approach in finite sample. Real data examples will

be presented in the second part.8

6.1. Monte-Carlo study

We will first illustrate the gains in computation time brought by the two-step EbE approach,

by comparison with the usual Full QML (FQML) in which all the parameters are estimated

in one step. We will also investigate, for CCC and DCC models, whether the gains in

numerical complexity have a price in terms of finite-sample accuracy.

6.1.1. Time complexity and accuracy comparison of the EbEE and the full QMLE

Let us compare the computation cost of the EbEE with that of the FQMLE in the case

of a diagonal CCC-GARCH(1, 1) model of dimension m, that is, under the specification

(2.7) with p = q = 1 and diagonal matrices A1 and B1. EbEE of all the model parameters

requires m estimations of univariate GARCH-type models with 3 parameters, plus the

computation of the empirical correlation of the EbE residuals. The full QMLE requires the

optimization of a function of 3m+m(m − 1)/2 parameters. Because the time complexity

of an optimization generally grows rapidly with the dimension of the objective function,

the full QMLE should be much more costly than the EbEE in terms of computation time.

The two estimators were fitted on simulations of length n = 2000 of the CCC-GARCH(1, 1)

model (2.7) with A1 = 0.05Im and B1 = 0.9Im (such values are close to those generally

fitted to real series). The correlation matrix used for the simulations is R = Im, but the

m(m−1)/2 subdiagonal terms of R were estimated, together with the 3m other parameters

of the model. The distribution of ηt is Gaussian, which has little impact on the computation

times, but should give an advantage to the FQMLE (which is then the MLE) in terms of

accuracy. Table 1 compares the effective computation times required by the two estimators

as a function of the dimension m. As expected, the comparison of the CPU’s is clearly in

favor of the EbEE. Note that these computation times have been obtained using a single

processor. Since the EbEE is clearly easily parallelizable (using one processor for each of

the m optimizations), the advantage of the EbEE should be even more pronounced with a

8The code and data used in the paper are available on the web site

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/EbEE.html
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Table 1. Computation time of the two estimators (CPU time in seconds) and Relative Efficiency (RE)
of the EbEE with respect to the FQMLE (NA means "Not Available" because of the impossibility to
compute the FQMLE) for m-dimensional CCC-GARCH(1,1) models.
Dim. m 2 3 4 5 6 7 8 9
Nb. of param. 7 12 18 25 33 42 52 63
CPU for EbEE 0.57 0.88 1.18 1.31 1.52 1.85 2.04 2.37
CPU for FQMLE 32.49 100.78 123.33 215.38 317.85 617.33 876.52 1113.68
ratio of CPU 57.00 114.52 104.52 164.41 209.11 333.69 429.67 469.91
RE 0.96 1.00 0.99 0.97 0.99 0.99 0.97 1.00

Dim. m 10 11 12 50 100 200 400 800
Nb. of param. 75 88 102 1375 5250 20500 81000 322000
CPU for EbEE 2.82 2.98 3.49 13.67 27.89 56.58 110.00 226.32
CPU for FQMLE 1292.34 1520.60 1986.38 NA NA NA NA NA
ratio of CPU 458.28 510.27 569.16 NA NA NA NA NA
RE 102.42 304.36 14.22 NA NA NA NA NA

multiprocessing implementation. Table 1 also compares the relative efficiencies of the EbEE

with respect to the FQMLE. To this aim, we first computed the approximated information

matrix Jn = − 1
2n

∂2

∂ϑϑ′

∑n
t=1 ǫ

′
tH

−1
t ǫt + log |Ht|. Note that when (ηt) is Gaussian and

when ϑ̂ML is the (Q)MLE, then n(ϑ̂ML − ϑ0)
′Jn(ϑ̂ML − ϑ0) follows asymptotically a χ2

distribution. More generally, the quadratic form n(ϑ̂n − ϑ0)
′Jn(ϑ̂n − ϑ0) can serve as a

measure of accuracy of an estimator ϑ̂n (the Euclidean distance, obtained by replacing Jn

by the identity matrix, has the drawback of being scale dependent). The relative efficiency

(RE) displayed in Table 1 is equal to

RE =
(ϑ̂QMLE − ϑ0)

′Jn(ϑ̂QMLE − ϑ0)

(ϑ̂EbEE − ϑ0)′Jn(ϑ̂EbEE − ϑ0)

where ϑ̂EbEE and ϑ̂QMLE denote respectively the EbEE and FQMLE. Because the compu-

tation time of the FQMLE is enormous when m is large, the RE and CPU times are only

computed on 1 simulation, but they are typical of what is generally observed. When m ≤ 9,

the accuracies are very similar, with a slight advantage to the FQMLE (which corresponds

here to the MLE). When the number of parameters becomes too large (m > 9) the com-

putation time of the FQMLE becomes prohibitive, and more importantly the optimization

fails to give a reasonable value of ϑ̂QMLE (see the RE for m ≥ 10).

