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Abstract4
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1 INTRODUCTION 1

1 Introduction15

There have been considerable developments in the speci�cation of DSGE models in the last16

few years. Steps forward have also been made in the estimation of these models. Despite17

recent e¤orts, structural estimation of DSGE models is conceptually and practically di¢ -18

cult. For example, classical estimation is asymptotically justi�ed only when the model is the19

generating process (DGP) of the actual data, up to a set of serially uncorrelated measure-20

ment errors, and standard validation exercises are meaningless without such an assumption.21

Identi�cation problems (see e.g. Canova and Sala, 2009) and numerical di¢ culties are wide-22

spread. Finally, while the majority of the models investigators use are intended to explain23

only the cyclical portion of observable �uctuations, both permanent and transitory shocks24

may produce cyclical �uctuations, and macroeconomic data contain many types of �uctua-25

tions, some of which are hardly cyclical.26

The generic mismatch between what models want to explain and what the data contain27

creates headaches for applied investigators. A number of approaches, re�ecting di¤erent28

identi�cation assumptions, have been used:29

� Fit a model driven by transitory shocks to the observables �ltered with an arbitrary30

statistical device (see Smets and Wouters, 2003, Ireland, 2004a, Rubio and Rabanal, 2005,31

among others). Such an approach is problematic for at least three reasons. First, since the32

majority of statistical �lters can be represented as a symmetric, two-sided moving average33

of the raw data, the timing of the information is altered and dynamic responses hard to34

interpret. Second, while it is typical to �lter each real variable separately and to demean35

nominal variables, there are consistency conditions that must hold - a resource constraint36

need not be satis�ed if each variable is separately �ltered - and situations when not all37

nominal �uctuations are relevant. Thus, speci�cation errors can be important. Finally,38

contamination errors could be present. For example, a Band Pass (BP) �lter only roughly39

captures the power of the spectrum at the frequencies corresponding to cycles with 8-3240
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quarters average periodicity in small samples and taking growth rates greatly ampli�es the41

high frequency content of the data. Thus, rather than solving the problem, such an approach42

adds to the di¢ culties faced by applied researchers.43

� Fit a model driven by transitory shocks to transformations of the observables which, in44

theory, are void of non-cyclical �uctuations, e.g. consider real �great ratios�(as in Cogley,45

2001, and McGrattan, 2010) or nominal �great ratios�(as in Whelan, 2005). As Figure 146

shows, such transformations may not solve the problem because many ratios still display low47

frequency movements. In addition, since the number and the nature of the shocks driving48

non-cyclical �uctuations needs to be a-priori known, speci�cation errors may be produced.49

� Construct a model driven by transitory and permanent shocks; scale the model by50

the assumed permanent shocks; �t the transformed model to the observables transformed51

in the same way (see e.g. Del Negro et al., 2006, Fernandez and Rubio, 2007, Justiniano et52

al., 2010, among others). Such an approach puts stronger faith in the model than previous53

ones, explicitly imposes a consistency condition between the theory and the observables,54

but it is not free of problems. For example, since the choice of which shock is permanent is55

often driven by computational rather than economic considerations, speci�cation errors could56

be present. In addition, structural parameter estimates may depend on nuisance features,57

such as the shock which is assumed to be permanent and its time series characteristics.58

As Cogley (2001) and Gorodnichenko and Ng (2010) have shown, misspeci�cation of these59

nuisance features may lead to biased estimates of the structural parameters.60

� Construct a model driven by transitory and/or permanent shocks; estimate the struc-61

tural parameters by �tting the transformed model to the transformed data over a particular62

frequency band (see e.g. Diebold et. al, 1998, Christiano and Vigfusson, 2003). This ap-63

proach is also problematic since it inherits the misspeci�cation problems of the previous64

approach and the �ltering problems of the �rst approach.65

The paper shows �rst that the approach one takes to match the model to the data matters66

for structural parameter estimation and for economic inference. Thus, unless one has a67
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strong view about what the model is supposed to capture and with what type of shocks, it is68

di¢ cult to credibly select among various structural estimates (see Canova, 1998). In general,69

all preliminary data transformations should be avoided if the observed data is assumed to70

be generated by rational agents maximizing under constraints in a stochastic environment.71

Statistical �ltering does not take into account that cross equation restrictions can rarely72

be separated by frequency, that the data generated by a DSGE model has power at all73

frequencies and that, if permanent and transitory shocks are present, both the permanent74

and the transitory component of the data will appear at business cycle frequencies. Model75

based transformations impose tight restrictions on the long run properties of the data. Thus,76

any deviations from the imposed structure must be captured by the shocks driving the77

transformed model, potentially inducing parameter distortions.78

As an alternative, one could estimate the structural parameters by creating a �exible79

non-structural link between the DSGE model and the raw data that allows model-based and80

non model-based components to have power at all frequencies. Since the non model-based81

component is intended to capture aspects of the data in which the investigator is not in-82

terested but which may a¤ect inference, speci�cation errors could be reduced. In addition,83

because the information present at all frequencies is used in the estimation, �ltering distor-84

tions are eliminated and ine¢ ciencies minimized. The methodology can be applied to models85

featuring transitory or transitory and permanent shocks and only requires that interesting86

features of the data are left out from the model - these could be low frequency movements87

of individual series, di¤erent long run dynamics of groups of series, etc.. The setup has88

two other advantages over competitors: structural estimates re�ect the uncertainty present89

in the speci�cation of non model-based features; what the model leaves out at interesting90

frequencies is quanti�able with R-squared type measures. Thus, one can "test" the structure91

and to evaluate the explanatory power of additional shocks.92

The approach is related to earlier work of Altug (1989), McGrattan(1994) and Ireland93

(2004b). As in these papers, a non-structural part is added to a structural model prior to94
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estimation, but here the non-structural part is not designed to eliminate singularity. More95

crucially, the approach does not substitute for theoretical e¤orts designed to strengthen the96

ability of DSGE models to account for all observable �uctuations. But it can �ll the gap97

between what is nowadays available and such a worthy long run aspiration, giving researchers98

a rigorous tool with which to address policy questions.99

Using a simple experimental design and two practically relevant cases, the paper doc-100

uments the biases that standard transformations produce, interprets them using the tools101

developed in Hansen and Sargent (1993), and shows that crucial parameters are better esti-102

mated with the proposed procedure. To highlight how the approach can be used in practice,103

the paper examines �nally two questions greatly discussed in macroeconomics: the time vari-104

ations in the policy activism parameter and the sources of output and in�ation �uctuations.105

To focus attention on the issues of interest, two simplifying assumptions are made: (i) the106

estimated DSGE model features no missing variables or omitted shocks and (ii) the number107

of structural shocks equals the number of endogenous variables. While omitted variables108

and singularity issues are important, and the semi-structural methods suggested in Canova109

and Paustian (2011) produce more robust inference when they are present, I sidestep them110

because the problems discussed here occur regardless of whether (i)-(ii) are present or not.111

The rest of the paper is organized as follows. The next section presents estimates of112

the structural parameters when a number of statistical and model based transformations113

are employed. Section 3 discusses the methodology. Section 4 compares approaches using a114

simple experimental design. Section 5 examines two economic questions. Section 6 concludes.115

