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Abstract

We extend the density combination approach of Billio et al. (2013) to feature combination
weights that depend on the past forecasting performance of the individual models entering
the combination through a utility-based objective function. We apply our model combination
scheme to forecast stock returns, both at the aggregate level and by industry, and investigate
its forecasting performance relative to a host of existing combination methods. Overall, we
find that our combination scheme produces markedly more accurate predictions than the
existing alternatives, both in terms of statistical and economic measures of out-of-sample
predictability. We also investigate the performance of our model combination scheme in the
presence of model instabilities, by considering individual predictive regressions that feature
time-varying regression coefficients and stochastic volatility. We find that the gains from
using our combination scheme increase significantly when we allow for instabilities in the
individual models entering the combination.
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1 Introduction

Over the years, the question of whether stock returns are predictable has received considerable

attention, both within academic and practitioner circles.1 However, to this date, return pre-

dictability remains controversial, as emphasized by a number of recent studies on the subject.2

For example, Welch and Goyal (2008) show that a long list of predictors from the literature is

unable to consistently deliver superior out-of-sample forecasts of the equity premium relative to

a simple forecast based on the historical average. In their view, the inconsistent out-of-sample

performance of these predictors is due to structural instability. Figure 1 provides a graphical

illustration of this point, showing the forecast accuracy of a representative subset of the pre-

dictors used in this literature, measured relative to the prevailing mean model (both the data

and the evaluation criteria used are described in detail in sections 4 and 5). This figure paints

a very uncertain and unstable environment for stock returns, where while at times some of the

individual predictors appear to outperform the prevailing mean model, no single predictor seems

able to consistently deliver superior forecasts.

Forecast combination methods offer a way to improve equity premium forecasts, reducing the

uncertainty/instability risk associated with reliance on a single predictor or model.3 Avramov

(2002), Rapach et al. (2010), and Dangl and Halling (2012) confirm this point, and find that

simple model combinations lead to improvements in the out-of-sample predictability of stock

returns. Interestingly, the existing forecast combination methods weight the individual models

entering the combination according to their statistical performance, without making any refer-

ence to the way the final forecasts will be put to use. For example, Rapach et al. (2010) propose

combining different predictive models according to their relative mean squared prediction error,

while Avramov (2002) and Dangl and Halling (2012) use Bayesian Model Averaging (BMA),

which weights the individual models according to their marginal likelihoods. We note, however,

that in the case of stock returns the quality of the individual model predictions should depend

on whether such models lead to profitable investment decisions, which in turns is directly related

1See Rapach and Zhou (2013) and references therein for a comprehensive review of the academic literature on
aggregate U.S. stock return predictability.

2See Boudoukh et al. (2008), Campbell and Thompson (2008), Cochrane (2008), Lettau and Van Nieuwerburgh
(2008) and Welch and Goyal (2008).

3Since Bates and Granger (1969) seminal paper on forecast combinations, it has been known that combining
forecasts across models often produces a forecast that performs better than even the best individual model. See
Timmermann (2006) for a comprehensive review on model combination methods.

2



to the investor’s utility function. This creates a tension between the criterion used to combine

the individual predictions and the final use to which the forecasts will be put.4

In this paper, we extend the literature on stock return predictability by proposing a model

combination scheme where the predictive densities of the individual models are weighted based

on how each model fares relative to the investor’s utility function, as measured by its implied

certainty equivalent return (CER) value. Accordingly, we label this model CER-based Density

Combination, or CER-based DeCo in short. To implement this idea, we rely on the approach of

Billio et al. (2013), who propose a Bayesian combination approach with time-varying weights,

and use a non-linear state space model to estimate them. In addition, we introduce a mechanism

that allows the combination weights to depend on the history of the individual models’ past

profitability, through the individual models’ past CER values.

To test our combination scheme empirically, we evaluate how it fares relative to a host of alter-

native model combination methods, and consider as the individual models entering the combina-

tions both linear and time-varying parameter with stochastic volatility (TVP-SV) models, each

including as regressor one of the predictor variables used by Welch and Goyal (2008).5 When

implemented along the lines proposed in this paper, we find that the CER-based DeCo scheme

leads to substantial improvements in the predictive accuracy of stock returns, both in statistical

and economic terms. In the benchmark case of an investor endowed with power utility and a

relative risk aversion of five, we find that the CER-based DeCo scheme yields an annualized

CER that is almost 100 basis points higher than any of the competing model combinations.

Switching from linear to TVP-SV models produces an increase in CER of more than 150 basis

points, and an absolute CER level of 246 basis points. No other model combination scheme

comes close to these gains.

Our paper contributes to a rapidly growing literature developing combination schemes with time-

varying weights. In particular, our paper is related to the work of Elliott and Timmermann

(2005) and Waggoner and Zha (2012), who develop model combination methods where the

4This point is closely related to the existing debate between statistical and decision-based approaches to forecast
evaluation. The statistical approach focuses on general measures of forecast accuracy intended to be relevant in
a variety of circumstances, while the decision-based approach provides techniques with which to evaluate the
economic value of forecasts to a particular decision maker or group of decision makers. See Granger and Machina
(2006) and Pesaran and Skouras (2007) for comprehensive reviews on this subject.

5Johannes et al. (2014) generalize the setting of Welch and Goyal (2008) by forecasting stock returns allowing
both regression parameters and return volatility to change over time. However, their emphasis is not on model
combination methods, and focus on a single predictor for stock returns, the dividend yield.
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weights are driven by a regime switching process, Hoogerheide et al. (2010), Raftery et al.

(2010), Koop and Korobilis (2011, 2012), Billio et al. (2013), and Del Negro et al. (2014), who

propose model combinations whose weights change gradually over time, and Kapetanios et al.

(2015), who develop a combination method where the weights depend on current and past values

of the variable being forecasted, as determined by where in the forecast density the variable of

interest is realized. To the best of our knowledge, ours is the first Bayesian combination scheme

where the weights depend on a utility-based loss function. Our paper is also related to the

literature on optimal portfolio choice, and to a number of recent papers, including Sentana

(2005), Kan and Zhou (2007), Tu and Zhou (2011), and Paye (2012), exploring the benefits of

combining individual portfolio strategies.

The plan of the paper is as follows. Section 2 reviews the standard Bayesian framework for pre-

dicting stock returns in the presence of model and parameter uncertainty. Section 3 introduces

the CER-based DeCo combination scheme, and highlighs how it differs from the existing combi-

nation methods. Next, section 4 describes the data, while section 5 presents the main empirical

results for a wide range of predictor variables and model combination strategies. Section 6 gen-

eralizes the previous results by introducing time-varying coefficients and stochastic volatility,

while Section 7 reports the results of a number robustness checks and extensions, including an

application of the methods described in the paper to forecast industry portfolio returns. Finally,

section 8 provides some concluding remarks.

2 Return predictability in the presence of parameter and model
uncertainty

It is common practice in the literature on return predictability to assume that stock returns,

measured in excess of a risk-free rate, rτ+1, are a linear function of a lagged predictor, xτ :

rτ+1 = µ+ βxτ + ετ+1, τ = 1, ..., t− 1, (1)

where ετ+1 ∼ N (0, σ2
ε). This is the approach followed by, among others, Welch and Goyal (2008)

and Bossaerts and Hillion (1999). See also Rapach and Zhou (2013) for an extensive review of

this literature. The linear model in (1) is simple to interpret and only requires estimating two

mean parameters, µ and β, which can readily be accomplished by OLS. Despite its simplicity,

it has been shown empirically that the model in (1) fails to provide convincing evidence of

out-of-sample return predictability. See for example the comprehensive study of Welch and
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Goyal (2008). They attribute the lack of out-of-sample predictability to a highly uncertain and

constantly evolving environment, hard to appropriately characterize using the simple model in

(1). In this context, model combination methods offer a valuable alternative. In particular,

when implemented using Bayesian methods, model combinations allow to jointly incorporate

parameter and model uncertainty into the estimation and inference steps and, compared to (1),

promise to be more robust to model misspecifications. More specifically, the Bayesian approach

assigns posterior probabilities to a wide set of competing return-generating models. It then uses

the probabilities as weights on the individual models to obtain a composite model. For example,

suppose that at time t the investor wants to predict stock returns at time t + 1, and for that

purpose has available N competing models (M1, . . . ,MN ). After eliciting prior distributions on

the parameters of each model, she can derive posterior estimates on all the parameters, and use

them to obtain N distinct predictive distributions, one for each model entertained. Next, using

Bayesian Model Averaging (BMA, henceforth) the individual predictive densities are combined

into the predictive distribution p(rt+1|Dt),

p(rt+1|Dt) =
N∑
i=1

P
(
Mi| Dt

)
p(rt+1|Mi,Dt) (2)

where Dt stands for the information set available at time t, i.e. Dt = {rτ+1, xτ}t−1
τ=1 ∪ xt, and

P
(
Mi| Dt

)
is the posterior probability of model i, derived by Bayes’ rule,

P
(
Mi| Dt

)
=

P
(
Dt
∣∣Mi

)
P (Mi)∑N

j=1 P (Dt|Mj)P (Mj)
, i = 1, ..., N (3)

P (Mi) is the prior probability of model Mi, and P
(
Dt
∣∣Mi

)
denotes the corresponding marginal

likelihood.6 Avramov (2002) and Dangl and Halling (2012) apply BMA to forecast stock returns,

and find that it leads to out-of-sample forecast improvements relative to the average performance

of the individual models as well as, occasionally, relative to the performance of the best individual

model.

We note, however, that BMA, as described in equations (2)-(3), suffers some important draw-

backs. First, BMA assumes that the true model is included in the model set. Indeed, under this

assumption it can be shown that the posterior model probabilities in (3) converge (in the limit)

to select the true model. However, as noted by Diebold (1991), all models could be false, and as

a result the model set could be misspecified. Geweke (2010) labels this problem model incom-

6See Hoeting et al. (1999) for a review on BMA.
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pleteness. Geweke and Amisano (2011) propose replacing the averaging as done in (2)-(3) with a

linear prediction pool, where the individual model weights are computed by maximizing the log

predictive likelihood, or log score (LS), of the combined model.7 Geweke and Amisano (2011,

2012) show that the model weights, computed in this way, no longer converge to a unique solu-

tion, except in the case where there is a dominant model in terms of Kullback-Leibler divergence.

Second, BMA assumes that the model combination weights are constant over time. However,

given the unstable and uncertain data-generating process for stock returns, it is conceivable to

imagine that the combination weights may be changing over time.8 Lastly, all existing Bayesian

model combination methods, including BMA, are potentially subject to a disconnect between

the metric according to which the individual forecasts are combined (i.e., either the marginal

likelihood in (2) or the log score in the linear prediction pool), and how ultimately their forecasts

are put to use. In particular, all the existing methods weight the individual models according to

their statistical performance. While statistical performance may be the relevant metric to use

in some settings, in the context of equity premium predictions this seems hardly the case. In

fact, with stock returns the quality of the individual model predictions should not be assessed in

terms of their statistical fit but rather on whether such predictions lead to profitable investment

decisions.9

3 Our approach

In this section, we introduce an alternative model combination scheme that addresses the lim-

itations discussed in section 2. We rely on the approach of Billio et al. (2013), who propose

a Bayesian combination approach with time-varying weights, and use a non-linear state space

model to estimate them. In addition, we introduce a mechanism that allows the combination

weights to depend on the history of the individual models’ past profitability. We now turn to

explaining in more details how our model combination scheme works.

We continue to assume that at a generic point in time t, the investor has available N distinct

7Mitchell and Hall (2005) discuss the analogy of the log score in a frequentistic framework to the log predictive
likelihood in a Bayesian framework, and how it relates to the Kullback-Leibler divergence. See also Hall and
Mitchell (2007), Jore et al. (2010), and Geweke and Amisano (2010) for a discussion on the use of the log score
as a ranking device for the forecast ability of different models.

8The linear prediction pool of Geweke and Amisano (2011) also imposes time-invariant model combination
weights. Del Negro et al. (2014) develop a dynamic version of the linear prediction pool approach which they
show works well for combinations of two models. See also Waggoner and Zha (2012) and Billio et al. (2013).

9This point has been emphasized before by Leitch and Tanner (1991), who show that good forecasts, as
measured in terms of statistical criteria, do not necessarily translate into profitable portfolio allocations.
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models to predict excess returns, each model producing a predictive distribution p
(
rt+1|Mi,Dt

)
,

with i = 1, ..., N . To ease the notation in what follows, we first define with r̃t+1 = (r̃1,t+1, ..., r̃N,t+1)′

the N × 1 vector of predictions made at time t and with p
(
r̃t+1| Dt

)
its joint predictive density.