6.1.2. Estimating a DCC model by two-step EbE and by FQML

We now compare the standard one-step FQMLE with the two step method described in

Section 5 in the case of a bivariate cDCC-GARCH(1,1) model defined by (2.7) and (4.2),
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Table 2. Comparison of the EbEE and QMLE over 100 replications for a bivariate DCC-
GARCH(1,1) of length n = 1000 and n = 5000.

n = 1000 n = 5000
true val. estim. Median bias RMSE Median bias RMSE

ω 0.01 EbEE 0.014 0.037 0.134 0.012 0.002 0.005
QMLE 0.017 0.116 0.239 0.013 0.096 0.212

0.01 EbEE 0.014 0.040 0.159 0.011 0.002 0.005
QMLE 0.019 0.104 0.229 0.013 0.076 0.183

A 0.025 EbEE 0.020 -0.001 0.017 0.024 -0.001 0.006
QMLE 0.025 0.037 0.105 0.027 0.043 0.104

0.025 EbEE 0.026 0.005 0.028 0.027 0.002 0.007
QMLE 0.032 0.046 0.109 0.028 0.043 0.105

0.025 EbEE 0.031 0.011 0.023 0.026 0.001 0.006
QMLE 0.034 0.048 0.108 0.029 0.044 0.104

0.025 EbEE 0.024 0.000 0.019 0.024 -0.001 0.007
QMLE 0.027 0.040 0.107 0.026 0.040 0.105

diag(B) 0.94 EbEE 0.932 -0.058 0.194 0.937 -0.003 0.012
QMLE 0.926 -0.157 0.319 0.932 -0.131 0.279

0.94 EbEE 0.934 -0.049 0.193 0.937 -0.003 0.011
QMLE 0.925 -0.147 0.309 0.935 -0.118 0.263

S[1, 2] 0.3 EbEE 0.308 -0.001 0.137 0.305 -0.001 0.065
QMLE 0.336 0.024 0.222 0.314 0.063 0.205

α 0.04 EbEE 0.043 0.002 0.015 0.041 0.000 0.006
QMLE 0.046 0.017 0.048 0.042 0.008 0.027

β 0.95 EbEE 0.936 -0.013 0.028 0.948 -0.002 0.008
QMLE 0.931 -0.055 0.172 0.946 -0.010 0.034

with a full matrix A = A1 and a diagonal matrix B = B1. The value of ϑ0 is given in the

first column of Table 2, and (ηt) is an iid sequence distributed as a Student distribution

with ν = 9 degrees of freedom, standardized in such a way that Var(ηt) = I2. Note that our

Monte Carlo experiment is restricted to a bivariate model because the computation time

of the FQMLE is too demanding when m > 2.9 Table 2 summarizes the distribution of the

two estimators over 100 independent simulations of the model, for the lengths n = 1000

and n = 5000. The EbEE is remarkably more accurate than the FQMLE, whatever the

parameter. A detailed examination of the estimations reveals that the FQMLE produces

more outliers (such as for example b̂ = 0) than the EbEE, and the Root Mean Square Errors

(RMSE) of estimation are much smaller for the EbEE than for the FQMLE. One difficulty

encountered in the implementation of the two estimators is that the constraints ρ(B) < 1

and β < 1 are not sufficient to ensure the non explosiveness of Qt(ϑ) as t → ∞. The

problem seems to be more severe for the FQMLE than for the EbEE, which may explain

the surprisingly poor performance of the FQMLE compared to the EbEE.