2 Estimation with transformed data116

The purpose of this section is to show that estimates of the structural parameters and infer-117

ence about the e¤ect of certain shocks depend on the preliminary transformation employed to118

match a model to the data. Given the wide range of outcomes, we also argue that it is di¢ cult119

to select a set of estimates for policy and interpretation purposes. We consider a textbook120
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small scale New-Keynesian model, where agents face a labour-leisure choice, production is121

stochastic and requires labour, there is external habit in consumption, an exogenous prob-122

ability of price adjustments, and monetary policy is conducted with a conventional Taylor123

rule. Details on the structure are in the on-line appendix.124

The model features a technology disturbance zt, a preference disturbance �t, a monetary125

policy disturbance �t; and a markup disturbance �t. The latter two shocks are assumed to126

be iid. Depending on the speci�cation zt; �t are either both transitory, with persistence �z127

and �� respectively, or one of them is permanent. The structural parameters to be estimated128

are: �c, the risk aversion coe¢ cient, �n, the inverse of the Frisch elasticity, h the coe¢ cient129

of consumption habit, 1 � �, the share of labour in production, �r, the degree of interest130

rate smoothing, �� and �y, the parameters of the monetary policy rule, 1-�p, the probability131

of changing prices. The auxiliary parameters to be estimated are: ��; �z, the autoregressive132

parameters of transitory preference and technology shocks, and �z; ��; �r; ��; the standard133

deviations of the four structural shocks. The discount factor � and the elasticity among134

varieties � are not estimated since they are very weakly identi�ed from the data.135

Depending on the properties of the technology and of the preference shocks, the optimality136

conditions will have a log-linear representation around the steady state or a growth path,137

driven either by the technology or by the preference shock, see table 1. Four observable138

variables are used in the estimation. When the model is assumed to be driven by transitory139

shocks, parameter estimates are obtained i) applying four statistical �lters (linear detrending140

(LT), Hodrick and Prescott �ltering (HP), growth rate �ltering (FOD) and band pass �ltering141

(BP)) to output, the real wage, the nominal interest rate and in�ation or ii) using three data142

transformations. In the �rst, the log of labour productivity, the log of real wages, the nominal143

rate and the in�ation rate, all demeaned, are used as observables (Ratio 1). In the second144

the log ratio of output to the real wage, the log of hours worked, the nominal rate and145

the in�ation rate, all demeaned, are used as observables (Ratio 2). In the third, the log of146

the labour share, the log ratio of real wages to output, the nominal interest rate and the147
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in�ation rate all demeaned, are used as observables (Ratio 3). When the model features a148

trending TFP (TFP), the linear stochastic speci�cation zt = bt+ �zt ; is used and, consistent149

with the theory, the observables for the transformed model are linearly detrended output,150

linearly detrended wages, demeaned in�ation and demeaned interest rates. When the model151

features trending preferences shocks (Preferences), the unit root speci�cation, �t = �t�1+�
�
t ,152

is employed and the observables for the transformed model are the demeaned growth rate153

of output, demeaned log of real wages, demeaned in�ation and demeaned interest rates.154

Finally, when the model features a trending TFP, the likelihood function of the transformed155

model is approximated as in Hansen and Sargent (1993) and only the information present156

at business cycle frequencies ( �
32
; �
8
) is used in the estimation (TFP FD).157

The data used comes from the FRED quarterly database at the Federal Reserve Bank of158

St. Louis and Bayesian estimation is employed. Since some of the statistical �lters are two-159

sided, a recursive LT �lter and a one-sided version of the HP �lter have also been considered.160

The qualitative features of the results are unchanged by this re�nement.161

Table 2 shows that the posterior distribution of several parameters depends on the pre-162

liminary transformation used (see e.g. the risk aversion coe¢ cient �c; the Frisch elasticity163

��1n ; the interest smoothing coe¢ cient �r; persistence and the volatility of the shocks). Since164

posterior standard deviations are generally tight, di¤erences across columns are a-posteriori165

signi�cant. Posterior di¤erences are also economically relevant. For example, the volatil-166

ity of markup shocks in the LT, the Ratio 1 and the Preference economies is considerably167

larger and, perhaps unsurprisingly, risk aversion stronger. Note that, even within classes of168

transformations, di¤erences are present. For example, comparing the Ratio 1 and Ratio 3169

economies, it is clear that using the labour share and the ratio of real wages to output as ob-170

servables considerably reduces the persistence of the technology shocks - rendering the Ratio171

3 transformation more appropriate as far as stationarity of the observables is concerned - at172

the cost of making the risk aversion and habit coe¢ cient very low.173

Di¤erences in the location of the posterior of the parameters translate into important174
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di¤erences in the transmission of shocks. As shown in Figure 2, the magnitude of the175

impact coe¢ cient and of the persistence of the responses to technology shocks vary with176

the preliminary transformation and, for the �rst few horizons, di¤erences are statistically177

signi�cant. Furthermore, the sign of output and interest rate responses is a¤ected.178

Why are parameter estimates so di¤erent? The �rst four transformations only approx-179

imately isolate business cycle frequencies, leaving measurement errors in the transformed180

data. In addition, di¤erent approaches spread the measurement error across di¤erent fre-181

quencies: the LT transformation leaves both long and short cycles in the �ltered data; the182

HP transformation leaves high frequencies variability unchanged; the FOD transformation183

emphasizes high frequency �uctuations and reduces the importance of cycles with business184

cycle periodicity; and even a BP transformation induces signi�cant small sample approxima-185

tion errors (see e.g. Canova, 2007). Since the magnitude of the measurement error and its186

frequency location is transformation dependent, di¤erences in parameter estimates emerge.187

An approach which can reduce the problematic part of the measurement error is in Canova188

and Ferroni (2011). More importantly, �ltering approaches neglect the fact that the spec-189

tral properties of a DSGE model are di¤erent from the output of a statistical �lter. Data190

generated by a DSGE model driven by transitory shocks have power at all frequencies of the191

spectrum and if shocks are persistent most of the power will be in the low frequencies. Thus,192

concentrating on business cycles frequencies may lead to ine¢ ciencies. When transitory and193

permanent shocks are present, the transitory and the permanent components of the model194

will jointly appear in any frequency band and it is not di¢ cult to build examples where195

permanent shocks dominate the variability at business cycle frequencies (see Aguiar and196

Gopinath, 2007). Hence, the association between the solution of the model and the �ltered197

observables generally leads to biases.198

Implicit or explicit model-based transformations avoid these problems by specifying a199

permanent and a transitory component of the data with power at all frequencies of the spec-200

trum. However, since speci�cation problems are present (should we use a unit root process201
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or a trend stationary process? Should we allow trending preferences or trending technology202

shocks?), nuisance parameters problems could be important (the model estimated with a203

trending TFP has MA components which do not appear when the preferences are trending,204

see table 1), and tight cointegration relationships are imposed on the observables, any de-205

viation from the assumed structure leads to biases. Finally, frequency domain estimation206

may require a model-based transformation (in which case the problems discussed in the pre-207

vious paragraph apply) and is generally ine¢ cient, since most of the variability the model208

produces is in the low frequencies. In general, while frequency domain estimation can help209

to tone down the importance of aspects of the model researchers do not trust, see Hansen210

and Sargent (1993), it cannot reduce the importance of what the model leaves unexplained211

at business cycle frequencies.212

3 The alternative methodology213

Start from the assumption that the observable data has been generated by rational expec-214

tation agents, optimizing their objective functions under constraints in a stochastic environ-215

ment. Suppose that the log of an N�1 demeaned vector of time series xdt can be decomposed216

in two mutually orthogonal parts217

xdt = zt + xt (1)

Assume that the econometrician is con�dent about the process generating xt � ut = xmt (�),218

where � is a vector of structural parameters, and ut a vector of iid measurement errors but219

he/she is unsure about the process generating zt = zmt (�; ), where  is another vector of220

structural parameters because she does not know the shocks which are driving zt; because221

she does not feel con�dent about their propagation properties; or because she does not222

know how to model the relationship between � and . In the context of section 2, zt is the223

permanent component and xt the transitory component of the data, and the researcher is224

unsure about the modelling of zt because it could be deterministic or stochastic, it could225
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be driven by preference or technology shocks, and balance growth could hold or not. Still,226

she wants to employ xmt (�) for inference because zt may be tangential to the issues she is227

interested in. Thus, she is aware that the model is misspeci�ed in at least two senses: there228

are shocks missing from the model; and there are cross equation restrictions that are ignored.229