Next, we write the composite predictive distribution p(rt+1|Dt) as

p
(
rt+1| Dt

)
=

∫
p(rt+1|r̃t+1,wt+1,Dt)p(wt+1|r̃t+1,Dt)p

(
r̃t+1| Dt

)
dr̃t+1dwt+1 (4)

where p(rt+1|r̃t+1,wt+1,Dt) denotes the combination scheme based on the N predictions r̃t+1

and the combination weights wt+1 ≡ (w1,t+1, . . . , wN,t+1)′, and p(wt+1|r̃t+1,Dt) denotes the

posterior distribution of the combination weights wt+1. Equation (4) generalizes equation (2),

taking into account the limitations discussed in the previous section. First, by specifying a

stochastic process for the model combination scheme, p(rt+1|r̃t+1,wt+1,Dt), we allow for either

model misspecification, or incompleteness, in the combination. Second, by introducing a proper

distribution for wt+1, p(wt+1|r̃t+1,Dt), we allow for the combination weights to change over time

and, as we will show in subsection 3.2, to be driven by the individual models’ past profitability.10

3.1 Individual models

We begin by describing how we specify the last term on the right-hand side of (4), p
(
r̃t+1| Dt

)
,

which we remind is short-hand for the N distinct predictive distributions entering the combi-

nation. As previously discussed, most of the literature on stock return predictability focuses

on linear models, so we take this class of models as our starting point. As in (1), we project

excess returns, rτ+1, on a lagged predictor, xτ , where τ = 1, ..., t − 1.11 Next, to estimate the

model parameters, we follow Koop (2003, Section 4.2) and specify independent Normal-Inverse

Gamma (NIG) priors on the parameter vector
(
µ, β, σ−2

ε

)
. Next, we rely on a Gibbs sampler

to draw from the conditional posterior distributions of µ, β, and σ−2
ε , given the information set

available at time t, Dt. Finally, once draws from the posterior distributions of µ, β, and σ−2
ε are

available, we use them to form a predictive density for rt+1 in the following way:

p
(
rt+1|Mi,Dt

)
=

∫
p
(
rt+1|µ, β, σ−2

ε ,Mi,Dt
)
p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
dµdβdσ−2

ε . (5)

10Note also that the combination scheme in (4) allows to factor into the composite predictive distribution the
uncertainty over the model combination weights, a feature that should prove useful in the context of excess return
predictions, where there is significant uncertainty over the identity of the best model(s) for predicting returns.

11Note that xτ can either be a scalar or a vector of regressors. In our setting we consider only one predictor at
the time, thus xt is a scalar. It would be possible to include multiple predictors at once in (1), but we follow the
bulk of the literature on stock return predictability and focus on a single predictor at a time.
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Repeating this process for the N individual models entering the combination yields the joint

predictive distribution p
(
r̃t+1| Dt

)
. We refer the reader to an online appendix for more details

on the specification of the priors, the implementation of the Gibbs sampler, and the evaluation

of the integral in equation (5).

3.2 Combination weights

We now turn to describing how we specify the conditional density for the combination weights,

p(wt+1|r̃t+1,Dt). First, in order to have time-varying weights wt+1 that belong to the simplex

∆[0,1]N , we introduce a vector of latent processes zt+1 = (z1,t+1, . . . , zN,t+1)′, where N is the

total number of models considered in the combination scheme, and12

wi,t+1 =
exp{zi,t+1}∑N
l=1 exp{zl,t+1}

, i = 1, . . . , N (6)

Next, we need the combination weights to depend on the past profitability of the N individual

models entering the combination. To accomplish this, we specify the following stochastic process

for zt+1:

zt+1 ∼ p(zt+1|zt,∆ζt,Λ) (7)

∝ |Λ|−
1
2 exp

{
−1

2
(zt+1 − zt −∆ζt)

′Λ−1 (zt+1 − zt −∆ζt)

}
where Λ is an (N ×N) diagonal matrix, and ∆ζt = ζt−ζt−1, with ζt = (ζ1,t, . . . , ζN,t)

′ denoting

a distance vector, measuring the accuracy of the N prediction models up to time t.13 As for the

individual elements of ζt, we opt for an exponentially weighted average of the past performance

of the N individual models entering the combination,

ζi,t = (1− λ)

t∑
τ=t+1

λt−τf (rτ , r̃i,τ ) , i = 1, . . . , N (8)

where t+ 1 denotes the beginning of the evaluation period, λ ∈ (0, 1) is a smoothing parameter,

f (rτ , r̃i,τ ) is a measure of the accuracy of model i, and r̃i,τ denotes the one-step ahead density

forecast of rτ made by model i at time τ − 1. r̃i,τ is thus short-hand for the i-th element of

p
(
r̃τ | Dτ−1

)
, p(rτ |Mi,Dτ−1). We set λ = 0.95 in our main analysis, and report in section 7 the

12Under this convexity constraint, the weights can be interpreted as discrete probabilities over the set of models
entering the combination.

13We assume that the variance-covariance matrix Λ of the process zt+1 governing the combination weights is
diagonal. We leave to further research the possibility of allowing for cross-correlation between model weights.
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effect of altering this value.14 As for the specific choice of f (rτ , r̃i,τ ), we focus on a utility-based

measure of predictability, the certainty equivalent return (CER).15 In the case of a power utility

investor who at time τ−1 chooses a portfolio by allocating her wealth Wτ−1 between the riskless

asset and one risky asset, her CER is given by

f (rτ , r̃i,τ ) =
[
(1−A)U

(
W ∗i,τ

)]1/(1−A)
(9)

where U
(
W ∗i,τ

)
denotes the investor’s realized utility at time τ ,

U
(
W ∗i,τ

)
=

[(
1− ω∗i,τ−1

)
exp

(
rfτ−1

)
+ ω∗i,τ−1 exp

(
rfτ−1 + rτ

)]1−A

1−A
(10)

rfτ−1 denotes the continuously compounded Treasury bill rate known at time τ − 1, A stands for

the investor’s relative risk aversion, rτ is the realized excess return at time τ , and ω∗i,τ−1 denotes

the optimal allocation to stocks according to the prediction made for rτ by model Mi, and given

by the solution to16

ω∗i,τ−1 = arg max
ωτ−1

∫
U (ωτ−1, rτ ) p(rτ |Mi,Dτ−1)drτ (11)

Combined, equations (6)–(9) imply that the combination weight of model i at time t+ 1, wi,t+1,

depends in a non-linear fashion on the time t combination weight wi,t and on an exponentially

weighted sum of model i’s past CER values. Accordingly, we label the model combination in

(4) “CER-based Density Combination”, or “CER-based DeCo” in short.

3.3 Combination scheme

We now turn to the first term on the right hand side of (4), p
(
rt+1|r̃t+1,wt+1,Dt

)
, denot-

ing the combination scheme. We note that since both the N original densities p
(
r̃t+1| Dt

)
and the combination weights wt+1 are in the form of densities, the combination scheme for

p(rt+1|r̃t+1,wt+1,Dt) is based on a convolution mechanism, which guarantees that the product

of N predictive densities with the combination weights results in a proper density.17 Following

14We note that in principle the parameter λ could be estimated from the data, and one possibility would be to
rely on a grid search to estimate it. Billio et al. (2013, section 6.2) discuss this option.

15Utility-based loss functions have been adopted before by Brown (1976), Frost and Savarino (1986), Stambaugh
(1997), and Ter Horst et al. (2006) to evaluate portfolio rules.

16Throughout the paper, we restrict the allocation to the interval 0 ≤ ωτ−1 < 1, thus precluding short selling
and buying on margin. See for example Barberis (2000).

17We refer the reader to Aastveit et al. (2014) for further discussion on convolution and its properties.
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Billio et al. (2013), we apply a Gaussian combination scheme,

p(rt+1|r̃t+1,wt+1, σ
−2
κ ) ∝ exp

{
−1

2
(rt+1 − r̃t+1wt+1)′ σ−2

κ (rt+1 − r̃t+1wt+1)

}
(12)

The combination relationship in (12) is linear and explicitly allows for model misspecification,

possibly because all models in the combination may be false (incomplete model set or open model

space). Furthermore, the combination residuals are estimated and their distribution follows a

Gaussian process with mean zero and standard deviation σκ, providing a probabilistic measure

of the incompleteness of the model set.18,19

We conclude this section by briefly describing how we estimate the posterior distributions

p(rt+1|r̃t+1,wt+1,Dt) and p(wt+1|r̃t+1,Dt).20 Equations (4), (6), (7), and (12), as well as the

individual model predictive densities p
(
r̃t+1| Dt

)
are first grouped into a non-linear state space

model.21 Because of the non-linearity, standard Gaussian methods such as the Kalman filter

cannot be applied. We instead apply a Sequential Monte Carlo method, using a particle filter to

approximate the transition equation governing the dynamics of zt+1 in the state space model,

yielding posterior distributions for both p(rt+1|r̃t+1,wt+1,Dt) and p(wt+1|r̃t+1,Dt). We refer

the reader to an online appendix for more details on the prior specifications for Λ and σ−2
κ , and

the implementation of the sequential Monte Carlo.

4 Data

Our empirical analysis uses data on stock returns along with a set of fifteen economic variables

which are popular stock return predictors and are directly linked to economic fundamentals and

risk aversion. Stock returns are computed from the S&P500 index and include dividends. A

short T-bill rate is subtracted from stock returns in order to capture excess returns. As for the

predictors, we use updated data from Welch and Goyal (2008), extending from January 1927

18We note that our method is thus more general than the approach in Geweke and Amisano (2010) and Geweke
and Amisano (2011), as it provides as an output a measure of model incompleteness.

19It is worth pointing out that when the randomness is canceled out by fixing σ2
κ = 0 and the weights are

derived as in equation (3), the combination in (4) reduces to standard BMA. Hence, one can think of BMA as a
special case of the combination scheme we propose here.

20As for all individual model parameters and their predictive densities p
(
r̃t+1| Dt

)
, these are computed in a

separate step before the model combination weights are estimated, as described in subsection 3.1. Hence, our
approach differs from Waggoner and Zha (2012), as they implement a formal mixture between the individual
candidate models, and is instead more along the lines of BMA and the optimal prediction pool of Geweke and
Amisano (2011).

21The non-linearity is due to the logistic transformation mapping the latent process zt+1 into the model com-
bination weights wt+1.
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to December 2010. Most of the predictors fall into three broad categories, namely (i) valuation

ratios capturing some measure of ‘fundamentals’ to market value such as the dividend yield, the

earnings-price ratio, the 10-year earnings-price ratio or the book-to-market ratio; (ii) measures

of bond yields capturing level effects (the three-month T-bill rate and the yield on long-term

government bonds), slope effects (the term spread), and default risk effects (the default yield

spread defined as the yield spread between BAA and AAA rated corporate bonds, and the

default return spread defined as the difference between the yield on long-term corporate and

government bonds); (iii) estimates of equity risk such as the long-term return and stock variance

(a volatility estimate based on daily squared returns); (iv) three corporate finance variables,

namely the dividend payout ratio (the log of the dividend-earnings ratio), net equity expansion

(the ratio of 12-month net issues by NYSE-listed stocks over the year-end market capitalization),

and the percentage of equity issuance (the ratio of equity issuing activity as a fraction of total

issuing activity). Finally, we consider a macroeconomic variable, inflation, defined as the rate

of change in the consumer price index, and the net payout measure of Boudoukh et al. (2007),

which is computed as the ratio between dividends and net equity repurchases (repurchases minus

issuances) over the last twelve months and the current stock price.22,23

We use the first 20 years of data as a training sample for both the priors and the forecasts.

Specifically, all priors hyperparameters are calibrated over this initial period, and held constant

throughout the forecast evaluation period. As for the forecasts, we begin by estimating all re-

gression models over the period January 1927–December 1946, and use the estimated coefficients

to forecast excess returns for January 1947. We next include January 1947 in the estimation

sample, which thus becomes January 1927–January 1947, and use the corresponding estimates

to predict excess returns for February 1947. We proceed in this recursive fashion until the last

observation in the sample, thus producing a time series of one-step-ahead forecasts spanning the

time period from January 1947 to December 2010.

5 Out-of-Sample Performance

In this section we answer the question of whether the CER-based DeCo model introduced in

section 3 produces equity premium forecasts that are more accurate than those obtained from

22We follow Welch and Goyal (2008) and lag inflation an extra month to account for the delay in CPI releases.
23Johannes et al. (2014) find that accounting for net equity repurchases in addition to cash payouts produces

a stronger predictor for equity returns.
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the existing approaches, both in terms of statistical and economic criteria.

5.1 Statistical Performance

We compare the performance of CER-based DeCo to both the fifteen univariate models entering

the combination as well as a number of alternative model combination methods, namely BMA,

the optimal prediction pool of Geweke and Amisano (2011), and the equal weighted combination,

and consider several evaluation statistics for both point and density forecasts. As in Welch and

Goyal (2008) and Campbell and Thompson (2008), the predictive performance of each model is

measured relative to the prevailing mean (PM) model.24

As for assessing the accuracy of the point forecasts, we consider the Cumulative Sum of Squared

prediction Error Difference (CSSED), introduced by Welch and Goyal (2008),

CSSEDm,t =
t∑

τ=t+1

(
e2
PM,τ − e2

m,τ

)
(13)

where m denotes the model under consideration (either univariate or model combination), and

em,τ (ePM,τ ) denotes modelm′s (PM’s) prediction error from time τ forecast, obtained by synthe-

sizing the corresponding predictive density into a point forecast. An increase from CSSEDm,t−1

to CSSEDm,t indicates that relative to the benchmark PM model, the alternative model m pre-

dicts more accurately at observation t. Next, following Campbell and Thompson (2008) we

also summarize the predictive ability of the various models over the whole evaluation sample by

reporting the out-of-sample R2 measure,

R2
OoS,m = 1−

∑t
τ=t+1 e

2
m,τ∑t

τ=t+1 e
2
PM,τ

. (14)

whereby a positive R2
OOS,m is indicative of some predictability from model m (again, relative to

the benchmark PM model), and where t denotes the end of the forecast evaluation period.