9Results reported in the supplementary file illustrate the ability of the EbEE to estimate the

individual volatilities of a cDCC for larger dimensions (m > 2).
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6.2. Empirical examples

6.2.1. Dealing with missing or asynchronous data

One problem encountered in modelling multivariate financial series is that the different

return components may not be available over the same time horizon. Another issue with

financial returns is the lack of synchronicity. For daily returns, the time of measurement

is typically the closing time, which can be very different for series across different markets

entering in the construction of portfolios. Different techniques of synchronization have been

proposed. For instance Audrino and Bühlmann (2004) developed a procedure for the CCC-

GARCH(1,1) model. However, the need to choose an auxiliary model for predicting the

missing observations may be found unsatisfactory.

The EbE procedure has interest for both issues, missing data and asynchronicity. First,

the estimation of a given equation generally does not require observability of the whole

returns over the entire period. This is in particular the case for diagonal models. Moreover,

the estimation of the correlation matrix in CCC models can be achieved by considering the

returns pairwise (see Remark 5.4). The missing data issue is illustrated in the supplementary

file. Concerning asynchronicity, we propose the following illustration based on world stock

market indices.

At the opening of the New York stock exchange, investors have knowledge of the closing

price at the Tokyo stock exchange. It is thus possible to use e.g. the squared return of

the Nikkei 225 of day t (say Nikt) to predict the squared return of the SP500 at the same

date (say SPt). Since Nikt conveys more recent information than SPt−1, it is reasonable to

think that it may appear significantly in the volatility of the SP500 at time t. Modeling

the individual volatilities by augmented GARCH models is a convenient way to tackle the

problem. For simplicity, we considered only four indices: the SP500 (closing price at around

21 GMT), the CAC and FTSE (closing price at 16:30) and the Nikkei (closing price at 6).

As a function of the most recent available returns and a feedback mechanism, the fitted

individual volatilities using the period from 1990-01-01 to 2013-04-22 can be written, with

obvious notations, as

σ
2
SPt

= 0.039
(0.008)

+ 0.064
(0.013)

SPt−1 + 0.038
(0.009)

CACt + 0.187
(0.020)

FTSEt + 0.000
(0.003)

Nikt + 0.660
(0.024)

σ
2
SPt−1

σ
2
CACt

= 0.042
(0.010)

+ 0.050
(0.014)

SPt−1 + 0.064
(0.012)

CACt−1 + 0.036
(0.018)

FTSEt−1 + 0.015
(0.004)

Nikt + 0.844
(0.018)

σ
2
CACt−1

σ
2
FTSEt

= 0.013
(0.004)

+ 0.039
(0.007)

SPt−1 + 0.000
(0.004)

CACt−1 + 0.071
(0.0010)

FTSEt−1 + 0.006
(0.002)

Nikt + 0.869
(0.013)

σ
2
CACt−1

σ
2
Nikt = 0.068

(0.015)
+ 0.055

(0.016)
SPt−1 + 0.006

(0.011)
CACt−1 + 0.010

(0.019)
FTSEt−1 + 0.108

(0.014)
Nikt−1 + 0.826

(0.019)
σ
2
CACt−1

where the estimated standard deviations, obtained from Theorem 3.1, are given into brack-
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Table 3. For each pair of exchange rates: p-values of the tests of the null hypotheses H
(1)
0 and H

(2)
0

implied by the bivariate BEKK-GARCH(1,1) model. Gray cells contain p-values less than 2.5%.
CAD CHF CNY GBP JPY

H
(1)
0 H

(2)
0 H

(1)
0 H

(2)
0 H

(1)
0 H

(2)
0 H

(1)
0 H

(2)
0 H

(1)
0 H

(2)
0

CHF 0.000 0.163
CNY 0.120 0.015 0.122 0.500
GBP 0.012 0.023 0.128 0.000 0.005 0.100
JPY 0.007 0.006 0.500 0.500 0.500 0.087 0.050 0.000
USD 0.500 0.021 0.114 0.000 0.500 0.381 0.068 0.000 0.102 0.000

ets. It is seen that, for instance, the FTSE at time t has strong influence on the volatility

of the SP500 at the same date (but a few hours later). Thus, by taking into account the

availability of the most recent observations the model reveals spillover effects between series.