An investigator interested in estimating � and conducting structural inference does not230

necessarily have to construct an estimate of xmt (�); �ltering out from the data what the231

model is unsuited to explain; add ad-hoc structural features hoping that ~zmt � D(`)(�; )~e1t232

is close to xdt �xmt (�), where, as in section 2, ~e1t is a set of (permanent) shocks and D(`)(�; )233

a model propagating ~e1t, or transform the observables so that zt becomes a vector of iid234

random variables, as is commonly done. Instead, she can use the raw data xdt ; the model235

xmt (�); and build a non-structural link between the (misspeci�ed) structural model and the236

raw data which is su¢ ciently �exible to capture what the model is unsuited to explain, and237

allows model-based and non model-based components to jointly appear at all frequencies of238

the spectrum.239

As a referee has pointed out, the assumption of orthogonality of zt and xt is crucial240

for the procedure outlined below to be e¤ective. When permanent drifts in the data occur241

because of drifting structure or drifting cyclical parameters rather than permanent shocks,242

alternative approaches need to be considered.243

Let the (log)-linearized stationary solution of a DSGE model be of the form:244

x2t = A(�)x1t�1 +B(�)�t (2)

x1t = C(�)x1t�1 +D(�)�t (3)

where A(�); B(�); C(�); D(�) depend on the structural parameters �, x1t � (log ~x1t� log �x1t)245

includes exogenous and endogenous states, x2t = (log ~x2t � log �x2t) all other endogenous246

variables, �t the shocks and �x2t; �x1t are the long run paths of ~x2t and ~x1t.247

Let xmt (�) = R[x1t; x2t]
0 be an N � 1 vector, where R is a selection matrix picking out of248

x1t and x2t variables which are observable and/or interesting from the point of view of the249
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analysis and let �xmt (�) = R[�x1t; �x2t]
0. Let xdt = log ~x

d
t �E(log ~xdt ) be the log demeaned N � 1250

vector of observable data. The speci�cation for the raw data is:251

xdt = ct(�) + xnmt + xmt (�) + ut (4)

where ct(�) = log �xmt (�) � E(log ~xdt ), ut is a iid (0;�u) (proxy) noise, x
nc
t ; x

m
t and ut are252

mutually orthogonal and xnmt is given by:253

xnmt = �1x
nm
t�1 + wt�1 + v1t v1t � iid (0;�1)

wt = �2wt�1 + v2t v2t � iid (0;�2) (5)

where �1 = diag(�11; :::�1N); �2 = diag(�21; :::�2N); 0 < �1i; �2i � 1; i = 1; :::N . To under-254

stand what (5) implies, notice that when �1 = �2 = I, and v1t; v2t are uncorrelated xmt (�)255

is the locally linear trend speci�cation used in state space models, see e.g. Gomez (1999).256

On the other hand, if �1 = �2 = I;�1 and �2 are diagonal, �1i = 0, and �2i > 0; 8i, xnmt257

is a vector of I(1) processes while if �1i = �2i = 0; 8i, xmnt is deterministic. When instead258

�1 = �2 = I, and �1i and �2i are functions of ��, (5) approximates the double exponential259

smoothing setup used in discounted least square estimation of state space models, see e.g.260

Delle Monache and Harvey (2010). Thus, if �xmt (�) = �x
m(�);8t, the observable xdt can display261

any of the typical structures that motivate the use of the statistical �lters. Furthermore,262

as emphasized by Delle Monache and Harvey (2010), (5) can capture several other types263

of structural model misspeci�cation. For example, whenever �2 is di¤erent from zero, the264

growth rate of the endogenous variables may display persistent deviations from their mean,265

a feature that characterizes many real macroeconomic variables, see e.g. Ireland (2012),266

even if the model is driven by transitory shocks. Finally, when �xmt (�) is not constant, and267

�1i and �2i are complex conjugates for some i, the speci�cation can account for residual268

low frequency variations with power at frequency !. To see this note that when N=1, (5)269

implies that (1 � �2L)(1 � �1L)x
nm
t = (1 � �2L)v1t + v2t�1 � (1 �  L)�t. If the roots270

��11 ; ��12 of the polynomial 1 � (�1 + �2)z + �1�2z
2 = 0 are complex, they can be written as271
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��11 = r(cos!+ i sin!); ��12 = r(cos!� i sin!), where r = p�1�2 and ! = cos�1[
�1+�2
2
p
�1�2

] and272

(5) is xnmt =
P

j r
sin!(j+1)
sin!

(1 �  L)�t, whose period of oscillation is p =
2�
!
= 2�

cos�1[
�1+�2
2
p
�1�2

]
.273

Thus, given r and p, there exists �1; �2 that produce x
nm
t with the required properties.274

Given (2)-(5), identi�cation of the structural parameters is achieved via the cross-equation275

restrictions that the model imposes on the data. Estimates of the non-structural parameters276

are implicitly obtained from the portion of the data the model cannot explain.277

3.1 Two special cases278

Two special cases of the setup are of interest. Suppose that the model features only transitory279

shocks while the data may display common or idiosyncratic long run drifts, low frequency280

movements, and business cycle �uctuations. Here �xmt (�) = �xm(�);8t, are the steady states281

of the model and, if the model is correctly speci�ed on average, ct(�) = 0. Assume that no282

proxy errors are present. Then (4) is283

xdt = xnmt + xmt (�) (6)

and xnmt captures the features of xdt that the stationary model does not explain. Depend-284

ing on the speci�cation of �1 and �2, these may include long run drifts, both of common285

and idiosyncratic type, and those idiosyncratic low and business cycle movements the model286

leaves unexplained. In this setup, xnmt has two interpretations: As in Altug (1989), McGrat-287

tan (1994) and Ireland (2004b), it can be thought of as measurement error added to the288

structural model. However, rather than being iid or VAR(1), it has the richer representation289

(5) and it is present even when the number of structural shocks equals the number of en-290

dogenous variables. Alternatively, xnmt can be thought of as a reduced form representation291

for the components of the data the investigator decides not to model. Thus, as in Del Negro292

et al. (2006), xnmt relaxes certain cross equations restrictions that the DGP imposes on xdt .293

Suppose, alternatively, that the model features transitory shocks and one or more per-294

manent shocks. In this case xmt (�) represents the (stationary) solution in deviation from a295



3 THE ALTERNATIVE METHODOLOGY 12

growth path and �xmt (�) is the model-based component generated by the permanent shocks.296

Suppose again that there are no proxy errors. Then (4) is297

xdt = ct(�) + x�;nmt + xmt (�) (7)

where x�;nmt captures the features of xdt which neither the transitory portion x
m
t (�) nor the298

permanent portion ct(�) of the model explains. These may include idiosyncratic long run299

patterns (such as diverging trends), idiosyncratic low frequency movements, or unaccounted300

cyclical �uctuations. Comparing (6) and (7), one can see that xnmt = ct(�) + x�;nmt . Thus,301

the setup can be used to measure how much of the data the model leaves unexplained and302

to evaluate whether the introduction of certain structural shocks reduces the discrepancy.303

To illustrate, suppose as in the application discussed in section 5.1, one starts from a model304

featuring a few transitory shocks and �nds that the relative importance of xnmt - measured,305

for example, by the variance decomposition at a particular set of frequencies - is large.306