Turning next to the accuracy of the density forecasts, we consider three different metrics of

predictive performance. First, following Amisano and Giacomini (2007), Geweke and Amisano

(2010), and Hall and Mitchell (2007), we consider the average log score differential,

LSDm =

∑t
τ=t+1 (LSm,τ − LSPM,τ )∑t

τ=t+1 LSPM,τ

(15)

24For consistency, the prevailing mean model is estimated using priors that are analog to those we used for the
model in (1). In particular, we slightly alter the prior on (µ, β) to impose a dogmatic “no predictability” prior on
β = 0, while using the same prior for σ−2

ε .
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where LSm,τ (LSPM,τ ) denotes model m’s (PM’s) log predictive score computed at time τ.

If LSDm is positive, this indicates that on average the alternative model m produces more

accurate density forecasts than the benchmark PM model. We also consider using the recursively

computed log scores as inputs to the period t difference in the cumulative log score differential

between the PM model and the mth model, CLSDm,t =
∑t

τ=t+1 (LSm,τ − LSPM,τ ). Again, an

increase from CLSDm,t−1 to CLSDm,t indicates that relative to the benchmark PM model, the

alternative model m predicts more accurately at observation t. Lastly, we follow Gneiting and

Raftery (2007), Gneiting and Ranjan (2011) and Groen et al. (2013), and consider the average

continuously ranked probability score differential (CRPSD),

CRPSDm =

∑t
τ=t+1 (CRPSPM,τ − CRPSm,τ )∑t

τ=t+1CRPSPM,τ

(16)

where CRPSm,τ (CRPSPM,τ ) measures the average distance between the empirical cumulative

distribution function (CDF) of rτ (which is simply a step function in rτ ), and the empirical CDF

that is associated with model m’s (PM’s) predictive density.25

Table 1 presents results on the accuracy of both point and density forecasts for all fifteen

univariate models and a variety of model combination methods, including the CER-based DeCo

scheme introduced in section 3. For all statistical metrics considered, positive values indicate that

the alternative models perform better than the PM model. We also report stars to summarize

the statistical significance of the results, where the underlying p-values are based on the Diebold

and Mariano (1995) test of equal equal predictive accuracy and are computed with a serial

correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews

and Monahan (1992). We begin by focusing on the results under the columns under the header

“Linear”. We will return later to the remaining columns of this table. Starting with the top part

of panel A, the results for the point forecast accuracy of the individual models are reminiscent

of the findings of Welch and Goyal (2008), where the R2
OoS-values are negative for 13 out of the

15 predictor variables. Moving on to bottom part of panel A, we find that with the exception of

the optimal prediction pool method of Geweke and Amisano (2011), model combinations lead

to positive R2
OoS-values. We note in particular that the CER-based DeCo model delivers the

largest improvement in forecast performance among all model combinations, with an R2
OoS of

25Gneiting and Raftery (2007) explain how the CRPSD measure circumvents some of the problems of the
logarithmic score, most notably the fact that the latter does not reward values from the predictive density that
are close but not equal to the realization.
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2.32%, statistically significant at the 1% level. The top two panels of Figure 2 plot the CSSEDs

for all the model combination methods considered. In particular, the second panel shows that

with the exception of the first part of the 1990’s, the CER-based DeCo scheme consistently

outperforms the PM benchmark as well as all the alternative combination methods.

Turning next to the density forecast results in panels B and C of Table 1, we find that the CER-

based DeCo scheme is the only model that yields positive and statistically significant results.

This is true for both measures of density forecast accuracy, the average log score differential and

the average CRPS differential. To shed light on the reasons for such improvements in both point

and density predictability, we also compute a version of CER-based DeCo where we suppress

the learning mechanism in the weight dynamics (that is, we remove the term ∆ζt from (7)).

We label this combination scheme “DeCo”. A quick look at the comparison between the CER-

based DeCo and the DeCo results in Table 1 reveals that the learning mechanism introduced via

equations (7)–(9) explains the lion’s share of the increase in performance we see for the CER-

based DeCo scheme. As for the point forecast improvement, this can also be seen by inspecting

the gap between the CER-based DeCo (red dashed line) and DeCo (blue solid line) CSSEDs

displayed in the second panel of Figure 2.

5.2 Economic Performance

We now turn to evaluating the economic significance of the return forecasts by considering

the portfolio choice of an investor who uses the forecasts to guide her investment decisions.26

Having computed the optimal asset allocation weights for all the individual models and the

various model combinations, we assess the economic predictability of all models by computing

their implied (annualized) CER values. Under power utility, the investor’s annualized CER is

given by

CERm = 12×

(1−A)
1

t− t

t∑
τ=t+1

U
(
W ∗m,τ

)1/(1−A)

− 1 (17)

where m denotes the model under consideration (either univariate or model combination). We

next define the differential certainty equivalent return of model m, relative to the benchmark

PM model, CERDm = CERm − CERPM . We interpret a positive CERDm as evidence that

26One advantage of adopting a Bayesian approach is that it yields predictive densities that account for parameter
estimation error. The importance of controlling for parameter uncertainty in investment decisions has been
emphasized by Kandel and Stambaugh (1996) and Barberis (2000). Klein and Bawa (1976) were among the
first to note that using estimates for the parameters of the return distribution to construct portfolios induces an
estimation risk.
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model m generates a higher (certainty equivalent) return than the benchmark model.

Panel A of Table 2 shows annualized CERDs for the same models listed in Table 1, assuming

a coefficient of relative risk aversion of A = 5. Once again, we focus on the columns under

the header “Linear”, and for the time being restrict our focus to Panel A (we will return to

the results in Panel B of this table in the next section). An inspection of the bottom half of

panel A reveals that the statistical gains we saw for the CER-based DeCo scheme in Table 1

translate into CER gains of almost 100 basis points. No other combination scheme provides

gains of a magnitude comparable to the CER-based DeCo scheme. Turning to the top part of

panel A, it appears that some of the individual models generates positive CERD values, but in

general these gains are at least 50 basis points smaller than the CER-based DeCo. Finally, the

top two panels of Figure 3 plot the cumulative CER values of the various model combination

schemes, relative to the PM benchmark. These plots parallel the cumulated differential plots

of Figure 2. The figure shows how the economic performance of the CER-based DeCo model is

not the result of any specific and short-lived episode, but rather it is built gradually over the

entire out-of-sample period, as indicated by the the constantly increasing red dashed line in the

second panel of Figure 3. The only exception is during the second part of the 1990s, where the

PM benchmark appears to outperform the CER-based DeCo model. Also, a comparison of the

CER-based DECo with the DeCo scheme reveals once again that it is the learning mechanism

introduced via equations (7)–(9) that is mainly responsible for these gains.

Along these lines, it would be informative to see whether the CERD of any of the alternative

model combinations thus far considered could be improved by adding a similar CER-based

learning feature into the calculation of its combination weights. To test this conjecture, we

add to the set of model combinations a linear pool whose combination weights depend on the

individual models’ past profitability in the following way:

w̃i =
∆ζi,t
1′∆ζt

, i = 1, . . . , N (18)

and where 1 is an (N × 1) unit vector.27 We label this new combination scheme “CER-based

linear pool”, and report its annualized CERD at the bottom of Table 2. Comparing the results of

the CER-based linear pool with the prediction pool of Geweke and Amisano (2011), we notice

a significant improvement in CERD, which increases from −0.82% to −0.03%. We notice,

27The approach we propose in Equation 18 is similar to the recursive logarithmic score weight (RW) approach
discussed in Jore et al. (2010). See also Amisano and Giacomini (2007) and Hall and Mitchell (2007).
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however, that the CER-based linear pool does not improve over the equal weighted combination

and BMA methods and, most importantly, falls significantly below the CER-based DeCo. It

appears, therefore, that while having a utility-based learning mechanism in the formula for the

combination weights can be quite beneficial, the gains we saw for the CER-based DeCo scheme

are the result of an ensemble of features, including time-variation in the combination weights,

modeling incompleteness, and the addition of a learning mechanism based on the individual

models’ past profitability.

6 Modeling Parameter Instability

Recent contributions to the literature on stock return predictability have found that it is im-

portant to account for two features. First, return volatility varies over time and time varying

volatility models fit returns data far better than constant volatility models; see, e.g., Johannes

et al. (2014) and Pettenuzzo et al. (2014). Stochastic volatility models can also account for

fat tails—a feature that is clearly present in the monthly returns data. Second, the param-

eters of return predictability models are not stable over time but appear to undergo change;

see Paye and Timmermann (2006), Pettenuzzo and Timmermann (2011), Dangl and Halling

(2012), and Johannes et al. (2014). While it is well known that forecast combination methods

can deal with model instabilities and structural breaks and can generate more stable forecasts

than those from the individual models (see for example Hendry and Clements (2004), and Stock

and Watson (2004)), the impact of the linearity assumption on the individual models entering

the combination is an aspect that has not yet been thoroughly investigated.

In this section, we extend the model in (1) along both of these dimensions, and introduce a time-

varying parameter, stochastic volatility (TVP-SV) model, where both the regression coefficients

and the return volatility are allowed to change over time:

rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, τ = 1, ..., t− 1, (19)

where hτ+1 denotes the (log of) stock return volatility at time τ + 1, and uτ+1 ∼ N (0, 1). We

assume that the time-varying parameters θτ+1 = (µτ+1, βτ+1)′ follow a zero-mean, stationary

process

θτ+1 = γ ′θθτ + ητ+1, ητ+1 ∼ N (0,Q) , (20)
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where θ1 = 0 and the elements in γθ are restricted to lie between −1 and 1.28 The log-volatility

hτ+1 is also assumed to follow a stationary and mean reverting process:

hτ+1 = λ0 + λ1hτ + ξτ+1, ξτ+1 ∼ N
(
0, σ2

ξ

)
, (21)

where |λ1| < 1 and uτ , ηt and ξs are mutually independent for all τ , t, and s.

To estimate the model in (19)-(21), we first specify priors for all the parameters, µ, β, θt, ht,

Q, σ−2
ξ , γθ, λ0, and λ1. Next, we use a Gibbs sampler to draw from the conditional posterior

distributions of all the parameters.29 These draws are used to compute density forecasts for rt+1

as follows:

p
(
rt+1|M ′i ,Dt

)
=

∫
p
(
rt+1|θt+1, ht+1,Θ,θt, ht,M ′i ,Dt

)
×p
(
θt+1, ht+1|Θ,θt, ht,M ′i ,Dt

)
(22)

×p
(
Θ,θt, ht

∣∣M ′i ,Dt) dΘdθt+1dht+1.

where Θ =
(
µ, β,Q,σ−2

ξ ,γθ, λ0, λ1

)
contains the time-invariant parameters. We refer the reader

to an online appendix for more details on the specification of the priors, the implementation of

the Gibbs sampler, and the evaluation of the integral in (22).

Having produced the full set of predictive densities for the N distinct TVP-SV models, we use

them to recompute all model combinations, including the CER-based DeCo scheme introduced

in Section 3. Point and density forecast results for both the individual TVP-SV models as

well as all the newly computed model combinations are reported in Table 1, under the column

header “TVP-SV”. Starting from the top half of Table 1 and focusing on panel A, we find that

allowing for time-varying coefficients and volatilities leads to improvements in forecasting ability

for almost all predictors. We note however that the R2
OoS are still mostly negative, implying

that at least in terms of point-forecast accuracy it remains very hard to beat the benchmark PM

model. Moving on to the bottom of panel A, we find positive R2
OoS for all model combinations

methods, with the exception of the optimal prediction pool of Geweke and Amisano (2011). In

particular, the R2
OoS of the CER-based DeCo method remains large and significant, though we

note a marginal decrease from the results based on the linear models. The bottom two panels

28Note that this is equivalent to writing rτ+1 = µ̃τ+1 + β̃τ+1xτ + exp (hτ+1)uτ+1, where
(
µ̃1, β̃1

)
is left

unrestricted.
29In particular, we follow Primiceri (2005) after adjusting for the correction to the ordering of steps detailed in

Del Negro and Primiceri (2014), and employ the algorithm of Carter and Kohn (1994) along with the approxi-
mation of Kim et al. (1998) to draw the history of stochastic volatilities.
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of Figure 2 plot the CSSEDt for all the TVP-SV based model combinations, and in particular

the fourth panel of the figure shows that the CER-based DeCo outperforms the benchmark PM

model throughout the whole forecast evaluation period.

Turning next to the density forecast results in panels B and C of Table 1, we find that allowing for

instabilities in the individual models’ coefficients and volatilities leads in all cases to improved

density forecasts, with all comparison with the PM benchmark being significant at the 1%

critical level. Moving on to the bottom halves of panels B and C, we find that for the CRPS

measure the CER-based DeCo model generates the largest gains among all model combination

methods, while for the log score measure the CER-based DeCo model ranks above the equal

weighted combination, BMA, and DeCo but falls slightly below the Optimal prediction pool.30

The stark contrast between the point and density forecast results in Table 1 is suggestive of the

importance of also looking at metrics summarizing the accuracy of the density forecasts, rather

than focusing only on the performance based on point forecasts. This point has been previously

emphasized by Cenesizoglu and Timmermann (2012) in a similar setting.

Moving on to the TVP-SV results in panel A of Table 2, we find that in all cases switching from

linear to TVP-SV models produces large improvements in CERDs. This is true for the individual

models, whose CERD values relative to the linear case increase on average by 96 basis points,

and for the model combinations, whose CERD values increase on average by 140 basis points.