6.2.2. Bivariate BEKK for exchange rates?

We considered returns series of six daily exchange rates with respect to the Euro, from

January 14, 2000 to May 16, 2013. We tested the adequacy of bivariate BEKK models,

using Proposition 4.1. For each pair of exchange rates, we estimated Model (4.5) and

we tested the restrictions H
(1)
0 and H

(2)
0 that are satisfied when the DGP is the BEKK-

GARCH(1,1) model (4.3). Table 3 shows that, for 12 bivariate series over 15, either H
(1)
0

or H
(2)
0 is clearly rejected, which invalidates the adequacy of the bivariate BEKK model for

the 12 pairs. Using the Bonferroni correction, one can indeed reject the model at significant

level less than α if one of the two hypothesis H
(k)
0 is rejected at the level α/2. This does not

mean that a global BEKK model would be rejected for the vector of 6 series. An extension

of Proposition 4.1 for larger m would allow to perform a test but such an extension is left

for future research.

7. Conclusion

EbE estimation of MGARCH models is a standard method used in applied works to alleviate

the computational burden implied by large cross-sectional dimensions. In this study, we

established asymptotic properties of the EbEE of the individual conditional variances, under

general assumptions on their parameterization. Unexpectedly, we found that such EbE

estimators may be superior to the QMLE in terms of asymptotic accuracy. Our framework

covers the most widely used MGARCH models in financial applications. For semi-diagonal

BEKK models and DCC models, the asymptotic results were shown to hold under explicit

conditions. In the former case, we explained how to test the constraints implied by the
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BEKK specification. For CCC models (including the standard CCC-GARCH(p, q) model)

we proved the consistency and the joint asymptotic normality of the EbE volatility and

correlation matrix estimators.

The main motivation for using an EbE approach in applications is the important gains

in computation time, and our simulation experiments confirmed that such gains can be

huge. For moderate dimensions the global QML estimator can even be unfeasible, while we

did not encounter such difficulties with the EbE approach. Our experiments revealed that

the EbE estimator may be superior to the QMLE in terms of accuracy, not only for the

volatility parameters but also for the parameters of a DCC specification of the conditional

correlation. For real series, the separate estimation of the volatilities allows to handle,

without discarding too many data, series that are not available at the same date, or at the

same hour for daily returns.

Appendix

A. Technical assumptions

A2: for any real sequence (ei)i≥1, the function θ(k) 7→ σk(e1, e2, . . . ; θ
(k)) is continuous

and there exists a measurable function K : R∞ 7→ (0,∞) such that

|σk(e1, e2, . . . ; θ
(k))− σk(e1, e2, . . . ; θ

(k)
0 )| ≤ K(e1, . . .)‖θ(k) − θ

(k)
0 ‖,

and E

(

K(ǫt−1,ǫt−2,...)

σkt(θ
(k)
0 )

)2

< ∞.

A3: For some neighborhood V(θ(k)
0 ) of θ

(k)
0 we have E sup

θ(k)∈V(θ
(k)
0 )

(

σkt(θ
(k)
0 )

σkt(θ(k))

)2

< ∞.

A5: we have σkt(θ
(k)
0 ) = σkt(θ

(k)) a.s. iff θ(k) = θ
(k)
0 .

Let ∆kt(θ
(k)) = σ̃kt(θ

(k)) − σkt(θ
(k)), at = supk supθ(k)∈Θ(k) |∆kt(θ

(k))|. Let C and ρ be

generic constants with C > 0 and 0 < ρ < 1. The "constant" C is allowed to depend on

variables anterior to t = 0.

A6: We have at ≤ Cρt, a.s.

A9: for any real sequence (ei)i≥1, the function θ(k) 7→ σk(e1, e2, . . . ; θ
(k)) has continuous

second-order derivatives.
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A10: there exists a neighborhood V(θ(k)
0 ) of θ

(k)
0 such that

sup
θ(k)∈V(θ

(k)
0 )

∥

∥

∥

∥

1

σkt(θ(k))

∂σkt(θ
(k))

∂θ(k)

∥

∥

∥

∥

4(1+ 1
δ
)

, sup
θ(k)∈V(θ

(k)
0 )

∥

∥

∥

∥

1

σkt(θ(k))

∂2σkt(θ
(k))

∂θ(k)∂θ(k)′

∥

∥

∥

∥

2(1+ 1
δ
)

,

sup
θ(k)∈V(θ

(k)
0 )

∣

∣

∣

∣

∣

σkt(θ
(k)
0 )

σkt(θ(k))

∣

∣

∣

∣

∣

4

, have finite expectations.