Then, one could add a transitory shock or a permanent shock to the model and see how307

much the relative importance of xnmt has fallen. By comparing the relative size of xnmt in308

the various cases, one can then assess whether adding a permanent or a transitory shock is309

more bene�cial for understanding the dynamics of xdt .310

The same logic can be used to evaluate the model when, for example, the permanent311

shock takes the form of a stochastic linear trend, or of a unit root, or when all long run paths312

are left unmodelled. Hence, the approach provides a setup to judge the goodness of �t of313

a model; a constructive criteria to increase its complexity; and a framework to examine the314

sensitivity of the estimation results to the speci�cation of nuisance features.315

The speci�cation has other advantages over existing approaches. As shown in Ferroni316

(2011), the setup can be used to �nd the most appropriate speci�cation of the non model-317

based component, and to perform Bayesian averaging over di¤erent types of non model-318

based speci�cations, both of which are not possible in standard setups. Finally, since joint319

estimation is performed, structural parameter estimates re�ect the uncertainty present in320
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the speci�cation of the non model-based component.321

3.2 Estimation322

Estimation of the parameters of the model can be carried out with both classical and Bayesian323

methods. (2)-(5) can be cast into the linear state space system:324

st+1 = Fst +G!t+1 !t � (0;�!) (8)

xdt = ct(�) +Hst (9)

where st =
�
xnmt wt xmt (�) ut

�0
; !t+1 = (v1t+1; v2t+1; ut+1; �t+1)

0, H =
�
I 0 I I

�
;325

F =

0BB@
�1 I 0 0
0 �2 0 0
0 0 R[A C]0 0
0 0 0 0

1CCA ; G =

0BB@
I 0 0 0
0 I 0 0
0 0 0 R[B D]0

0 0 I 0

1CCA : Hence, the likelihood can326

be computed with a modi�ed Kalman �lter (accounting for the possibility of di¤use initial327

observations) given # = (�; �1; �2;�1;�2;�u) and maximized using standard tools.328

When a Bayesian approach is preferred, one can obtain the non-normalized posterior of329

#, using standard MCMC tools. For example, the estimates I present are obtained with a330

Metropolis algorithm where, given a #�1 and a prior g(#), candidate draws are obtained from331

#� = #�1 + �; where � � t(0; � � 
; 5) and � is a tuning parameter, and accepted if �g(#�jy)
�g(#�1jy)332

exceeds the draw of a uniform random variable, where �g(#ijy) = g(#i)L(yj#i), i = �;�1,333

and L(yj#i) is the likelihood of #i, . Iterated a large number of times, for � appropriately334

chosen, limiting distribution of # is the target distribution (see e.g. Canova, 2007).335

3.3 The relationship with the existing literature336

Apart from the work of Altug (1989), McGrattan (1994), Ireland (2004b), and Del Negro et337

al. (2006) already mentioned, the procedure is related to a number of existing works.338

First, the state space setup (8)-(9) is similar to the one of Harvey and Jeager (1993), even339

though these authors consider only univariate processes and do not use a structural model340

to explain the observables. It also shares important similarities with the one employed by341
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Cayen et al. (2009), who are interested in forecasting trends. Two are the most noticeable342

di¤erences. First, these authors use a two-step estimation approach, conditioning on �ltered343

estimates of the parameters of the DSGE model; here a one-step approach is employed.344

Second, all the deviations from the model are bundled up in the non-model speci�cation345

while here it is possible to split them into interpretable and non-interpretable parts.346

The contribution of the paper is also related to two distinct branches of the macroeco-347

nomic and macroeconometric literature. The �rst attempts to robustify inference when the348

trend properties of data are misspeci�ed (see Cogley, 2001, and Gorodnichenko and Ng,349

2010). I share with the �rst author the idea that economic theory may not have much to say350

about certain types of �uctuations but rather than distinguishing between trend-stationary351

and di¤erence-stationary cycles, I design an estimation procedure which deals �exibly with352

the mismatch between theoretical and empirical concepts of �uctuations. The idea of jointly353

estimating structural and non-structural parameters without fully specifying the DGP is also354

present in Gorodnichenko and Ng. However, a likelihood based estimator, as opposed to a355

minimum distance estimator, is used here because it works regardless of the properties of356

the raw data. In addition, rather than assuming that the model is the DGP, the procedure357

assumes that the model is misspeci�ed - a much more useful assumption in practice.358

The second branch points out that variations in trend growth are as important as cycli-359

cal �uctuations in explaining the dynamics of macroeconomic variables (see Aguiar and360

Gopinath, 2007, and Andrle, 2008). While the �rst paper characterizes di¤erences between361

emerging and developing economies, the latter is concerned with the misuse of models driven362

by transitory shocks in policy analyses for developing countries. The paper shows that the363

problems they highlight are generic and that policy analyses with misspeci�ed models are364

possible without controversial assumptions on what the model is not designed to explain.365
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3.4 Setting the priors for �1 and �2366

If the number of observables is small and the sample size large, one can estimate structural367

and non-structural parameters jointly from (8)-(9) in an unrestricted fashion. More real-368

istically, when the number of observables and the sample size are moderate, unrestricted369

estimation is unfeasible - the model features 2N + 2N2 non-structural parameters - and370

weak identi�cation problems may be important - variations in the level from variations in371

the growth rates of the observables are hard to distinguish. Thus, it is worth imposing some372

structure to reduce the number of estimated non-structural parameters. For example, one373

may assume that �1 and �2 are diagonal (the non model-based component is series speci�c)374

and of reduced rank (the non model-based component is common across [groups of] series).375

Alternatively, one may assume that these matrices have sparse non-zero elements on the376

diagonal (the non model-based component exists only in some observables) or that they are377

proportional to each other (shocks to the level and the growth rate are related). One may378

also want to make �1i and �2i common across certain variables. Restrictions of this type may379

be supported by plots or time series analysis of the observables.380

Additional restrictions may be needed to make estimation meaningful in small samples381

because, given a DSGE structure, the decomposition in model based and non model-based382

components is indexed by the relative intensity of the shocks driving the two components.383

Given that it is di¢ cult to estimate this intensity parameter unrestrictedly in small samples,384

a sensible smoothness prior for �1 and �2 may avoid that estimates of non model-based385

components feature undesirable high frequency variability. Harvey and Jeager (1993) have386

indicated that in univariate state space models, estimation of the cycle depends on the as-387

sumptions about the trend - in particular whether it is deterministic or stochastic. The388

problem we highlight here is di¤erent: given assumptions about the trend, di¤erent de-389

compositions of the observables in model and non-model based components are implied by390

di¤erent estimates of the relative variance of the permanent shocks. Thus, for example,391

if we assume that the trend is driven by permanent shocks, di¤erent decompositions may392
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be obtained if the relative magnitude of the shocks driving the two components is weak or393

strongly identi�ed.394

The speci�cation I found to work best in practice, and it is employed in the two ap-395

plications in section 5, involves making �1 and �2 a function of the structural shocks. As396

mentioned, it is possible to approximate the double exponential smoothing restrictions used397

in discounted least square estimation of state space models by selecting �1i =
q

�2�
�
and398

�2i =
q

�2�
(4�)2

; where i indicates the non-zero elements of the matrices, �t is one of structural399

shocks and � a smoothing parameter. Thus, given a prior for �t and �, a prior for all non-zero400

elements of �1 and �2 is automatically generated. Since � has the same interpretation as in401

the HP �lter, an agnostic quarterly prior for � could be uniform over [4,6400], which allows402

for very smooth as well as relatively jagged non-model based components. It is worth noting403

that this speci�cation is parsimonious and that selecting the signal to noise ratio � is less404

controversial than assuming a particular format for the drifts the data displays or selecting405

a shock driving them. Since a structural shock needs to be selected, one could experiment406

and choose the disturbance with the largest or the smallest variance. For the applications407

in section 5, the way the prior is scaled is irrelevant.408

An alternative approach, suggested by one of the referees, would be to exploit the �exi-409

bility of (5) to perform sensitivity analysis to alternative speci�cations of �1; �2;�1;�2. Also410

in this case, restrictions to reduce the dimensionality of non-structural parameter space are411

generally needed to make estimation results sensible.412

4 The procedure in a controlled experiment413

To examine the properties of the procedure and to compare them to those of standard414

transformations, I use the same setup employed in section 2 and simulate 150 data points 50415

times, assuming �rst that the preference shock has a transitory and a permanent component.416