As for the individual models, this result is in line with the findings of Johannes et al. (2014), but

generalized to a richer set of predictors than those considered in their study. As for the model

combinations, we note that the CER-based DeCo model produces the largest CERD, with a

value of 246 basis points. This CERD value is more than twice the average CERD generated by

the individual TVP-SV models entering the combination. The bottom two panels of Figure 3

offers a graphical illustration of the CERD results summarized in Table 2 for the TVP-SV based

model combinations, showing over time the economic performance of the TVP-SV combination

methods, relative to the PM benchmark. In particular, the fourth panel of Figure 3 shows that

the cumulated CERD value at the end of the sample for the CER-based DeCo is approximately

equal to 200%. This exceeds all other model combinations by approximately 40%.

30Interestingly, we also find that for the LSD metric, the individual model based on the Stock variance predictor
yields a log score differential value of 11.81%, higher than the CER-based DeCo. In a non-reported set of results,
we find that if the learning mechanism in equations (7)-(9) is modified to use the individual model past log score
histories (i.e. f (rτ , r̃i,τ ) = LSi,τ ), the resulting model combination LSD increases from 11.72% to 12.26% (and
from 0.26% to 0.38% in the linear case).
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One possible explanation for the improved CERD results we find for the TVP-SV models may

have to do with the the choice of the prevailing mean (PM) model as our benchmark. Johannes

et al. (2014) point out that such choice does not allow one to isolate the effect of volatility

timing from the effect of jointly forecasting expected returns and volatility. To address this

point, we modify our benchmark model to include stochastic volatility. We label this new

benchmark Prevailing Mean with Stochastic Volatility, or PM-SV, and in panel B of Table 3

report the adjusted differential CER, CERD′m = CERm − CERPM−SV . A quick comparison

between panels A and B of Table 3 reveals that switching benchmark from the PM to the PM-SV

model produces a marked decrease in economic predictability, both for the individual models

and the various model combinations. This comparison shows the important role of volatility

timing, something that can be directly inferred by comparing the TVP-SV results across the two

panels. Most notably, the CER-based DeCo results remain quite strong even after replacing the

benchmark model, especially for the case of TVP-SV models, with a CERD of 168 basis points.

7 Robustness and Extensions

In this section we summarize the results of a number of robustness and extensions we have

performed to validate the empirical results presented in sections 5 to 6. Additional details on

these analysis can be found in an online appendix that accompanies the paper. In there, we

also summarized the results of an extensive prior sensitivity to ascertain the role of our baseline

prior choices on the overall results.

7.1 Robustness analysis

First, we investigated the effect on the profitability analysis presented in sections 5.2 and 6

of altering the investor’s relative risk aversion coefficient A. We find that lowering the risk

aversion coefficient from A = 5 to A = 2 has the effect of boosting the economic performance of

the individual TVP-SV models, while decreasing it for the linear models. On the other hand,

increasing the risk aversion coefficient to A = 10 leads to an overall decrease in CERD values,

both for the individual models and the model combinations. In both cases, the CER-based DeCo

scheme continues to dominate all the other methods. Second, we performed a subsample analysis

to shed light on the robustness of our results to the choice of the forecasting evaluation period.

In particular, we looked separately at recessions and expansions, as defined using NBER dating

conventions, and we also used the 1973-1975 oil shock period to break the evaluation sample into
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two separate subsamples. We find that the CER-based DeCo scheme yields positive and large

economic gains in all sub-periods, for both linear and TVP-SV models. Third, we modified our

choice of the parameter λ controlling the degree of learning in the model combination weights

and find that setting it to a lower value, λ = 0.9, has only minor consequences on the results. We

find that this holds true for both the linear and TVP-SV models, and across all sub-periods.31

Finally, we explored the sensitivity of our baseline results to the particular choice we made

with respect to the investor’s preferences, by replacing the investor’s power utility with a mean

variance utility. We find that the economic gains for power utility and mean variance utility are

very similar in magnitude, and that under mean variance utility the CER-based DeCo scheme

still produces sizable improvements in CERD relative to all the alternative models, especially in

the case of the TVP-SV models.

7.2 Forecasting industry portfolios

We conclude our empirical analysis by investigating the performance of the CER-based DeCo

scheme with a number of industry portfolios. While there is a vast literature examining the out-

of-sample predictability of U.S. aggregate returns, analysis of out-of-sample return predictability

for industry portfolios is relatively rare. Two notable exceptions are Rapach et al. (2015) and

Huang et al. (2015). Relative to these studies, our focus is specifically on the predictive ability

of the model combinations. We thus focus on a smaller set of industry portfolios, while at

the same time significantly expanding the number of predictors used. The latter endeavor is

necessary to fully take advantage of the model combination methods. In particular, we still rely

on market-wide measures of bond yields and inflation, but in addition we construct industry-

specific dividend yields, earning price ratios, book-to-market ratios, dividend payout ratios, net

equity expansions, and stock variances. To the best of our knowledge, this is the first study that

investigates industry portfolio predictability using such a detailed list of predictors.32 Our focus

is on model combinations based on the linear models we introduced in subsection 3.1,

rjτ+1 = µj + βjxjτ + εjτ+1, τ = 1, ..., t− 1, (23)

31As for the case of a larger discount factor, note that when λ = 1 equation (8) implies that the CER-based
DeCo scheme simplifies to the Density Combination scheme we investigated earlier, where the combination weights
no longer depend on the past performance of the individual models entering the combination.

32We use quarterly COMPUSTAT and monthly CRSP data, along with industry port-
folio returns and industry classifications from Kenneth French’s Data Library, available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.
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where rjτ+1 is time τ+1 monthly excess return for the j-th industry (the industries we consider are

Consumers, Manufacturing, High-Tech, Health, and Other), xjτ is one of the industry predictors,

and εjτ+1 ∼ N(0, σ2,j
ε ).33 Table 3 reports the results of this experiment, with the CERD of the

individual models (relative to industry-specific PM benchmarks) presented on the top panel,

and the model combinations in the bottom panel. There, we also include the results for the

CER-based linear pool we introduced in subsection 5.2. Overall, the results we find for the

various industry portfolios are largely consistent with those reported in Table 2 for the case of the

S&P500. In particular, we find that compared to the average CERD from the individual models,

model combinations generates larger economic gains. However, only in a few instances the model

combinations manage to improve over the best individual models entering the combinations.

On the other hand, the CER-based DeCo scheme appears to consistently improve over the

best individual models entering the combination, with CERD values that are on average 172

basis points higher than the alternative model combination methods. The only exception is the

Health industry, where the CER-based DeCo fails to improve over the CERD of the individual

model based on the log dividend-yield. However, even in this case the CER-based DeCo scheme

manages to deliver a CERD value that is 60 basis points higher than the next best model

combination.

8 Conclusions

In this paper we extend the density combination approach of Billio et al. (2013) to feature

combination weights that depend on the individual models’ past profitability. We apply our

model combination scheme to forecast stock returns, both at the aggregate level and by industry,

and find improvements in both statistical and economic measures of out-of-sample predictability,

relative to the best individual models entering the combination as well as a variety of existing

model combination techniques. We also apply our combination scheme to a set of models

featuring time-varying coefficients and stochastic volatility. In this way, we are able to jointly

assess the importance of model uncertainty, model instabilities, and parameter uncertainty on

the statistical and economic predictability of stock returns. Overall we find that explicitly

accounting for model instabilities in the model combination leads to even larger improvements

in predictability. These gains appears to be robust to a large number of robustness checks.

33We provide further details on the industry definitions and classifications in the notes to Table 3.
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Table 2. Economic performance of portfolios based on out-of-sample return forecasts

Individual models

Predictor
Panel A: vs. PM Panel B: vs. PM-SV
Linear TVP-SV Linear TVP-SV

Log dividend yield -0.33 % 0.90 % -1.12 % 0.11 %
Log earning price ratio 0.25 % 1.11 % -0.54 % 0.32 %
Log smooth earning price ratio -0.38 % 0.91 % -1.17 % 0.12 %
Log dividend-payout ratio 0.41 % 0.94 % -0.38 % 0.15 %
Book-to-market ratio -0.58 % 0.61 % -1.36 % -0.18 %
T-Bill rate -0.26 % 0.87 % -1.05 % 0.08 %
Long-term yield -0.34 % 0.52 % -1.13 % -0.27 %
Long-term return -0.42 % 0.74 % -1.21 % -0.05 %
Term spread 0.15 % 0.81 % -0.64 % 0.02 %
Default yield spread -0.20 % 0.86 % -0.99 % 0.07 %
Default return spread -0.14 % 0.62 % -0.93 % -0.17 %
Stock variance 0.00 % 0.97 % -0.79 % 0.18 %
Net equity expansion -0.14 % 0.79 % -0.92 % 0.00 %
Inflation -0.17 % 0.79 % -0.96 % 0.00 %
Log total net payout yield -0.37 % 0.46 % -1.16 % -0.33 %

Model combinations

Equal weighted combination 0.02 % 1.06 % -0.77 % 0.27 %
BMA -0.05 % 1.03 % -0.84 % 0.24 %
Optimal prediction pool -0.82 % 0.96 % -1.61 % 0.17 %
CER-based linear pool -0.03 % 1.13 % -0.82 % 0.34 %
DeCo -0.01 % 1.78 % -0.80 % 0.99 %
CER-based DeCo 0.94 % 2.46 % 0.15 % 1.68 %

This table reports the annualized certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of excess returns. Each period an investor with power utility and coefficient of relative risk aversion

A = 5 selects stocks and T-bills based on a different predictive density, based either on a combination scheme or on an

individual prediction model of the monthly excess returns. The columns “Linear” refers to predictive return distributions

based on a linear regression of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 =

µ + βxτ + ετ+1, and combination of these N linear individual models; the columns “TVP-SV” refer to predictive return

distributions based on a time-varying parameter and stochastic volatility regression of monthly excess returns on an intercept

and a lagged predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N

TVP-SV individual models. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A = 5

and, in the case of “CER-based DeCo”, λ = 0.95. Panel A reports CERD that are measured relative to the prevailing mean

(PM) benchmark, while panel B presents CERD that are computed relative to the prevailing mean model with stochastic

volatility (PM-SV) benchmark. Bold figures indicate all instances in which the CERD is greater than zero. All results are

based on the whole forecast evaluation period, January 1947 - December 2010.
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Table 3. Economic performance of industry-sorted portfolio returns

Individual models

Predictor Cnsmr Manuf HiTec Hlth Other

Log dividend yield -0.82 % 0.05 % -0.53 % 0.97 % -0.67 %
Log earning price ratio -0.49 % -0.81 % 0.25 % 0.30 % 0.83 %
Log dividend-payout ratio -1.01 % -1.08 % -1.37 % -0.42 % -2.45 %
Book-to-market ratio 0.00 % 0.60 % 0.52 % 0.26 % -0.69 %
T-Bill rate -0.45 % -0.41 % -0.25 % -1.05 % -1.09 %
Long-term yield -0.45 % -0.54 % 0.25 % -0.55 % -0.43 %
Long-term return 1.36 % 0.41 % 0.11 % 0.25 % 1.17 %
Term spread 0.57 % -0.07 % 0.27 % -0.67 % -0.30 %
Default yield spread 0.12 % -2.22 % -0.64 % -0.44 % -1.92 %
Default return spread -0.40 % -0.54 % -0.40 % 0.06 % -0.90 %
Stock variance -0.73 % 0.11 % 0.52 % -0.36 % 0.12 %
Inflation -0.53 % -0.53 % -0.31 % -0.46 % -1.32 %
Net equity expansion -1.26 % -0.52 % -0.34 % -1.31 % -0.14 %

Model combinations

Equal weighted combination 0.37 % 0.50 % 1.18 % -0.34 % 0.42 %
BMA 0.33 % 0.33 % 1.27 % -0.41 % 0.39 %
Optimal prediction pool -1.43 % -0.19 % 1.11 % -1.69 % -0.13 %
CER-based linear pool 0.51 % 0.51 % 1.24 % -0.22 % 0.42 %
DeCo 1.00 % 0.95 % 2.19 % 0.02 % 1.00 %
CER-based DeCo 2.30 % 1.70 % 3.41 % 0.62 % 2.44 %

This table reports the annualized certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of industry excess returns. Each period an investor with power utility and coefficient of relative

risk aversion A = 5 selects stocks from a given industry and T-bills based on a different predictive density, based either

on a combination scheme or on an individual prediction model of the monthly excess returns from that industry. The

classification of stocks into industries is based on the industry definitions provided by Kenneth French’s and available

at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html. Specifically: (1) Cnsmr includes Consumer

Durables, NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops); Manuf includes Manufacturing,

Energy, and Utilities; HiTec includes Business Equipment, Telephone and Television Transmission, as well as a number of

other high-tech services; Hlth includes Healthcare, Medical Equipment, and Drugs; Other includes Mines, Constr, BldMt,

Trans, Hotels, Bus Serv, Entertainment, and Finance. For each industry, predictive densities are obtained from a linear

regression of monthly excess returns for that industry on an intercept and a lagged predictor variable, xjτ (j goes from 1

to 5): rjτ+1 = µj + βjxjτ + εjτ+1, and combination of these N linear individual models. The models “CER-based linear

pool” and “CER-based DeCo” refer to the case with A = 5 and, in the case of “CER-based DeCo”, λ = 0.95. CERD are

measured relative to the prevailing mean (PM) benchmark, and bold figures indicate all instances in which the CERD is

greater than zero. All results are based on the whole forecast evaluation period, January 1980 - December 2010.
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Figure 1. Out-of-sample forecast performance of univariate models
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The top panel shows the sum of squared forecast errors of the prevailing mean model (PM) model minus the sum of squared
forecast errors for each of five different univariate models. Each model is estimated from a linear regression of monthly
excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1. We plot the cumulative sum

of squared forecast errors of the PM forecasts relative to the individual model m, CSSEDm,t =
∑t
τ=t+1

(
e2PM,τ − e

2
m,τ

)
.