A11: We have bt := supk supθ(k)∈V(θ
(k)
0 )

∥

∥

∥

∂∆kt(θ
(k))

∂θ(k)

∥

∥

∥ ≤ Cρt, a.s.

A12: For k = 1, . . . ,m and for any x ∈ R
dk , we have: x′ ∂σ

2
kt

(θ
(k)
0 )

∂θ(k) = 0, a.s. ⇒ x = 0.

A10
∗: there exists a neighborhood V(θ(k)

0 ) of θ
(k)
0 such that

sup
θ(k)∈V(θ

(k)
0 )

∥

∥

∥

∥

1

σkt(θ(k))

∂σkt(θ
(k))

∂θ(k)

∥

∥

∥

∥

4

, sup
θ(k)∈V(θ

(k)
0 )

∥

∥

∥

∥

1

σkt(θ(k))

∂2σkt(θ
(k))

∂θ(k)∂θ(k)′

∥

∥

∥

∥

2

,

sup
θ(k)∈V(θ

(k)
0 )

∣

∣

∣

∣

∣

σkt(θ
(k)
0 )

σkt(θ(k))

∣

∣

∣

∣

∣

4

, have finite expectations.

B. Proofs

To save space, the proofs of Theorems 3.1, 3.2, 3.3 and 5.1, Propositions 3.1, 3.2 and 4.1

are displayed in the supplementary file.

B.1. Proof of Theorem 4.1

The proof consists in verifying the conditions required in Theorem 3.1. By Boussama, Fuchs

and Stelzer (2011) and Aielli (2013), the conditions of the theorem ensure the existence

of a strictly stationary, non anticipative and ergodic solution [vech(Rt)
′,η∗′

t ]′, that is a

measurable function of {ηt−u, u ≥ 0}, to the equations η∗
t = R

1/2
t ηt and (4.2). Now, in

view of ǫℓt = σℓtη
∗
ℓt, we have

σ2
ℓt = ωℓ + aℓ(η

∗
ℓ,t−1)σ

2
ℓ,t−1 = ωℓ

(

1 +

∞
∑

s=1

aℓ(η
∗
ℓ,t−1) . . . aℓ(η

∗
ℓ,t−s)

)

, a.s.

where aℓ(x) = αℓx
2 + βℓ. The a.s. convergence follows from the Cauchy rule for positive

terms series, which can be applied because E log aℓ(η
∗
ℓ,t) ≤ logEaℓ(η

∗
ℓ,t) = log(αℓ +βℓ) < 0.

It follows that ǫt is a measurable function of {ηt−u, u ≥ 0}. Using the second equality in
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(2.3), we have by the law of iterated conditional expectations Eaℓ(η
∗
ℓ,t−1) . . . aℓ(η

∗
ℓ,t−s) =

(αℓ + βℓ)
s, from which we deduce that Eσ2

ℓt < ∞. Thus A1 is satisfied. We note that

η∗2k,t ≤ (η∗
t )

′η∗
t = (ηt)

′Rtηt ≤
∑

ℓ,ℓ′

|ηℓ,tηℓ′,t| =





∑

ℓ,ℓ′

|ηℓ,t|





2

,

from which A8 follows, using E ‖ηt‖4(1+δ)
< ∞. The other assumptions required to apply

Theorem 3.1 can be shown to hold as in standard GARCH(1,1) models (see for instance

Francq and Zakoïan (2004)).

B.2. Proof of Theorem 4.2

The existence of a (unique) ergodic, non anticipative, strictly and second-order stationary

solution (ǫt) of Model (4.3), under the conditions given in the corollary, follows from Bous-

sama, Fuchs and Stelzer (2011), Theorem 2.4. Thus A1 holds with s = 2. By Proposition

4.5 of the same article, if the spectral radius of A0 +B0 is less than 1, the spectral radius

of
∑p

j=1 Hm(B0j ⊗B0j)K
′
m is also less than 1. The latter matrix being diagonal, it can

be seen that this entails
∑p

j=1 b
2
jk < 1. Thus, under the strict stationarity condition, it is

always possible to choose the compact set Θk so that it contains the true parameter value.

Assumption A4 is satisfied by definition of Θ(k).