Thus, �t = �1t + �2t; �1t = ���1t�1 + �
�T
t and �2t = �2t�1 + �

�P
t where �p�= �

T
� is uniformly417

distributed [1.1, 1.9]. Because �2t is orthogonal to all transitory shocks, the design �ts the418
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setup of section 3. The speci�cation is chosen since Chang et al. (2007) have indicated that a419

model with permanent preference shocks can capture well low frequency variations in hours420

worked. In this setup, the data displays stationary �uctuations, driven by four transitory421

shocks (which are correctly captured with a model), and non-stationary �uctuations, driven422

by the permanent preference shock (which will be either �ltered out, eliminated with certain423

data transformations, or accounted for with a non-model based component). The estimated424

model is misspeci�ed since the permanent preference shock is left out, but all the other425

features are correctly represented. Since the contribution of the permanent component is426

of the same order of magnitude as the contribution of the transitory component at almost427

all frequencies, standard transformations will feature both �ltering and speci�cation errors.428

When the proposed approach is used, the non model-based component is restricted to having429

a double exponential smoothing format and, consistently with the DGP, is allowed to enter430

only in output and the real wage (see on-line appendix).431

The second design features only transitory shocks, but measurement error is added to the432

data. The variability of the measurement error relative to the variability of the preference433

shock is uniformly distributed in the range [0.08, 0.12]. Here the model captures the dynamics434

of the data correctly, but (a constant) noise is present at all frequencies. The question of435

interest is whether the suggested speci�cation will be able to recognize that there is no non436

model-based component or whether the non model-based component will absorb part of the437

model dynamics. Note that, since the signal to noise ratio di¤ers in the two designs, we can438

also evaluate how our smoothness prior works in di¤erent situations.439

The structural parameters will be estimated in the most ideal situations one could con-440

sider - these include priors centered at the true parameter vector (the same prior distributions441

displayed in table 2 are used) and initial conditions equal to the true parameter vector which442

is listed in the �rst column of table 3. The other columns report, for each of the six esti-443

mation procedures we consider, the mean square error (MSE) of each parameter separately,444

and two cumulative MSE measures, one for the structural parameters and one for all the445
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parameters. The MSE is calculated using the posterior mean estimate in each replication.446

In the �rst design, estimation with HP and BP �ltered data produce MSEs that are447

larger than with LT or FOD data, in particular, for the inverse of the Frisch elasticity and448

the share of labour in production. Moreover, all �ltering procedures have a hard time to449

pin down the value of the Taylor rule coe¢ cient on output. Perhaps unsurprisingly, all450

transformations fail to capture both the absolute and the relative variability of the shocks.451

The ratio transformation is also poor and the cumulative MSEs are the largest of all. In452

comparison, the �exible approach does well in estimating structural parameters (the only453

exception is the consumption habit parameter) and captures the volatility and persistence454

of structural shocks much better than competitors.455

The pattern of the results with the second design is similar, even though several transfor-456

mations induce larger distortions in the estimates of the Frisch elasticity. The performance457

of the �exible approach is also good in this case. In particular, it does much better than458

other approaches in capturing the volatility and the persistence of the structural shocks.459

The implications of these results for standard dynamic analyses are clear. For example,460

variance decomposition exercises are likely to be distorted if parameter estimates are obtained461

with standard procedures. This is much less the case when the �exible approach is employed.462

Furthermore, structural inference regarding, e.g. the sluggishness of the policy rate or its463

sensitivity to output gap �uctuations, is less likely to be biased when the approach suggested464

in the paper is used.465

To highlight further the properties of the proposed approach, �gure 3 compares the au-466

tocorrelation function and the spectral density of the true and estimated permanent and467

transitory components of output for �rst design, where the latter is obtained using the me-468

dian estimates in one replication. The approach performs well: the rate of decay of the469

autocorrelation functions of the true and the estimated components is similar. As antici-470

pated, the two estimated components have power at all frequencies, but at business cycle471

frequencies (indicated by the vertical bars in the last row of graphs) the permanent compo-472
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nent is more important than the transitory component.473

The conditional dynamics in response to transitory shocks with true and estimated pa-474

rameters are in Figure 4. In general, the sign and the persistence of the responses are well475

matched. Magnitudes and shapes are occasionally imprecisely estimated (see e.g. the re-476

sponses to technology shocks) but, overall, the approach does a reasonable job in reproducing477

the main qualitative features of the DGP.478

To understand the nature of the distortions produced by standard transformations,479

note that the log-likelihood of the data can be represented as L(�jyt) = [A1(�) + A2(�) +480

A3(�)jy], see Hansen and Sargent (1993), where A1(�) = 1
�

P
!j
log detG�(!j), A2(�) =481

1
�

P
!j
trace [G�(!j)

�1F (!j)], A3(�) = (E(y) � �(�))G�(!0)
�1(E(y) � �(�)), !j =

�j
T
; j =482

0; 1; : : : ; T�1. G�(!j) is the model-based spectral density matrix of yt, �(�) the model-based483

mean of yt, F (!j) is the data-based spectral density and E(y) the unconditional mean of yt.484

A2(�) and A3(�) are penalty functions: A2(�) sums deviations of the model-based from the485

data-based spectral density over frequencies; A3(�) weights deviations of model-based from486

data-based means with the spectral density matrix of the model at frequency zero.487

Suppose the data is transformed so that the zero frequency is eliminated and the low488

frequencies de-emphasized. Then, the log-likelihood consists of A1(�) and of A2(�)� =489

1
�

P
!j
trace [G�(!j)]

�1F (!j)
�, where F (!j)� = F (!j)I!j , and I!j is a function describ-490

ing the e¤ect of the �lter at frequency !j. Suppose that I! = I[!1;!2], i.e. an indicator491

function for the business cycle frequencies, as in an ideal BP �lter. Then A2(�)� matters492

only at business cycle frequencies. Since at these frequencies [G�(!j)] < F (!j)
�, A2(�)� and493

A1(�) enter additively L(�jyt), two types of biases will be present. Since estimates F̂ (!j)�494

only approximately capture the features of F (!j)�, Â2(�)� has smaller values at business cy-495

cle frequencies and a nonzero value at non-business cycle ones. Moreover, in order to reduce496

the contribution of the penalty function to the log-likelihood, parameters are adjusted so497

that [G�(!j)] is close to F̂ (!j)� at those frequencies where F̂ (!j)� is not zero. This is done498

by allowing �tting errors, (a larger A1(�)), at frequencies where F̂ (!j)� is zero - in particular,499
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the low frequencies. Hence, the volatility of the structural shocks will be overestimated (this500

makes G�(!j) close to F̂ (!j)� at the relevant frequencies), in exchange for misspecifying501

their persistence. These distortions a¤ect agents�decision rules: higher perceived volatility,502

for example, implies distortions in the Frisch elasticity. Inappropriate persistence estimates,503

on the other hand, imply that perceived substitution and income e¤ects are distorted with504

the latter typically underestimated. When I! is not the indicator function, the derivation of505

the size and the direction of the distortions is more complicated but the same logic applies.506