Values above zero indicate that a given predictor generates better performance than the PM benchmark, while negative
values suggest the opposite. The bottom panel shows the sum of log predictive scores of five alternative model combination
methods minus the sum of log predictive scores of the PM model. We plot the cumulative sum of log-predictive scores
for the same five univariate models relative to the cumulative sum of log-predictive scores of the PM model, CLSDm,t =∑t
τ=t+1

(
LSm,τ − LSPM,τ

)
. Values above zero indicate that a model combination method generates better performance

than the PM benchmark, while negative values suggest the opposite. We show results based on the forecasts generated
using the log dividend-yield (blue solid line), the T-bill rate (red dashed line), the Term Spread (yellow dotted line), the
Stock variance (purple solid line), and the log dividend-payout ratio (green dashed line). Shaded areas indicate NBER-dated
recessions.
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Figure 2. Cumulative sum of squared forecast error differentials for model combina-
tions
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This figure shows the sum of squared forecast errors of the prevailing mean model (PM) model minus the sum of squared
forecast errors of five alternative model combinations based on linear univariate models (top panels) and univariate time-
varying parameter stochastic volatility (TVP-SV) models (bottom panels). For each model combination, we plot the
cumulative sum of squared forecast errors of the PM forecasts relative to the model combination forecasts, CSSEDm,t =∑t
τ=t+1

(
e2PM,τ − e

2
m,τ

)
. Values above zero indicate that a model combination generates better performance than the PM

benchmark, while negative values suggest the opposite. The left panels present results for the equal weighted combination
(blue solid line), the optimal prediction pool (red dashed line), and Bayesian model averaging (yellow dashed line). The
right-hand side panels plots the the cumulative sum of squared forecast error differentials for the Density Combination
schemes, with and without learning. The model “CER-based DeCo” refers to the case with A = 5 and λ = 0.95. Shaded
areas indicate NBER-dated recessions.
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Figure 3. Economic value of out-of-sample forecasts
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This figure plots the cumulative certainty equivalent returns of six alternative model combination methods based on linear
models (top panels) and univariate time-varying parameter stochastic volatility (TVP-SV) models (bottom panels), mea-
sured relative to the PM model. Each month we compute the optimal allocation to bonds and T-bills based on the predictive
density of excess returns for both models. The investor is assumed to have power utility with a coefficient of relative risk
aversion of five, while the weight on stocks is constrained to lie in the interval [0, 0.99]. The left panels present results for
the equal weighted combination (blue solid line), the optimal prediction pool (red dashed line), Bayesian model averaging
(yellow dashed line), and a CER-based linear pool where the combination weights depends on the past profitability of the
univariate models (purple dashed line). The right-hand side panels plots the the cumulative sum of squared forecast error
differentials for the Density Combination methods, with and without learning. The models “CER-based linear pool” and
“CER-based DeCo” refer to the case with A = 5 and, in the case of “CER-based DeCo”, λ = 0.95. Shaded areas indicate
NBER-dated recessions.
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Online Appendix

This Appendix is organized as follows. A description of the prior specifications and the posterior

simulation algorithms employed to estimate both the linear and the time-varying parameter with

stochastic volatility models in the paper is provided in section A. Next, section B sketches the

Sequential Monte Carlo algorithm used to obtain the predictive density for the CER-based

density combination scheme, along with a description of the priors employed. Section C reports

the results of several robustness checks to the main results presented in sections 5 and 6 of

the paper. Finally, section D provides a number of supplementary tables and charts, including

results for a shorter evaluation sample ending in 2007 before the onset of the latest recession,

and a graphical summary of the time dynamics of the CER-based DeCo combination weights.
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A Prior and posterior simulations

A.1 Linear models

The individual linear models regress stock returns, measured in excess of a risk-free rate, rτ+1,

on a constant and a lagged predictor variable, xτ :

rτ+1 = µ+ βxτ + ετ+1, τ = 1, ..., t− 1, (A-1)

ετ+1 ∼ N (0, σ2
ε).

A.1.1 Priors

Following standard practice, the priors for the parameters µ and β in (1) are assumed to be

normal and independent of σ2
ε ,

34 [
µ
β

]
∼ N (b,V) , (A-2)

with the hyperparameters b and V calibrated over the initial twenty years of data, January

1927 to December 1946.35 In particular, we set all the elements of b to zero, except for the

term corresponding to µ, which is set to rt, the average excess return calculated over the initial

training sample. As for the elements of V, we use a g-prior (see Zellner (1986))

V = ψ2

s2
r,t

(
t−1∑
τ=1

xτx
′
τ

)−1
 , (A-3)

where s2
r,t denotes the standard deviation of excess returns, calculated over the initial training

sample, and t = 240. Note that our choice of the prior mean vector b reflects the “no pre-

dictability” view that the best predictor of stock excess returns is the average of past returns.

We therefore center the prior intercept on the prevailing mean of historical excess returns, while

the prior slope coefficient is centered on zero. In (A-3), ψ is a constant that controls the tightness

of the prior, with ψ →∞ corresponding to a diffuse prior on µ and β. Our benchmark analysis

sets ψ = 1.

We assume a standard gamma prior for the error precision of the return innovation, σ−2
ε :

σ−2
ε ∼ G

(
s−2
r,t , v0 (t− 1)

)
, (A-4)

34See for example Koop (2003), Section 4.2.
35The approach of calibrating some of the prior hyperparameters using statistics computed over an initial

training sample is quite standard in the Bayesian literature; see, e.g., Primiceri (2005), Clark (2011), Clark and
Ravazzolo (2015), and Banbura et al. (2010).
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where v0 is a prior hyperparameter that controls the degree of informativeness of this prior, with

v0 → 0 corresponding to a diffuse prior on σ−2
ε . Our baseline analysis sets v0 = 1.36

A.1.2 Posterior simulation

For the linear models the goal is to obtain draws from the joint posterior distribution p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
,

where Dt denotes all information available up to time t, and Mi denotes model i, with i = 1, .., N .

Combining the priors in (A-2)-(A-4) with the likelihood function yields the following conditional

posteriors: [
µ
β

]∣∣∣∣σ−2
ε ,Mi,Dt ∼ N

(
b,V

)
, (A-5)

and

σ−2
ε

∣∣µ, β,Mi,Dt ∼ G
(
s−2, v

)
, (A-6)

where

V =

[
V−1 + σ−2

ε

t−1∑
τ=1

xτx
′
τ

]−1

,

b = V

[
V−1b + σ−2

ε

t−1∑
τ=1

xτrτ+1

]
, (A-7)

v = v0 (t− 1) + (t− 1) .

and

s2 =

∑t−1
τ=1 (rτ+1 − µ− βxτ )2 +

(
s2
r,t × v0 (t− 1)

)
v

. (A-8)

A Gibbs sampler algorithm can be used to iterate back and forth between (A-5) and (A-6),

yielding a series of draws for the parameter vector
(
µ,β, σ−2

ε

)
. Draws from the predictive

density p
(
rt+1|Mi,Dt

)
can then be obtained by noting that

p
(
rt+1|Mi,Dt

)
=

∫
p
(
rt+1|µ, β, σ−2

ε ,Mi,Dt
)
p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
dµdβdσ−2

ε . (A-9)

A.2 Time-varying Parameter, Stochastic Volatility Models

The time-varying parameter, stochastic volatility (TVP-SV) model allows both the regression

coefficients and the return volatility to change over time:

rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, τ = 1, ..., t− 1, (A-10)

36Following Koop (2003), we adopt the Gamma distribution parametrization of Poirier (1995). Namely, if the
continuous random variable Y has a Gamma distribution with mean µ > 0 and degrees of freedom v > 0, we
write Y ∼ G (µ, v) . In this case, E (Y ) = µ and V ar (Y ) = 2µ2/v.
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where hτ+1 denotes the (log of) stock return volatility at time τ + 1, and uτ+1 ∼ N (0, 1). We

assume that the time-varying parameters θτ+1 = (µτ+1, βτ+1)′ follow a zero-mean, stationary

process

θτ+1 = γ ′θθτ + ητ+1, ητ+1 ∼ N (0,Q) , (A-11)

where θ1 = 0 and the elements in γθ are restricted to lie between −1 and 1.37 The log-volatility

hτ+1 is also assumed to follow a stationary and mean reverting process:

hτ+1 = λ0 + λ1hτ + ξτ+1, ξτ+1 ∼ N
(
0, σ2

ξ

)
, (A-12)

where |λ1| < 1 and uτ , ηt and ξs are mutually independent for all τ , t, and s.

A.2.1 Priors

Our choice of priors for (µ, β) are the same as those in (A-2). The TVP-SV model in (19)-(21)

also requires eliciting priors for the sequence of time-varying parameters, θt = {θ2, ...,θt} the

variance covariance matrix Q, the sequence of log return volatilities, ht = {h1, ..., ht}, the error

precision σ−2
ξ , and the parameters γθ, λ0, and λ1. Using the decomposition p

(
θt,γθ,Q

)
=

p
(
θt
∣∣γθ,Q) p (γθ) p (Q), we note that (20) along with the assumption that θ1 = 0 implies

p
(
θt
∣∣γθ,Q) =

t−1∏
τ=1

p (θτ+1|γθ,θt,Q) , (A-13)

with θτ+1|γθ,θτ ,Q ∼ N (γ ′θθτ ,Q), for τ = 1, ..., t − 1. To complete the prior elicitation for

p
(
θt,γθ,Q

)
, we specify priors for Q and γθ as follows. As forQ, we choose an Inverted Wishart

distribution

Q ∼ IW
(
Q, t− 2

)
, (A-14)

with

Q = kQ (t− 2)

s2
r,t

(
t−1∑
τ=1

xτx
′
τ

)−1
 . (A-15)

The constant kQ controls the degree of variation in the time-varying regression coefficients θτ ,

where larger values of kQ imply greater variation in θτ .38 We set kQ = 0.01 to limit the extent

37Note that this is equivalent to writing rτ+1 = µ̃τ+1 + β̃τ+1xτ + exp (hτ+1)uτ+1, where
(
µ̃1, β̃1

)
is left

unrestricted.
38In this way, the scale of the Wishart distribution for Q is specified to be a fraction of the OLS estimates of the

variance covariance matrix s2r,t
(∑t−1

τ=1 xτx
′
τ

)−1
, multiplied by the degrees of freedom, t−2, since for the inverted-

Wishart distribution the scale matrix has the interpretation of the sum of squared residuals. This approach is
consistent with the literature on TVP-VAR models; see, e.g., Primiceri (2005).
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to which the parameters can change over time. We specify the elements of γθ to be a priori

independent of each other with generic element γiθ

γiθ ∼ N
(
mγθ

, V γθ

)
, γiθ ∈ (−1, 1) , i = 1, 2 (A-16)

where mγθ
= 0.95, and V γθ

= 1.0e−6, implying high autocorrelations.

Next, consider the sequence of log-volatilities, ht, the error precision, σ−2
ξ , and the parame-

ters λ0 and λ1. Decomposing the joint probability of these parameters p
(
ht, λ0, λ1, σ

−2
ξ

)
=

p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
p (λ0, λ1) p

(
σ−2
ξ

)
and using (21), we have

p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
=

t−1∏
τ=1

p
(
hτ+1|λ0, λ1, hτ , σ

−2
ξ

)
p (h1) , (A-17)

hτ+1|λ0, λ1, hτ , σ
−2
ξ ∼ N

(
λ0 + λ1hτ , σ

2
ξ

)
.

To complete the prior elicitation for p
(
ht, λ0, λ1σ

−2
ξ

)
, we choose priors for λ0, λ1, the initial

log volatility h1, and σ−2
ξ from the normal-gamma family:

h1 ∼ N
(
ln
(
sr,t
)
, kh
)
, (A-18)[

λ0

λ1

]
∼ N

([
mλ0
mλ1

]
,

[
V λ0 0

0 V λ1

])
, λ1 ∈ (−1, 1) , (A-19)

and

σ−2
ξ ∼ G

(
1/kξ, 1

)
. (A-20)

We set kξ = 0.01 and choose the remaining hyperparameters in (A-18) and (A-19) to imply

uninformative priors, allowing the data to determine the degree of time variation in the return

volatility. Specifically, we set kh = 0.01, mλ0 = 0, and V λ0 = 10. As for the hyperparameters

controlling the degree of mean reversion in hτ , we set mλ1 = 0.95, and V λ1 = 1.0e−06, which

imply a high autocorrelation in hτ+1.