Now we turn to A5. Suppose σt(θ
(k)
0 ) = σt(θ

(k)), a.s. The polynomial Bθ(k)(L) being

invertible for any θ(k) ∈ Θ
(k), we have

B−1

θ
(k)
0

(L)

q
∑

i=1

(

m
∑

ℓ=1

θ
(k)
0,ℓ+1+m(i−1)ǫℓ,t−i

)2

− B−1
θ(k)(L)

q
∑

i=1

(

m
∑

ℓ=1

θ
(k)
ℓ+1+m(i−1)ǫℓ,t−i

)2

= B−1
θ(k)(1)θ

(k)
1 − B−1

θ
(k)
0

(1)θ
(k)
01 , a.s.

Then there exists some variables ct−2, aℓ,ℓ′,t−2, ℓ, ℓ
′ = 1, . . .m belonging to the past of

ηt−1 such that ct−2 +
∑m

ℓ,ℓ′=1 aℓ,ℓ′,t−2ηℓ,t−1ηℓ′,t−1 = 0. Therefore, if those variables are

not all equal to zero, the distribution of ηt conditional to the past is degenerate. Since

ηt is independent from the past, this means that the unconditional distribution of ηt is

degenerate, in contradiction with the existence of a density around zero. Thus ct−2 =

a1,1,t−2 = · · · = am,m,t−2 = 0, from which we deduce, by iterating the same argument,

that θ(k) = θ
(k)
0 . Therefore, A5 is verified. We omit the proof of A6, which can be done

following the lines of proof of (4.6) in Francq and Zakoïan (2004). Hence the proof of the

consistency of θ̂
(k)
n is complete.
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Now we turn to the asymptotic normality. Assumption A7 holds by assumption, and

A8 can be verified by the arguments used in the proof of Theorem 4.1. A9 is obviously

satisfied. The proofs of A10-A11 being similar to those made for standard GARCH models

in Francq and Zakoïan (2004), they will be omitted. To establish A12, let x ∈ R
1+p+qm

such that x′ ∂σ
2
kt

(θ
(k)
0 )

∂θ(k) = 0, a.s. It follows that

x1 +

q
∑

i=1

2

(

m
∑

ℓ=1

aikℓǫℓ,t−i

)

x′









01+m(i−1)×1

ǫt−i

0p+m(q−i)×1









+

p
∑

j=1

x1+qm+jhkk,t−j +

p
∑

j=1

b2jkx
′
∂σ2

k,t−j(θ
(k)
0 )

∂θ(k)
= 0, a.s.

Note that the latter sum is equal to zero by stationarity. We thus have x1 +

2 (
∑m

ℓ=1 a1kℓǫℓ,t−1) (
∑m

ℓ=1 x1+ℓǫℓ,t−1) + zt−2 = 0, a.s. where zt−2 is a variable belong-

ing to the past of ǫt−1. The arguments given for the proof of A5 allow to conclude that

x1 = · · · = xm+1 = 0. By iterating the argument we get x = 0. The asymptotic normality

follows from Theorem 3.1.

B.3. Proof of Corollary 4.1

The result is a straightforward consequence of the consistency of Â and B̂, obtained in

Theorem 4.2, and the fact that Assumption A1 with s = 2 is satisfied.

B.4. Proof of Theorem 5.2

Let ℓ̇t(θ) =
(

∂
∂θ(1)′ ℓ1t(θ

(1)), . . . , ∂
∂θ(m)′ ℓmt(θ

(m))
)′

. For θ(k) ∈ Θ
(k) let η̃∗kt(θ

(k)) =

σ̃−1
kt (θ

(k))ǫkt and η∗kt(θ
(k)) = σ−1

kt (θ
(k))ǫkt. The proof relies on a set of preliminary results.

i) E
∥

∥

∥ℓ̇t(θ0)ℓ̇
′
t(θ0)

∥

∥

∥ < ∞,

ii) sup
θ∈V(θ0)

∥

∥

∥

∥

∥

1

n

n
∑

t=1

∂vech0
{

η∗
t (η

∗
t )

′}

∂θ′
− ∂vech0

{

η̃∗
t (η̃

∗
t )

′}

∂θ′

∥

∥

∥

∥

∥

→ 0 , in probability,

iii)
1

n

n
∑

t=1

(

∂vech0
{

η∗
t (η

∗
t )

′}

∂θ′

)

θn

→ −1

2
Λ

′, a.s. for any θn between θ̂n and θ0,

iv)
1√
n

n
∑

t=1





ℓ̇t(θ0)

vech0
{

η∗
t (η

∗
t )

′ −R
}





L→ N



0,





J∗ L

L′
Γ







 ,
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Point i) follows from the arguments given to prove i) in the proof of the asymptotic normality

of θ̂n (Theorem 3.1). Point ii) is equivalent to

sup
θ∈V(θ0)

∥

∥

∥

∥

∥

1√
n

n
∑

t=1

∂ (η∗ktη
∗
ℓt)

∂θ′
(θ)− ∂ (η̃∗ktη̃

∗
ℓt)

∂θ′
(θ)

∥

∥

∥

∥

∥

→ 0 , in probability.