Clearly, di¤erent I! produce di¤erent F̂ (!j) and thus di¤erent distortions.507

Since estimates of F (!j)� are imprecise, even for large T , there are only two situations508

when estimation biases are small. First, the permanent component has low power at business509

cycle frequencies - in this case, the distortions induced by the penalty function are limited.510

This occurs when transitory volatility dominates. Second, when Bayesian estimation is511

performed, the prior is selected to limit the distortions induced by the penalty function.512

This is very unlikely, however, since priors are not elicited with such a scope in mind.513

If instead one �ts a transformed version of the model to transformed data, as is done in514

model- based approaches, the log-likelihood is composed of A1(�)� = 1
�

P
!j
log jG�(!j)I!j j515

and A2(�) - since the actual and model data are �ltered in the same way, the �lter does516

not a¤ect the penalty function. Suppose that I! = I[!1;!2]. Then A1(�)
� matters only at517

business cycle frequencies while the penalty function is present at all frequencies. Therefore,518

parameter estimates are adjusted so as to reduce the misspeci�cation at all frequencies. Since519

the penalty function is generally more important at low frequencies, parameters are selected520

to make [G�(!j)] close to F̂ (!j) at those frequencies and large �tting errors are permitted521

at medium and high frequencies. Consequently, the volatility of the shocks will be generally522

underestimated in exchange for overestimating their persistence - somewhat paradoxically,523

this procedure implies that the low frequency components of the data are those that matter524

most for estimation. Cross frequency distortions imply incorrect inference. For example since525

less noise is perceived, agents�decision rules imply a higher degree of data predictability,526
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and higher perceived persistence implies that perceived substitution and income e¤ects are527

distorted with the latter overestimated.528

5 Two applications529

This section shows how the proposed approach can be used to inform researchers about two530

questions which have received a lot of attention in the literature: the time variations in the531

policy activism parameter and the sources of output and in�ation �uctuations. The �rst532

question is analyzed with the model presented in section 2. The second with a medium scale533

model, widely used in academic and policy circles.534

5.1 The policy activism parameter535

What are the features of the monetary policy rule in place during the �Great In�ation�of536

the 1970s and the return to norm of the 1980s and 1990s? This question has been extensively537

studied in the literature, following Clarida et al. (2000). One synthetic way to summarize538

the information contained in the data is to compute the policy activism parameter
�y

���1
,539

which gives a sense of the relative importance of the output and the in�ation stabilization540

objectives of the Central Bank. The conventional wisdom suggests that the absolute value of541

this parameter has declined over time, re�ecting changes in the preferences of the monetary542

authorities, but most of the available evidence is obtained either with reduced form methods543

or, when structural methods are used, with �ltered data. Are the results to be trusted? Is the544

characterization o¤ered by the approach of this paper di¤erent? Figure 5 plots the posterior545

density of the policy activism parameter when the data is linearly detrended (top left box) or546

HP �ltered (top right box) and when the approach of this paper is employed (lower left box)547

for the samples 1964:1-1979:4 and 1984:1-2007:4. The priors for the structural and auxiliary548

parameters are the same as in table 1. In the �exible approach, �e and �v are assumed549

to be diagonal, a common non model-based component is assumed for all the variables, the550

signal-to-noise ratio in the four series is captured by a single parameter �, a-priori uniformly551
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distributed over [100, 6400], �1= �2 = I and ut = 0;8t.552

The posterior density of the policy activism parameter shifts to the left in the second553

sample when HP �ltered data is used and, for example, the posterior median moves from554

-0.23 in the �rst sample to -0.33 in the second. This left shift of the posterior density is555

absent when LT data is used and the median of the posterior in the second sample moves556

closer to zero (from -0.38 to 0.12) - care should be exercised here since the median is not a557

good estimator of the central tendency of the posterior for the 1984-2007 sample. In both558

cases, the Kolmogorov-Smirnov statistic rejects the null that the posterior distributions are559

the same in the two samples. Thus, standard approaches con�rm the existence of a break560

in the conduct of monetary policy, although it is not clear in which direction the movement561

is: with HP �ltered data, output gap considerations have become relatively more important;562

with LT �ltered data, the opposite appears to be true.563

When the approach of section 3 is used, the posterior density of
�y

���1
in the two samples564

overlaps considerably: both the location and the shape of the density in the two samples are565

very similar and the Kolmogorov-Smirnov statistic does not reject the null that the posterior566

distributions in the two samples are the same. Thus, evidence in favor of a structural break567

in the conduct of monetary policy is much weaker in this case.568

Which of the three pictures should be trusted most? The Monte Carlo exercise of section569

4 indicates that LT �ltering may produce estimates of the two parameters entering the570

policy activism tradeo¤ with large MSEs for both DGPs. The picture is slightly better571

with the HP �lter; still, the estimation of the output coe¢ cient is poor. On the other hand,572

the MSE obtained by the �exible approach is small for both parameters and both DGPs.573

Thus, prima facie, the evidence provided by the �exible approach should be trusted more.574

As mentioned, the non model-based component soaks up the features that the model is575

not designed to explain. Thus, in principle, it could absorb changes present in the endogenous576

variables. As a reality check, we examine whether estimates of the non-structural parameter577

suggest that this is true. It turns out that this is not the case: the median estimate of � is578
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around 3200 in both samples, making the non model-based component quite smooth relative579

to the model based component (see the on-line appendix for plots of the two components of580

the four variables) and essentially time invariant. What happens instead is that structural581

non-policy parameters change to accommodate for the changes in the time series properties582

of in�ation and the interest rate. Interestingly, the explanatory power of the model increases583

in the second sub-sample: on average, at business cycle frequencies, the model explains 40584

per cent of output variations in the �rst sample and 55 per cent in the second sample. For585

in�ation and interest rates, the increase is smaller (from 40 to 50 percent).586

Since about 50 percent of the variability observables at business cycle frequencies is not587

captured by the model in both samples, it is worth investigating how the �t can be improved588

by altering its structure, keeping the number of observables and the estimation approach589

unchanged. To improve the �t of this kind of models the literature is now allowing a time590

varying in�ation target in the policy rule, see e.g. Ireland (2007). The target is assumed591

to be driven by a permanent shock and enters only in the interest rate equation. Thus, the592

estimated speci�cation moves from (6) to (7), where ct(�) now appears only in the interest593

rate equation. What would this modi�cation do to the posterior distribution of the policy594

activism parameter?595

The last box of �gure 5 indicates that adding a time varying in�ation target reduces the596

spread of the posterior distributions. Hence, the shift to the right in the posterior in the597

second sub-sample becomes statistically signi�cant. Adding an in�ation target improves the598

�t for the interest rate at business cycle frequencies (the proportion of the variance explained599

increase to 57 percent in the �rst sample and to 68 percent in the second); for in�ation,600

instead, the explanatory power of the model is unchanged in the �rst sub-sample and worsens601

considerably in the second (the variance share explained at business cycle frequencies is now602

only 28 percent). Hence, adding a time varying in�ation target does not seem to be a very603

promising way to improve our understanding of how in�ation �uctuations are generated.604
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5.2 Sources of output and in�ation �uctuations605

The question of what drives output and in�ation �uctuations has a long history in macro-606

economics. In standard medium scale DSGE models, like the one employed by Smets and607

Wouters (2003) and (2007), output and in�ation �uctuations tend to be primarily explained608

by markup shocks. Since these shocks are an unlikely source of cyclical �uctuations, Chari609

at al (2009) have argued that misspeci�cation is likely to be present (see Justiniano et al.,610

2010, for an alternative interpretation). Researchers working in the area use �ltering devices611

to �t the model to the data (as in Smets and Wouters (2003)), arbitrary data transforma-612

tions (as in Smets and Wouters, 2007) or build a permanent component in the model (as in613