A.2.2 Posterior simulation

Let st = {s1, s2, ..., st} be the history up to time t of the states for the mixture distribution used

to approximate the χ2 distribution under the Kim et al. (1998) algorithm. Also, to simplify the

notation, let us group all the time invariant parameters of the TVP-SV model into the matrix

Θ, where Θ =
(
µ, β,Q,γθ, σ

−2
ξ , λ0, λ1

)
.

To obtain draws from the joint posterior distribution p
(
Θ,θt, ht

∣∣M ′i ,Dt) under the TVP-SV

model, we use the Gibbs sampler to draw recursively from the following eight conditional dis-
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tributions:39

1. p
(
θt
∣∣Θ, ht,M ′i ,Dt

)
.

2. p
(
µ, β|Θ−µ,β,θt, ht,M ′i ,Dt

)
.

3. p
(
Q|Θ−Q,θt, ht,M ′i ,Dt

)
4. p

(
st
∣∣Θ,θt, ht,M ′i ,Dt

)
.

5. p
(
ht
∣∣Θ,θt, st,M ′i ,Dt

)
.

6. p
(
σ−2
ξ

∣∣∣Θ−σ−2
ξ
,θt, ht,M ′i ,Dt

)
7. p

(
γθ|Θ−γθ

,θt, ht,M ′i ,Dt
)

8. p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,M ′i ,Dt

)
We simulate from each of these blocks as follows. Starting with θt, we focus on p

(
θt
∣∣Θ,ht,M ′i ,Dt).

Define r̃τ+1 = rτ+1 − µ− βxτ and rewrite (19) as follows:

r̃τ+1 = µτ − βτxτ + exp (hτ+1)uτ+1 (A-21)

Note that knowledge of µ and β makes r̃τ+1 observable, and reduces (19) to the measurement

equation of a standard linear Gaussian state space model with heteroskedastic errors. Thus

the sequence of time varying parameters θt can be drawn from (A-21) using, for example, the

algorithm of Carter and Kohn (1994).

Moving on to p
(
µ, β|Θ−µ,β,θt, ht,M ′i ,Dt

)
, conditional on θt it is straightforward to draw µ, β,

by applying standard results. Specifically,[
µ
β

]∣∣∣∣Θ−µ,β,θt, ht,M ′i ,Dt ∼ N (b,V) , (A-22)

where

V =

[
V−1 +

t−1∑
τ=1

1

exp (hτ+1)2xτx
′
τ

]−1

,

b = V

[
V−1b +

t−1∑
τ=1

1

exp (hτ+1)2xτ (rτ+1 − µτ − βτxτ )

]
, (A-23)

39Using standard set notation, we define A−b as the complementary set of b in A, i.e. A−b = {x ∈ A : x 6= b}.
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As for p
(
Q|Θ−Q,θt, ht,M ′i ,Dt

)
, we have that

Q|Θ−Q,θt, ht,M ′i ,Dt ∼ IW
(
Q, t+ t− 3

)
, (A-24)

where

Q = Q+
t−1∑
τ=1

(
θτ+1 − γ ′θθτ

) (
θτ+1 − γ ′θθτ

)′
. (A-25)

Moving on to the vector of states p
(
st
∣∣Θ,θt, ht,M ′i ,Dt

)
and the time varying volatilities

p
(
ht
∣∣Θ,θt, st,M ′i ,Dt

)
, we follow Primiceri (2005) and employ the algorithm of Kim et al.

(1998).40 Define r∗τ+1 = rτ+1 − (µ+ µτ+1) − (β + βτ+1)xτ and note that r∗τ+1 is observable

conditional on µ, β, and θt. Next, rewrite (19) as

r∗τ+1 = exp (hτ+1)uτ+1. (A-26)

Squaring and taking logs on both sides of (A-26) yields a new state space system that replaces

(19)-(21) with

r∗∗τ+1 = 2hτ+1 + u∗∗τ+1, (A-27)

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-28)

where r∗∗τ+1 = ln
[(
r∗τ+1

)2]
, and u∗∗τ+1 = ln

(
u2
τ+1

)
, with u∗∗τ independent of ξs for all τ and s.

Since u∗∗τ+1 ∼ ln
(
χ2

1

)
, we cannot resort to standard Kalman recursions and simulation algorithms

such as those in Carter and Kohn (1994) or Durbin and Koopman (2002). To obviate this

problem, Kim et al. (1998) employ a data augmentation approach and introduce a new state

variable sτ+1, τ = 1, .., t−1, turning their focus on drawing from p
(
ht
∣∣Θ,θt, st,M ′i ,Dt

)
instead

of p
(
ht
∣∣Θ,θt,M ′i ,Dt

)
. The introduction of the state variable sτ+1 allows us to rewrite the

linear non-Gaussian state space representation in (A-27)-(A-28) as a linear Gaussian state space

model, making use of the following approximation,

u∗∗τ+1 ≈
7∑
j=1

qjN
(
mj − 1.2704, v2

j

)
, (A-29)

where mj , v
2
j , and qj , j = 1, 2, ..., 7, are constants specified in Kim et al. (1998) and thus need

not be estimated. In turn, (A-29) implies

u∗∗τ+1

∣∣ sτ+1 = j ∼ N
(
mj − 1.2704, v2

j

)
, (A-30)

40However, we modify the algorithm of Primiceri (2005) to reflect the correction to the ordering of steps detailed
in Del Negro and Primiceri (2014).
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where each state has probability

Pr (sτ+1 = j) = qj . (A-31)

Draws for the sequence of states st can easily be obtained, noting that each of its elements can

be independently drawn from the discrete density defined by

Pr
(
sτ+1 = j|Θ,θt, ht,M ′i ,Dt

)
=

qjfN

(
r∗∗τ+1

∣∣ 2hτ+1 +mj − 1.2704, v2
j

)
∑7

l=1 qlfN
(
r∗∗τ+1

∣∣ 2hτ+1 +ml − 1.2704, v2
l

) . (A-32)

for τ = 1, ..., t− 1 and j = 1, ..., 7, and where fN denotes the kernel of a normal density. Next,

conditional on st, we can rewrite the nonlinear state space system as follows:

r∗∗τ+1 = 2hτ+1 + eτ+1,

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-33)

where eτ+1 ∼ N
(
mj − 1.2704, v2

j

)
with probability Pr

(
sτ+1 = j|Θ,θt, ht,M ′i ,Dt

)
. For this

linear Gaussian state space system, we can use the algorithm of Carter and Kohn (1994) to

draw the whole sequence of stochastic volatilities, ht.

Next, the posterior distribution for p
(
σ−2
ξ

∣∣∣µ, β,θt,Q,ht, λ0, λ1,γθ,M
′
i ,Dt

)
is readily available

as,

σ−2
ξ

∣∣∣Θ−σ−2
ξ
,θt, ht,M ′i ,Dt ∼ G

[kξ +
∑t−1

τ=1 (hτ+1 − λ0 − λ1hτ )2

t

]−1

, t

 . (A-34)

Finally, obtaining draws from p
(
γθ|Θ−γθ

,θt, ht,M ′i ,Dt
)

and p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,M ′i ,Dt

)
is straightforward. As for p

(
γθ|Θ−γθ

,θt, ht,M ′i ,Dt
)
, we separately draw each of its elements.

The i−th element γiθ is drawn from the following distribution

γiθ
∣∣Θ−γθ

,θt, ht,Dt ∼ N
(
mi
γθ
, V

i
γθ

)
× γiθ ∈ (−1, 1) (A-35)

where i = 1, 2 and

V
i
γθ

=

[
V −1
γθ

+ Qii
t−1∑
τ=1

(
θiτ
)2]−1

,

mi
γθ

= V
i
γθ

[
V −1
γθ
mγθ

+ Qii
t−1∑
τ=1

θiτθ
i
τ+1

]
, (A-36)

and Qii is the i−th diagonal element of Q−1. As for p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,M ′i ,Dt

)
, we have
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that

λ0, λ1|Θ−λ0,λ1 ,θt, ht,M ′i ,Dt ∼ N
([

mλ0

mλ1

]
, V λ

)
× λ1 ∈ (−1, 1)

where

V λ =

{[
V −1
λ0

0

0 V −1
λ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
[1, hτ ]

}−1

(A-37)

and [
mλ0

mλ1

]
= V λ

{[
V −1
λ0

0

0 V −1
λ1

] [
mλ0
mλ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
hτ+1

}
. (A-38)

Finally, draws from the predictive density p
(
rt+1|M ′i ,Dt

)
can be obtained by noting than

p
(
rt+1|M ′i ,Dt

)
=

∫
p
(
rt+1|θt+1, ht+1,Θ,θt, ht,M ′i ,Dt

)
×p
(
θt+1, ht+1|Θ,θt, ht,M ′i ,Dt

)
(A-39)

×p
(
Θ,θt, ht

∣∣M ′i ,Dt) dΘdθt+1dht+1.

To obtain draws for p
(
rt+1|M ′i ,Dt

)
, we proceed in three steps:

1. Draws from p
(
Θ,θt, ht

∣∣M ′i ,Dt) are obtained from the Gibbs sampling algorithm described

above;

2. Draws from p
(
θt+1, ht+1|Θ,θt, ht,M ′i ,Dt

)
: having processed data up to time t, the next

step is to simulate the future volatility, ht+1, and the future parameters, θt+1. We have

that

ht+1|Θ,θt, ht,M ′i ,Dt ∼ N
(
λ0 + λ1ht, σ

2
ξ

)
. (A-40)

and

θt+1|Θ,θt, ht,M ′i ,Dt ∼ N
(
γ ′θθt,Q

)
. (A-41)

3. Draws from p
(
rt+1|θt+1, ht+1,Θ,θt, ht,M ′i ,Dt

)
: we have that

rt+1|θt+1, ht+1,Θ,θt, ht,M ′i ,Dt ∼ N ((µ+ µt+1) + (β + βt+1)xt, exp (ht+1)) . (A-42)

B Sequential combination

In this section, we summarize the prior elicitation and the posterior simulation for the density

combination algorithm proposed in Billio et al. (2013), which we extend with a learning mecha-

nism based on the past economic performance of the individual models entering the combination.
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B.1 Priors

First, we need to specify priors for σ−2
κ and for the diagonal elements of Λ. The prior for σ−2

κ ,

the precision of our measure of incompleteness in the combination scheme, and the diagonal

elements of Λ−1, the precision matrix of the process zt+1 governing the combination weights

wt+1, are assumed to be gamma, G(s−2
σκ , vσκ(t − 1)) and G(s−1

Λ , vΛ(t − 1)), respectively. We

set informative values on our prior beliefs regarding the incompleteness and the combination

weights. Precisely, we set vσκ = vΛi
= 1 and set the hyperparameters controlling the means

of the prior distributions to s−2
σκ = 1000, shrinking the model incompleteness to zero, and to

s−1
Λ = 4, allowing zt+1 to evolve freely over time and differ from the initial value z0, set to equal

weights.41

B.2 Posterior simulation

Let ς be the parameter vector of the combination model, that is ς = (σ2
κ,Λ). Assume that

r̃τ , τ = 1, . . . , t + 1 is computed using formulas from either the linear or TVP-SV models

given in the previous section (recall that r̃τ = (r̃1,τ , ..., r̃N,τ )′ is the N × 1 vector of predictions

made at time τ , and p
(
r̃τ |Dτ−1

)
is its joint predictive density); define the vector of observable

r1:t = (r1, . . . , rt)
′ ∈ Dt, the augmented state vector Zt+1 = (wt+1, zt+1, ςt+1), where ςt+1 = ς,

∀t. We write the model combination in its state space form as

rt ∼ p(rt|r̃t,Zt) (measurement density) (B-1)

Zt ∼ p(Zt|Zt−1, r1:t, r̃t) (transition density) (B-2)

Z0 ∼ p(Z0) (initial density) (B-3)

The state predictive and filtering densities, which provide the posterior densities of the combi-

nation weights, are

p(Zt+1|r1:t, r̃1:t) =

∫
p(Zt+1|Zt, r1:t, r̃1:t)p(Zt|r1:t, r̃1:t)dZt (B-4)

p(Zt+1|r1:t+1, r̃1:t+1) =
p(rt+1|Zt+1, r̃t+1)p(Zt+1|r1:t, r̃1:t)

p(rt+1|r1:t, r̃1:t)
(B-5)

41In our empirical application, N is set to 15 therefore z0,i = ln(1/15) = −2.71 resulting in w0,i = 1/15. The
prior choices we made for the diagonal elements of Λ allow the posterior weights on the individual models to differ
substantially from equal weights.
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and the marginal predictive density of the observable variables is then

p(rt+1|r1:t) =

∫
p(rt+1|r1:t, r̃t+1)p(r̃t+1|r1:t)dr̃t+1

where p(rt+1|r1:t, r̃t+1) is defined as∫
p(rt+1|Zt+1, r̃t+1)p(Zt+1|r1:t, r̃1:t)dZt+1

and represents the conditional predictive density of the observable given the predictors and the

past values of the observable.

The analytical solution of the optimal combination problem is generally not known. We use

M parallel conditional SMC filters, where each filter, is conditioned on the predictor vector

sequence r̃τ , τ = 1, . . . , t+ 1.

We initialize independently the M particle sets: Ξj0 = {Zi,j0 , ωi,j0 }Ni=1, j = 1, . . . ,M . Each

particle set Ξj0 contains N iid random variables Zi,j0 with random weights ωi,j0 . We initialize

the set of predictors, by generating iid samples r̃j1, j = 1, . . . ,M , from p(r̃1|r0) where r0 is

an initial set of observations for the variable of interest. Then, at the iteration t + 1 of the

combination algorithm, we approximate the predictive density p(r̃t+1|r1:t) with M iid samples

from the predictive densities, and δx(y) denotes the Dirac mass at x.