In view of

∂

∂θ′
{η∗ktη∗ℓt} (θ) = − ǫkt

σkt(θ(k))

ǫℓt
σℓt(θ(ℓ))

(

1

σkt

∂σkt(θ
(k))

∂θ′
+

1

σℓt

∂σℓt(θ
(ℓ))

∂θ′

)

,

and the same equality for ∂ {η̃∗ktη̃∗ℓt} (θ)/∂θ′, with σkt and σℓt replaced by σ̃kt and σ̃ℓt, the

conclusion follows by the arguments used to establish ii) in the proof of the asymptotic

normality of θ̂n. Now we turn to iii). Note that

∂

∂θ′
{η∗ktη∗ℓt} (θ0) = −η∗ktη

∗
ℓt

(

1

σkt

∂σkt(θ
(k)
0 )

∂θ′
+

1

σℓt

∂σℓt(θ
(ℓ)
0 )

∂θ′

)

.

Thus, letting d(k) =
∑m

i=k+1 di and (k)d =
∑k−1

i=1 di, with obvious conventions when k = 1

or k = m,

E

(

∂

∂θ′
{η∗ktη∗ℓt} (θ0)

)

= −1

2
Rkℓ[(01×(k)d Ω

′
k 01×d(k)

) + (01×(ℓ)d Ω
′
ℓ 01×d(ℓ)

)]

Therefore, we have

E

(

∂

∂θ′

(

vech0
{

η∗
t (η

∗
t )

′})

θ0

)

= −1

2
(M21Ω M31Ω . . . Mm,m−1Ω)

′
= −1

2
Λ

′.

By the law of large numbers, it follows that

1

n

n
∑

t=1

(

∂vech0
{

η∗
t (η

∗
t )

′}

∂θ′

)

θ0

→ −1

2
Λ

′, a.s.

To complete the proof of iii), we will show that similarly to (??), for any ε > 0, there exists

a neighborhood V(θ0) of θ0 such that, almost surely,

lim
n→∞

1

n

n
∑

t=1

sup
θ∈V(θ0)

∥

∥

∥

∥

∥

(

∂vech0
{

η∗
t (η

∗
t )

′}

∂θ′

)

θ

−
(

∂vech0
{

η∗
t (η

∗
t )

′}

∂θ′

)

θ0

∥

∥

∥

∥

∥

≤ ε.

The latter convergence is equivalent to

lim
n→∞

1

n

n
∑

t=1

sup
θ(k)∈V(θ

(k)
0 )

sup
θ(ℓ)∈V(θ

(ℓ)
0 )

∥

∥

∥

∥

ǫkt
σkt(θ(k))

ǫℓt
σℓt(θ(ℓ))

1

σkt(θ(k))

∂σkt(θ
(k))

∂θ′

− ǫkt

σkt(θ
(k)
0 )

ǫℓt

σℓt(θ
(ℓ)
0 )

1

σkt(θ
(k)
0 )

∂σkt(θ
(k)
0 )

∂θ′

∥

∥

∥

∥

∥

≤ ε, a.s. (B.1)
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for any k, ℓ = 1, . . . ,m. By the arguments used to prove iii) in the proof of the asymptotic

normality of θ̂n, we have

E sup
θ(k)∈V(θ

(k)
0 )

sup
θ(ℓ)∈V(θ

(ℓ)
0 )

∥

∥

∥

∥

ǫkt
σkt(θ(k))

ǫℓt
σℓt(θ(ℓ))

1

σkt(θ(k))

∂σkt(θ
(k))

∂θ′

∥

∥

∥

∥

< ∞,

from which (B.1) follows. Thus, iii) is established. It remains to show iv). We note that

Zt :=





ℓ̇t(θ0)

vech0
{

η∗
t (η

∗
t )