Justiniano et al., 2010) and use model-consistent data transformations to estimate the struc-614

tural parameters. What would the approach of this paper tell us about sources of cyclical615

�uctuations in output and in�ation? To answer this question, the same model and the same616

data set used in Smets and Wouters (2007) are employed but a more standard setup is used.617

In particular, no MA terms for the price and wage markup disturbances are assumed - all618

shocks have a standard AR(1) structure; the model is solved in deviations from the steady619

state, rather than in deviation from the �exible price equilibrium; and the policy rule does620

not include a term concerning output growth.621

Table 4 reports results obtained eliminating a linear trend from the variables; taking622

growth rates of the real variables and demeaning nominal ones; and using the approach623

suggested in this paper. When a linear trend is removed, the forecast error variance decom-624

position of output at the �ve years horizon is indeed primarily driven by price markup shocks,625

with a considerably smaller contribution of investment-speci�c and preference shocks. For626

in�ation, price markup shocks account for almost 90 percent of the forecast error variability627

at the �ve years horizon. When the model is instead �tted to growth rates, price markup628

shocks account for over 90 percent of the variability of both output and in�ation at the �ve629

year horizon. Thus, even without some of the standard bells and whistles, the conclusion630

that markup shocks dominate remains. Why are price markup shocks important? Since,631
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compared to other shocks, they are relatively unrestricted, they tend to absorb any misspec-632

i�cation the model has and any measurement error that the �lters leave in the transformed633

data. Furthermore, since the combined speci�cation and measurement errors are unlikely to634

be iid, the role of markup shocks is overestimated. When the bridge suggested in this paper635

is used, the non-model based component of real variables is restricted to having a common636

structure (there are only two parameters simultaneously controlling the non model-based637

component of output, consumption, investment), �1= �2 = I , and a proxy error is allowed638

in each equation, the picture is quite di¤erent. Output �uctuations at the �ve year hori-639

zon are driven almost entirely by preference disturbances, while in�ation �uctuations are640

jointly accounted for by wage markup, TFP and price markup disturbances. Note that since641

the model explains only 20 percent of output and in�ation �uctuations at business cycle642

frequencies, it seems premature to use it to evaluate policy alternatives.643

It is useful to characterize the properties of the non model-based component to evaluate644

the theoretical modi�cations that are needed to capture what the current model leaves out.645

The non-model component is well represented by the speci�cation employed and restrictions646

on the representation used assuming, for example, no or only one unit root are all rejected647

in formal testing (log Bayes factor exceeding 10 in both cases). Thus, if shocks are to be648

added to the model, it is important that they have permanent features and display persistent649

deviations from a balanced growth path. Ireland (2012) has suggested one such speci�cation.650

Others, which allow both TFP and investment shocks to have these features, are also possible.651

6 Conclusions652

Estimating DSGE models with data that is statistically �ltered or model-based transformed653

may lead researchers astray because the association between the output of the �lter and the654

stationary solution of the model is generally incorrect and because model-based transfor-655

mations impose tight restrictions which may be violated in the data. The consequences of656

these errors could be economically important because income and substitution e¤ects could657



6 CONCLUSIONS 26

be distorted, the volatilities and persistence of the shocks over or underestimated and the658

decision rules of the agents, as perceived by the econometrician, altered.659

The alternative methodology this paper proposes builds a �exible bridge between the660

model and the raw data. The procedure is applicable to a large class of models and i)661

takes into account the uncertainty in the speci�cation of the non-model component when662

deriving estimates of the structural parameters; ii) provides a natural environment to judge663

the goodness of �t of a model; iii) gives researchers a framework to examine the sensitivity of664

the estimation results to the speci�cation of nuisance features, and iv) it is easy to implement.665

Unaccounted low frequency movements, such as those appearing in hours or labour pro-666

ductivity, or idiosyncratic trends, such as those present in relative prices, are hard to handle667

within standard DSGE models. Hence, certain shocks which are left somewhat unrestricted668

end up capturing these features. The approach this paper suggests is likely to be useful669

in these di¢ cult situations because it helps researchers to distinguish what the model can670

explain and what it cannot.671

Extensions of the setup used in the paper are easy to conceive. For example, structural672

breaks in the time series features of the observables could be handled either within the model-673

based (as in Eklund et al., 2008) or the non model-based components and the implications for674

structural parameters could be compared. Similarly, stochastic volatility could be captured675

in the model-based or non model-based components and the di¤erences evaluated. The676

framework proposed in the paper requires small changes to capture these situations.677
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7 Tables678

Model with transitory shocks

wt = ( �n
1�� +

�c
1�h)yt �

h�c
1�hyt�1 �

�n
1��zt � �t

yt = Et[
1
1+h

yt+1 +
h
1+h

yt�1 � 1�h
(1+h)�c

(�t+1 � �t + rt � �t+1)]

�t = �Et�t+1 +
1��

1��+��
(1���p)(1��p)

�p
(��t + wt +

�
1��yt �

1
1��zt)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt

nt = 1
1��(yt � zt)

Model with stochastically trending TFP

wt = ( �n
1�� +

1
1��h)yt �

�h
1��hyt�1 � �t �

�h
1��h(�

z
t�1 � �zt )

yt = 1
1+�h

Et(yt+1 + hyt�1 � (1� �h)(�t+1 � �t + rt � �t+1) + �h�
z
t�1 + �zt+1 � (1� �h)�zt )

�t = �Et�t+1 +
1��

1��+��
(1���p)(1��p)

�p
(��t + wt +

�
1��yt)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt

nt = 1
1��yt

Model with unit roots in preferences

wt = (�n + 1
1�h)yt �

h
1�hyt�1 � �nzt +

h
1�h�

�
t )

yt = 1
1+h

Et(yt+1 + hyt�1 � (1� h)(rt � �t+1)� (h��t + ((1� h)�n � h)��t+1))

�t = �Et�t+1 +
(1���p)(1��p)

�p
(��t + wt � zt)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt

nt = yt � zt

679

Table 1: Log-linear optimality conditions, stationary model. All variables are expressed in680

percentage deviation from either the steady state or the balanced growth path. �h = ebh and b681

is the slope of the stochastic trend. With trends �c = 1 and with unit roots in preferences also682

� = 0. zt is a technology shock, �t a preference shock, �
r
t a monetary policy shock and �

�
t a markup683

shock. If zt and �t are transitory, zt = �zzt�1 + �
z
t ; �t = ���t�1 + �

�
t . When TFP is trending,684

zt = bt+ �
z
t , when preferences are trending �t = �t�1 + �

�
t . In each panel the �rst equation de�nes685

the equilibrium real wage, the second is an Euler equation, the third a Phillips curve, the fourth a686

Taylor rule and the �fth a labor demand function.687
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Prior LT HP FOD BP Ratio 1 Ratio2

Median (s.e.)Median (s.e.)Median (s.e.)Median (s.e.)Median(s.e.)Median (s.e.)