Precisely, we assume an independent sequence of particle sets Ξjt = {Zi,j1:t, ω
i,j
t }Ni=1, j = 1, . . . ,M ,

is available at time t and that each particle set provides the approximation

pN,j(zt|r1:t, r̃
j
1:t) =

N∑
i=1

ωi,jt δzi,jt
(zt) (B-6)

of the filtering density, p(Zt|y1:t, r̃
j
1:t), conditional on the j-th predictor realization, r̃j1:t. The

prediction (including the weights wt+1) are computed using the state predictive p(Zt+1|r1:t, r̃1:t).

After collecting the results from the different particle sets, it is possible to obtain the following

empirical predictive density for the stock returns

pM,N (rt+1|r1:t) =
1

MN

M∑
j=1

N∑
i=1

ωi,jt δri,jt+1
(rt+1) (B-7)

At the next observation, M independent conditional SMC algorithms are used to find a new

sequence of M particle sets, which include the information available from the new observation

and the new predictors.
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C Robustness analysis

In this section we summarize the results of several robustness checks on the main results for

the S&P500 index. First, we investigate the effect on the profitability analysis presented in

sections 5.2 and 6 of altering the investor’s relative risk aversion coefficient A. Next, we conduct

a subsample analysis to shed light on the robustness of the results to the choice of the forecasting

evaluation period. We next investigate the implications of altering the parameter λ controlling

the degree of learning in the model combination weights. After that, we explore the sensitivity

of the results to the particular choice we made with respect to the investor’s preferences, by

replacing the investor’s power utility with a mean variance utility. Finally, we conduct an

extensive prior sensitivity to ascertain the role of our baseline prior choices on the overall results.

C.1 Sensitivity to risk aversion

The economic predictability analysis we reported in sections 5.2 and 6 assumed a coefficient

of relative risk aversion A = 5. To explore the sensitivity of our results to this value, we also

consider lower (A = 2) and higher (A = 10) values of this parameter. Results based on the

prevaling mean (PM) benchmark are shown in Table C.2, while Table C.3 presents results based

on the alternative PM benchmark with stochastic volatility, PM-SV.

Starting with Table C.2, we begin with the case A = 2, i.e., lower risk aversion compared to

the baseline case. Under this scenario, the CER-based DeCo scheme generates CERDs that are

above 200 basis points for both the linear and TVP-SV cases. No other model combination

method comes close to these values, even though, relative to the baseline case of A = 5, we see

on average an increase in all model combinations’ CERDs. As for the individual models, an

interesting pattern emerges. Relative to the baseline case of A = 5, we find that when lowering

the risk aversion to A = 2, the average CERD of the linear models decreases from -0.17% (A = 5)

to -0.40% (A = 2); in contrast, for the TVP-SV models we see that the average CERD increases

from 0.79% (A = 5) to 1.13% (A = 2). Thus, lowering the risk aversion coefficient from A = 5

to A = 2 has the effect of boosting the economic performance of the individual TVP-SV models,

while decreasing the CERD of the linear models.

We next consider the case with A = 10. In this case we find an overall decrease in CERD values,

both for the individual models and the model combinations. However, the CER-based DeCo

combination scheme continues to dominate all the other specifications. This is true for both the
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linear and the TVP-SV models. In particular, the CERD for the CER-based DeCo combination

scheme averaging across the TVP-SV models is still quite large, at 126 basis points.

Moving on to the PM-SV benchmark, a quick comparison between Table C.2 and Table C.3

reveals that switching benchmark from the PM to the PM-SV model produces a marked decrease

in economic predictability, both for the individual models and the various model combinations.

This comparison shows the important role of volatility timing, something that can be directly

inferred by comparing the TVP-SV results across the two tables. Most notably, the CER-based

DeCo results remain quite strong even after replacing the benchmark model, especially for the

case of TVP-SV models. In particular, when A = 2 the CER-based DeCo CERD under the

TVP-SV models is as high as 116 basis points, while when A = 10 it reaches 85 basis points.

C.2 Subsample analysis

We next consider the robustness of our results to the choice of the forecast evaluation period.

Columns two to five of Table C.4 show CERD results separately for recession and expansion

periods, as defined by the NBER indicator. This type of analysis has been proposed by authors

such as Rapach et al. (2010) and Henkel et al. (2011). When focusing on the linear models

(columns two and four), we find higher economic predictability in recessions than in expansions.

This results is consistent with the findings in these studies. For the TVP-SV models (column

three and five), the story is however different. There we find the largest economic gains during

expansions. This holds true both for the individual models and the various model combinations.

This finding is somewhat surprising, since we would expect time-varying models to help when

entering recessions; on the other hand, stochastic volatility might reduce the return volatility

during long expansionary periods, having important consequences in the resulting asset alloca-

tions. Clark and Ravazzolo (2015) document a similar pattern in forecasting macroeconomic

variables. Interestingly, the CER-based DeCo scheme continue to provide positive and large

economic gains in both expansions and recessions, and for both linear and TVP-SV models.

The last four columns of Table C.4 show CERD results separately for two out-of-sample periods,

1947-1978 and 1979-2010. Welch and Goyal (2008) argue that the predictive ability of many

predictor variables deteriorates markedly after the 1973-1975 oil shock, so we are particularly

interested in whether the same holds true here. The results of Table C.4 are overall consistent

with this pattern, as we observe smaller gains during the second subsample, both for the indi-

vidual models and the various model combinations. However, the CER-based DeCo CERDs are
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still fairly large, as high as 87 basis points in the case of linear models, and as high as 167 basis

points in the TVP-SV case.

C.3 Sensitivity to the learning dynamics

When specifying the learning mechanism for the CER-based DeCo in equations (7)-(9), we

introduced the smoothing parameter λ, where λ ∈ (0, 1). Our main analysis of the economic

value of equity premium forecasts in Sections 5.2 and 6 relied on λ = 0.95, which implies a

monotonically decreasing impact of past forecast performance in the determination of the model

combination weights. Several studies, such as Stock and Watson (1996) and Stock and Watson

(2004) support such value. A larger or smaller discount factor is, however, possible and we

investigate the sensitivity of our results to using λ = 0.9.42 Table C.5 reports the results of

this sensitivity analysis where, to ease the comparison with the benchmark results based on

λ = 0.95, we reproduce those as well. We explore the impact of altering the value of the

smoothing parameter λ by investigating the economic impact of such choice across different risk

aversion coefficients (A = 2, 5, 10) and across four different subsamples (NBER expansions and

recessions, 1947-1978, and 1979-2010). Overall we find very similar results along all dimensions,

with CER-based DeCo models based on λ = 0.95 generating, on average, slightly higher CERDs.

C.4 Mean variance utility preferences

As a robustness to the particular choice of the utility function for our investor, we consider

replacing the power utility function with mean variance preferences. Under mean variance

preferences, at time τ − 1 the investor’s utility function takes the form

U (Wi,τ ) = E
[
Wi,τ | Dτ−1

]
− A

2
V ar

[
Wi,τ | Dτ−1

]
(C-1)

with Wi,τ denoting the investor’s wealth at time τ implied by model Mi,

Wi,τ = (1− ωi,τ−1) exp
(
rfτ−1

)
+ ωi,τ−1 exp

(
rfτ−1 + rτ

)
(C-2)

42As for the case of a larger discount factor, note that when λ = 1 equation (8) implies that the CER-based
DeCo scheme simplifies to the Density Combination scheme we investigated earlier, where the combination weights
no longer depend on the past performance of the individual models entering the combination.
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Next, it can be shown that the optimal allocation weights ω∗i,τ−1 are given by the solution of

ω∗i,τ−1 =

exp

(
µ̂i,τ +

σ̂2
i,τ

2

)
− 1

A exp
(
rfτ−1

)
exp

(
2µ̂i,τ + σ̂2

i,τ

)(
exp

(
σ̂2
i,τ

)
− 1
) . (C-3)

where µ̂i,τ and σ̂2
i,τ are shorthands for the mean and variance of p

(
rτ |Mi,Dτ−1

)
, the predic-

tive density of rτ under model Mi. It is important to note that altering the utility function

of the investor will have repercussions not only on the profitability of the individual models

M1, ...,MN , but also on the overall statistical and economic predictability of the CER-based

DeCo combination scheme. In fact, as we have discussed in subsection 3.2, the combination

weight conditional density at time τ , p(wτ |r̃τ ,Dτ−1), depends on the history of profitability of

the individual models M1 to MN through equations (7)–(9).

Note next that in the case of a mean variance investor, time τ CER is simply equal to the

investor’s realized utility W ∗i,τ , hence equation (9) is replaced by

f (rτ , r̃i,τ ) = U
(
W ∗i,τ

)
, (C-4)

where W ∗i,τ denotes time τ realized wealth, and is given by

Wi,τ =
(
1− ω∗i,τ−1

)
exp

(
rfτ−1

)
+ ω∗i,τ−1 exp

(
rfτ−1 + rτ

)
. (C-5)

Having computed the optimal allocation weights for both the individual models M1 to MN and

the various model combinations, we assess the economic predictability of all such models by

computing their implied (annualized) CER, which in the case of mean variance preferences is

computed simply as the average of all realized utilities over the out-of-sample period,

CERm = 12× 1

t∗

t∑
τ=t+1

U
(
W ∗m,τ

)
(C-6)

where m denotes the model under consideration (either univariate or model combination), and

t∗ = t − t. Table C.6 presents differential certainty equivalent return estimates, relative to the

benchmark prevailing mean model PM,

CERDm = CERm − CERPM (C-7)

whereby a positive entry can be interpreted as evidence that model m generates a higher (cer-

tainty equivalent) return than the benchmark model. A quick comparison between Table 2 in
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the paper and Table C.6 reveals that the economic gains for power utility and mean variance

utility are quite similar in magnitude, and the overall takeaways from sections 5.2 and 6 remain

unchanged. In particular, the CER-based DeCo combination scheme generates sizable CERDs,

especially when combining TVP-SV models. For the benchmark case of A = 5, the CERD

is as high as 220 basis points. Altering the risk aversion coefficients produces CERDs for the

CER-based DeCo model ranging from 115 basis points (A = 10) to 436 basis points (A = 2).

C.5 Sensitivity to priors

As a final sensitivity, we test the robustness of our results to alternative prior assumptions

and perform a sensitivity analysis in which we experiment with different values for some of

the key prior hyperparameters. Given the more computational demanding algorithm required

to estimate the TVP-SV models, we focus our attention on the linear models, and investigate

the effectiveness of the CER-based DeCo combination scheme as the key prior hyperparameters

change.

First, we investigate the impact of changing the prior hyperparameter s−1
Λ in (7) controlling the

degree of time variation in the CER-based DeCo combination weights, which was set to s−1
Λ = 4

in our baseline results. As sensitivities, we experiment with s−1
Λ = 0.2 and s−1

Λ = 1000, which

imply more volatile combination weights (in the case of s−1
Λ = 0.2), or smoother combination

weights (in the case of s−1
Λ = 1000). In the former case, the annualized CERD of the CER-

based DeCo combination scheme decreases to 0.80%, only a marginal reduction from its baseline

0.94%. Hence, it appears that having more volatile combination weights does not hinder the

overall performance of CER-based DeCo. On the other hand, setting s−1
Λ = 1000 yields a much

larger reduction in the CER-based DeCo CERD, which decreases to 0.27%. It thus appears that

too large a value for s−1
Λ produces combination weights that are far too smooth, affecting the

economic performance of CER-based DeCo.43

Next, we study the impact of changing the prior hyperparameters ψ and v0. As discussed in

Subsection 4.2, the hyperparameter ψ plays the role of a scaling factor controlling the informa-

tiveness of the priors for µ and β, and our baseline results are based on ψ = 1. As sensitivities,

we experiment with ψ = 10 and ψ = 0.01, which imply more dispersed prior distributions (in

43We also investigate the sensitivity of our baseline results to the choice of s−2
σκ

, the prior hyperparameter
controlling the degree of model incompleteness, and find that the performance of CER-based DeCo deteriorates
when its value is too small, with combination weights shrinking to equal weights. On the other hand, we find
that when the value of s−2

σκ
is too large the estimation algorithm seems to converge very slowly.
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the case of ψ = 10) or more concentrated prior distributions (in the case of ψ = 0.01) for µ and

β. Similarly, the prior hyperparameter v0 controls the tightness of the prior on σ−2
ε , and our

baseline results are based on v0 = 1, which correspond to an hypothetical prior sample size of

20 years. As sensitivities, we experiment with v0 = 0.1 and v0 = 100, which imply, respectively,

an hypothetical prior sample of two years (in the case of v0 = 0.1) or as large as 2,000 years (in

the case of v0 = 100). Table C.7 summarizes the relative economic performances of both the

individual linear models and the various combination schemes under these two alternative prior

choices, over the whole forecast evaluation period, 1947-2010. A comparison with Table 2 in the

paper reveals that relying on more dispersed prior distributions (the case of ψ = 10, v0 = 0.1)

has only minor consequences on the overall results. In particular, the economic performance of

the CER-based DeCo combination scheme remains unaffected by the prior change. As for the

more concentrated prior distributions (the case of ψ = 0.01, v0 = 100), we witness an overall

reduction in the economic performance of both the individual models and the various combina-

tion schemes. This should be expected, as we remind that our priors are centered on the “no

predictability” view, and as a result more concentrated priors will tend to tilt more heavily the

individual models in that direction. Interestingly, the CER-based DeCo combination scheme

still performs quite adequately, with an annualized CERD of 48 basis points.