′ −R
}



 =





F (η∗
t )dt

vech0
{

η∗
t (η

∗
t )

′ −R
}





is measurable with respect to the σ-field Ft generated by {η∗
u, u ≤ t}. We have, using the

independence of the sequence (η∗
t ) under (2.9),

Var(F (η∗
t )dt) = E{F (η∗

t )E(dtd
′
t)F (η∗

t )} = J∗,

Cov
[

F (η∗
t )dt, vech0

{

η∗
t (η

∗
t )

′}] = E
{

F (η∗
t )Ω

[

vech0
{

η∗
t (η

∗
t )

′}]′
}

= L.

Thus, ∀λ ∈ R
d+m(m−1)/2, the sequence {λ′Zt,Ft}t is an ergodic, stationary and square

integrable martingale difference. The conclusion follows from the central limit theorem of

Billingsley (1961).

We are now in a position to complete the proof of Theorem 5.2. Since θ̂
(k)
n converges

to θ
(k)
0 , which stands in the interior of the parameter space by A7, the derivative of the

criterion Q̃
(k)
n is equal to zero at θ̂

(k)
n . In view of point ii), we thus have by a Taylor

expansion of Q
(k)
n at θ

(k)
0 ,

√
n
(

θ̂(k)
n − θ

(k)
0

)

oP (1)
= −

(

1

n

n
∑

t=1

∂2ℓkt(θ
∗(k)
ij )

∂θ
(k)
i ∂θ

(k)
j

)−1

1√
n

n
∑

t=1

∂

∂θ(k)
ℓkt(θ

(k)
0 )

where the θ
∗(k)
ij ’s are between θ̂

(k)
n and θ

(k)
0 . Thus we have, using iii) and iv),

√
n
(

θ̂n − θ0

)

oP (1)
= −J−1

0

1√
n

n
∑

t=1

ℓ̇t(θ0).

Another Taylor expansion around θ0 yields,

√
n(ρ̂n − ρ0)

=
1√
n

n
∑

t=1

vech0
{

η∗
t (η

∗
t )

′ −R
}

+
1

n

n
∑

t=1

∂

∂θ′

(

vech0
{

η̃∗
t (η̃

∗
t )

′})

θ̃n

√
n
(

θ̂n − θ0

)

,

where η̃∗
t = η̃∗

t (θ) = D̃−1
t (θ)ǫt and D̃t(θ) = diag{σ̃1t(θ

(1)), . . . , σ̃mt(θ
(m))}, and θ̃n is

between θ̂n and θ0. It follows that, using v) and vi), denoting by I the identity matrix of
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size m(m− 1)/2 and by 0 is null matrix of size d×m(m− 1)/2,




√
n
(

θ̂n − θ0

)

√
n(ρ̂n − ρ0)





oP (1)
=





−J−1
0 0

1
2Λ

′J−1
0 I





1√
n

n
∑

t=1

Zt. (B.2)

The asymptotic distribution of Theorem 5.2 thus follows from iv).

It remains to establish that Σ is non singular. By (B.2), it suffices to show that Var(Zt)

is nonsingular. We will show that for any x = (xi) ∈ R
d, where xi ∈ R

di , for any

y = (ykℓ) ∈ R
m(m−1)/2 and any c ∈ R,

x′ℓ̇t(θ0) + y′vech0
{

η∗
t (η

∗
t )

′ −R
}

= c, a.s. ⇒ x = 0 and y = 0. (B.3)

Assume that the left-hand side of (B.3) holds. Then we have

m
∑

i=1

(

1− η∗2it
)

zi,t−1 +
∑

k 6=ℓ

ykℓ (η
∗
ktη

∗
ℓt −Rkℓ) = c

where zi,t−1 = 1
σ2
it

x′
i
∂σ2

it
(θ

(i)
0 )

∂θ(i) . It follows that a′
t−1vech

{

η∗
t (η

∗
t )

′}
= bt−1 for some vector

at−1 and some scalar bt−1 belonging to the past. By A13 and (2.9) we must have at−1 = 0

and bt−1 = 0. Noting that the zi,t−1 are components of at−1, we must have zi,t−1 = 0 for

i = 1, . . . ,m, in contradiction with A12 unless if x = 0. It is then straightforward to show

that y = 0 and the proof is complete.
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