D Additional results

In this section, we present a number of supplementary tables and charts, including results for a

shorter evaluation sample ending in 2007 before the onset of the latest recession, and a graphical

summary of the time dynamics of the CER-based DeCo combination weights.

Table D.1 and Table D.2 are the analog of tables 1 and 2 in the paper for the shorter evaluation

sample ending in December 2007, before the onset of the latest recession. Table D.1 presents

the results on the statistical predictability of the individual models as well as the various model

combination schemes, while Table D.2 reports their annualized CERD, relative to the prevailing

mean benchmark.

Finally, Figure D.1 displays the posterior means of the CER-based DeCo combination weights for

the top linear models (top panel) and TVP-SV models (bottom panel) over the whole evaluation

period, January 1947 to December 2010.
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Table C.1. Summary Statistics

Variables Mean Std. dev. Skewness Kurthosis

Excess returns 0.005 0.056 -0.405 10.603
Log dividend yield -3.324 0.450 -0.435 3.030
Log earning price ratio -2.720 0.426 -0.708 5.659
Log smooth earning price ratio -2.912 0.376 -0.002 3.559
Log dividend-payout ratio -0.609 0.325 1.616 9.452
Book-to-market ratio 0.589 0.267 0.671 4.456
T-Bill rate 0.037 0.031 1.025 4.246
Long-term yield 0.053 0.028 0.991 3.407
Long-term return 0.005 0.024 0.618 8.259
Term spread 0.016 0.013 -0.218 3.128
Default yield spread 0.011 0.007 2.382 11.049
Default return spread 0.000 0.013 -0.302 11.490
Stock variance 0.003 0.005 5.875 48.302
Net equity expansion 0.019 0.024 1.468 10.638
Inflation 0.002 0.005 -0.069 6.535
Log total net payout yield -2.137 0.224 -1.268 6.213

This table reports summary statistics for monthly excess returns, computed as returns on the S&P500 portfolio

minus the T-bill rate, and for the predictor variables used in this study. The sample period is January 1927 -

December 2010.
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Table C.2. Effect of risk aversion on economic performance measures

A=2 A=10

Linear TVP-SV Linear TVP-SV

Individual models

Log dividend yield -0.98 % 1.10 % -0.16 % 0.46 %
Log earning price ratio 0.12 % 1.51 % 0.13 % 0.59 %
Log smooth earning price ratio -1.36 % 1.19 % -0.19 % 0.47 %
Log dividend-payout ratio 0.99 % 1.07 % 0.21 % 0.46 %
Book-to-market ratio -1.37 % 1.30 % -0.28 % 0.31 %
T-Bill rate -0.66 % 1.32 % -0.13 % 0.43 %
Long-term yield -0.86 % 0.74 % -0.17 % 0.27 %
Long-term return -0.81 % 0.86 % -0.19 % 0.38 %
Term spread 0.47 % 1.68 % 0.06 % 0.42 %
Default yield spread -0.49 % 1.10 % -0.10 % 0.45 %
Default return spread -0.06 % 1.15 % -0.09 % 0.32 %
Stock variance 0.02 % 1.31 % 0.02 % 0.52 %
Net equity expansion 0.54 % 1.16 % -0.08 % 0.41 %
Inflation -0.41 % 0.88 % -0.07 % 0.40 %
Log total net payout yield -1.07 % 0.48 % -0.18 % 0.23 %

Model Combinations

Equal weighted combination 0.06 % 1.20 % 0.02 % 0.55 %
BMA -0.09 % 1.28 % -0.02 % 0.52 %
Optimal prediction pool -1.02 % 1.28 % -0.41 % 0.51 %
CER-based linear pool 0.04 % 1.44 % 0.01 % 0.56 %
DeCo 0.00 % 1.83 % 0.01 % 0.90 %
CER-based DeCo 2.63 % 2.33 % 0.50 % 1.26 %

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient of

relative risk aversion of two (columns two and three) or ten (columns four and five) selects stocks and T-bills based

on different predictive densities, precisely the combination schemes and individual prediction models for monthly

excess returns. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A matching

the values in the headings (A = 2, 10) and, in the case of “CER-based DeCo”, λ = 0.95. The columns “Linear”

refer to predictive return distributions based on a linear regression of monthly excess returns on an intercept

and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and combination of these N linear individual

models; the columns “TVP-SV” refer to predictive return distributions based on a time-varying parameter and

stochastic volatility regression of monthly excess returns on an intercept and a lagged predictor variable, xτ :

rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N time-varying parameter and

stochastic volatility individual models. CERD are annualized and are measured relative to the prevailing mean

model which assumes a constant equity premium. Bold figures indicate all instances in which the CERD is greater

than zero. All results are based on the whole forecast evaluation period, January 1947 - December 2010.
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Table C.3. Effect of risk aversion on economic performance measures and alternative benchmark

A=2 A=10

Linear TVP-SV Linear TVP-SV

Individual models

Log dividend yield -2.16 % -0.07 % -0.57 % 0.05 %
Log earning price ratio -1.06 % 0.34 % -0.29 % 0.18 %
Log smooth earning price ratio -2.54 % 0.02 % -0.60 % 0.06 %
Log dividend-payout ratio -0.18 % -0.10 % -0.21 % 0.05 %
Book-to-market ratio -2.55 % 0.13 % -0.69 % -0.10 %
T-Bill rate -1.84 % 0.15 % -0.54 % 0.01 %
Long-term yield -2.03 % -0.44 % -0.58 % -0.15 %
Long-term return -1.99 % -0.31 % -0.61 % -0.03 %
Term spread -0.70 % 0.50 % -0.35 % 0.01 %
Default yield spread -1.66 % -0.07 % -0.51 % 0.04 %
Default return spread -1.24 % -0.03 % -0.50 % -0.10 %
Stock variance -1.16 % 0.14 % -0.40 % 0.11 %
Net equity expansion -0.64 % -0.02 % -0.49 % -0.01 %
Inflation -1.58 % -0.29 % -0.48 % -0.01 %
Log total net payout yield -2.25 % -0.69 % -0.60 % -0.18 %

Model Combinations

Equal weighted combination -1.12 % 0.03 % -0.40 % 0.14 %
BMA -1.27 % 0.11 % -0.43 % 0.11 %
Optimal prediction pool -2.20 % 0.11 % -0.82 % 0.10 %
CER-based linear pool -1.13 % 0.27 % -0.40 % 0.15 %
DeCo -1.18 % 0.65 % -0.41 % 0.49 %
CER-based DeCo 1.46 % 1.16 % 0.09 % 0.85 %

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient of

relative risk aversion of two (columns two and three) or ten (columns four and five) selects stocks and T-bills based

on different predictive densities, precisely the combination schemes and individual prediction models for monthly

excess returns. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A matching

the values in the headings (A = 2, 10) and, in the case of “CER-based DeCo”, λ = 0.95. The columns “Linear”

refer to predictive return distributions based on a linear regression of monthly excess returns on an intercept

and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and combination of these N linear individual

models; the columns “TVP-SV” refer to predictive return distributions based on a time-varying parameter and

stochastic volatility regression of monthly excess returns on an intercept and a lagged predictor variable, xτ :

rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N time-varying parameter and

stochastic volatility individual models. CERD are annualized and are measured relative to the prevailing mean

model with stochastic volatility which assumes a constant equity premium. Bold figures indicate all instances in

which the CERD is greater than zero. All results are based on the whole forecast evaluation period, January 1947

- December 2010.
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Table C.7. Prior sensitivity analysis: economic performance

ψ = 10, v0 = 0.1 ψ = 0.01, v0 = 100

Individual models

Log dividend yield -0.25 % -0.19 %
Log earning price ratio 0.27 % 0.08 %
Log smooth earning price ratio -0.29 % -0.16 %
Log dividend-payout ratio 0.30 % 0.06 %
Book-to-market ratio -0.70 % -0.26 %
T-Bill rate -0.16 % -0.19 %
Long-term yield -0.24 % -0.15 %
Long-term return -0.06 % -0.31 %
Term spread 0.33 % -0.23 %
Default yield spread 0.00 % -0.11 %
Default return spread 0.01 % -0.03 %
Stock variance 0.27 % 0.00 %
Net equity expansion -0.02 % -0.03 %
Inflation -0.01 % -0.12 %
Log total net payout yield -0.23 % -0.23 %

Model Combinations

Equal weighted combination 0.16 % -0.08 %
BMA 0.17 % -0.06 %
Optimal prediction pool -0.56 % -0.07 %
CER-based linear pool 0.18 % -0.04 %
DeCo -0.06 % 0.00 %
CER-based DeCo 0.74 % 0.48 %

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient

of relative risk aversion A = 5 selects stocks and T-bills based on different predictive densities, precisely the

combination schemes and individual prediction models for monthly excess returns. refer to the case with A = 5

and, in the case of “CER-based DeCo”, λ = 0.95. Predictive return distributions are based on a linear regression

of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and

combination of these N linear individual models for two different set of priors. The prior set with ψ = 10 and

v0 = 0.1 refers to a diffuse prior assumption and ψ = 10 and v0 = 0.1 to an informative prior assumption. CERD

are annualized and are measured relative to the prevailing mean model which assumes a constant equity premium.

Bold figures indicate all instances in which the CERD is greater than zero. All results are based on the whole

forecast evaluation period, January 1947 - December 2010.
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Table D.2. Economic performance of portfolios based on out-of-sample return forecasts, 1947-
2007

Individual models

Predictor
Panel A: vs. PM Panel B: vs. PM-SV
Linear TVP-SV Linear TVP-SV

Log dividend yield -0.42 % 0.88 % -1.40 % -0.09 %
Log earning price ratio 0.10 % 1.12 % -0.87 % 0.15 %
Log smooth earning price ratio -0.55 % 0.92 % -1.53 % -0.05 %
Log dividend-payout ratio 0.49 % 1.11 % -0.48 % 0.14 %
Book-to-market ratio -0.70 % 0.70 % -1.67 % -0.27 %
T-Bill rate -0.24 % 1.04 % -1.22 % 0.07 %
Long-term yield -0.32 % 0.59 % -1.30 % -0.38 %
Long-term return -0.47 % 0.87 % -1.44 % -0.10 %
Term spread 0.20 % 1.03 % -0.77 % 0.06 %
Default yield spread -0.18 % 1.05 % -1.15 % 0.08 %
Default return spread -0.10 % 0.71 % -1.07 % -0.26 %
Stock variance -0.10 % 1.05 % -1.07 % 0.08 %
Net equity expansion 0.56 % 1.36 % -0.41 % 0.38 %
Inflation -0.15 % 1.00 % -1.12 % 0.03 %
Log total net payout yield -0.26 % 0.70 % -1.23 % -0.27 %

Model Combinations

Equal weighted combination 0.03 % 1.23 % -0.94 % 0.26 %
BMA -0.02 % 1.23 % -0.99 % 0.26 %
Optimal prediction pool -0.38 % 1.04 % -1.36 % 0.07 %
CER-based linear pool -0.02 % 1.24 % -0.99 % 0.27 %
DeCo 0.02 % 1.90 % -0.95 % 0.93 %
CER-based DeCo 0.95 % 2.58 % -0.02 % 1.61 %

This table reports the annualized certainty equivalent return differentials (CERD) for portfolio decisions based on recursive

out-of-sample forecasts of excess returns. Each period an investor with power utility and coefficient of relative risk aversion

A = 5 selects stocks and T-bills based on a different predictive density, based either on a combination scheme or on an

individual prediction model of the monthly excess returns. The columns “Linear” refers to predictive return distributions

based on a linear regression of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 =

µ + βxτ + ετ+1, and combination of these N linear individual models; the columns “TVP-SV” refer to predictive return

distributions based on a time-varying parameter and stochastic volatility regression of monthly excess returns on an intercept

and a lagged predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N

TVP-SV individual models. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A = 5

and, in the case of “CER-based DeCo”, λ = 0.95. Panel A reports CERD that are measured relative to the prevailing mean

(PM) benchmark, while panel B presents CERD that are computed relative to the prevailing mean model with stochastic

volatility (PM-SV) benchmark. Bold figures indicate all instances in which the CERD is greater than zero. All results are

based on an evaluation period that extends from January 1947 to December 2007.
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Figure D.1. Predictor weights for the CER-based DeCo combination scheme
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This figure plots the posterior means of the CER-based DeCo weights for the top individual linear models (top
panel) and TVP-SV models (bottom panel) over the out-of-sample period. The individual predictors showed are
Log(DP): log dividend price ratio, Log(DY): log dividend yield, Log(EP): log earning price ratio, Log(Smooth
EP): log smooth earning price ratio, Log(DE): log dividend-payout ratio, BM: book-to-market ratio, TBL: T-Bill
rate, LTY: long-term yield, LTR: long-term return, TMS: term spread, DFY: default yield spread, DFR: default
return spread, SVAR: stock variance, NTIS: net equity expansion, INFL: inflation, and Log(NPY): log total net
payout yield. The out of sample period starts in January 1947 and ends in December 2010.
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