�c �(20; 0:1) 1.90 (0.25) 1.41 (0.21) 0.04 (0.01) 0.96 (0.11) 2.33 (0.27) 0.81 (0.15)
�n �(20; 0:1) 1.75 (0.16) 1.37 (0.13) 5.23 (0.08) 1.19 (0.09) 3.02 (0.24) 2.68 (0.19)
h B(6; 8) 0.83 (0.02) 0.88 (0.02) 0.45 (0.01) 0.96 (0.01) 0.72 (0.05) 0.88 (0.02)
� B(3; 8) 0.07 (0.04) 0.09 (0.05) 0.42 (0.01) 0.07 (0.03) 0.05 (0.04) 0.03 (0.01)
�r B(6; 6) 0.19 (0.05) 0.11 (0.04) 0.62 (0.01) 0.09 (0.02) 0.38 (0.06) 0.28 (0.04)
�� N(1:5; 0:1) 1.33 (0.08) 1.37 (0.05) 1.53 (0.02) 1.51(0.06) 1.92 (0.06) 1.80 (0.05)
�y N(0:4; 0:1) -0.16 (0.03) -0.18 (0.03) 0.06 (0.00) -0.22 (0.03) 0.16 (0.02) -0.03 (0.02)
�p B(6; 6) 0.82 (0.02) 0.80 (0.03) 0.63 (0.01) 0.86 (0.01) 0.82 (0.02) 0.80 (0.02)
�� B(18; 8) 0.69 (0.04) 0.40 (0.05) 0.52 (0.01) 0.70(0.02) 0.67 (0.03) 0.66 (0.02)
�z B(18; 8) 0.96 (0.02) 0.95 (0.02) 0.99 (0.01) 0.97(0.01) 0.97 (0.01) 0.96 (0.01)
�� �

�1(10; 20) 0.53 (0.19) 0.47 (0.11) 4.96(0.13) 0.23 (0.05) 3.41 (0.74) 0.97 (0.13)
�z �

�1(10; 20) 0.20 (0.04) 0.23 (0.04) 2.00 (0.22) 0.19 (0.03) 0.06 (0.01) 0.06 (0.01)
�r �

�1(10; 20) 0.11 (0.01) 0.08 (0.01) 2.30(0.23) 0.07 (0.01) 0.10 (0.01) 0.11 (0.18)
�� �

�1(10; 20) 25.06 (0.97) 14.25 (0.93) 7.17 (0.13) 18.19 (0.66) 22.89 (1.91) 15.94 (0.49)

Prior Ratio 3 TFP Preferences TFP FD

Median (s.e.)Median (s.e.)Median (s.e.)Median (s.e.)

�c �(20; 0:1) 0.12 (0.03) 1.0 1.0 1.0
�n �(20; 0:1) 2.09 (0.14) 2.24 (0.26) 2.43 (0.20) 0.50 (0.28)
h B(6; 8) 0.10 (0.03) 0.08 (0.04) 0.78 (0.03) 0.54 (0.29)
� B(3; 8) 0.03 (0.02) 0.17 (0.03) 1.0 0.49 (0.29)
�r B(6; 6) 0.20 (0.06) 0.30 (0.04) 0.61 (0.02) 0.49 (0.28)
�� N(1:5; 0:1) 1.51 (0.07) 1.74 (0.06) 1.69 (0.05) 1.69 (2.13)
�y N(0:4; 0:1) 0.77 (0.04) 0.49 (0.03) 0.38 (0.07) 0.25 (1.97)
�p B(6; 6) 0.81 (0.01) 0.41 (0.03) 0.84 (0.01) 0.47 (0.29)
�� B(18; 8) 0.75 (0.03) 0.63 (0.03) 0.49 (0.28)
�z B(18; 8) 0.62 (0.03) 0.59 (0.02)
�� �

�1(10; 20) 0.26 (0.04) 0.21 (0.03) 0.06 (0.008) 3.49(0.48)
�z �

�1(10; 20) 0.08 (0.01) 0.05 (0.006) 0.15 (0.02) 2.09 (0.89)
�r �

�1(10; 20) 2.68 (0.27) 0.10 (0.01) 0.07 (0.007) 0.79(0.55)
�� �

�1(10; 20) 15.98 (1.09) 0.25 (0.04) 36.68 (1.42) 8.34(0.44)

688

Table 2: Posterior estimates. LT refers to linearly detrended data, HP to Hodrick and Prescott689

�ltered data, FOD to demeaned growth rates, BP to band pass �ltered data. For Ratio 1 the ob-690

servables are log(yt=nt); log(wt); �t; rt, all demeaned; for Ratio 2 they are log(yt=wt); log(nt); �t; rt,691

all demeaned; for Ratio 3, the observables are log((wtnt)=yt); log(wt=yt); �t; rt, all demeaned. For692

TFP trending, the observable are linearly detrending output and real wages and demeaned in�ation693

and interest rates. For Preference trending, the observable are demeaned growth rate of output,694

demeaned log real wages, demeaned in�ation and demeaned interest rates. When frequency domain695

estimation is used, only information in the band ( �32 ;
�
8 ) is employed. The sample is 1980:1-2007:4.696
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697

DGP1
True value LT HP FOD BP Ratio1 Flexible

�n 0.50 0.04 0.08 0.00 0.11 0.05 0.04
h 0.70 0.00 0.00 0.00 0.01 0.07 0.10
� 0.30 0.00 0.04 0.00 0.06 0.04 0.06
�r 0.70 0.05 0.05 0.01 0.06 0.13 0.01
�� 1.50 0.00 0.00 0.00 0.01 0.02 0.00
�y 0.40 0.17 0.20 0.17 0.19 0.15 0.00
�p 0.75 0.03 0.04 0.03 0.03 0.02 0.03
�� 0.50 0.00 0.04 0.00 0.00 0.00 0.07
�z 0.80 0.03 0.05 0.00 0.05 0.00 0.05
�� 1.12 1.60 0.45 3.89 0.64 8.79 1.00
�z 0.50 1.47 0.01 3.18 0.03 0.02 0.16
�r 0.10 1.37 0.03 3.75 0.03 0.00 0.00
�� 1.60 13.14 18.81 17.68 38.52 38.36 1.94

Total1 0.30 0.40 0.21 0.48 0.49 0.24
Total2 17.91 19.79 28.71 39.75 47.66 3.45

DGP2
True value LT HP FOD BP Ratio1 Flexible

�n 0.50 0.04 0.11 0.17 0.12 0.12 0.06
h 0.70 0.01 0.00 0.00 0.03 0.08 0.17
� 0.30 0.00 0.05 0.00 0.06 0.02 0.07
�r 0.70 0.05 0.05 0.04 0.05 0.13 0.02
�� 1.50 0.00 0.00 0.00 0.00 0.01 0.00
�y 0.40 0.16 0.21 0.08 0.19 0.15 0.00
�p 0.75 0.03 0.04 0.02 0.05 0.04 0.03
�� 0.50 0.00 0.04 0.00 0.00 0.01 0.08
�z 0.80 0.04 0.05 0.03 0.03 0.00 0.06
�� 1.12 10.41 0.87 2.80 0.69 9.43 0.97
�z 0.50 9.15 0.06 1.91 0.06 0.01 0.17
�r 0.10 9.35 0.00 1.05 0.03 0.00 0.00
�� 1.60 10.41 20.72 20.33 57.03 40.17 1.90

Total1 0.29 0.46 0.32 0.51 0.55 0.35
Total2 39.65 22.20 26.44 58.34 50.17 3.54

698

Table 3: MSE. In DPG1 there is a unit root component to the preference shock and
�nc�
�T�

= [1:1; 1:9]. In699

DGP2 all shocks are stationary but there is measurement error and �u
�T�
= [0:09; 0:11] The MSE is700

computed using 50 replications. LT refers to linearly detrended data, HP to Hodrick and Prescott701

�ltered data, FOD to demeaned growth rates, BP to band pass �ltered data, Ratio1 to real variables702
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scaled by hours, and Flexible to the approach suggested in the paper. Total1 is the total MSE for703

the �rst seven parameters; total2 the MSE for all 13 parameters.704

LT FOD Flexible
Output In�ation Output In�ation Output In�ation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.21
Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02
Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05

Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01
Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.19
Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)
Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

705

Table 4: Variance decomposition at the 5 years horizon. Estimates are obtained using the706

median of the posterior of the parameters. A (*) indicates that the 68 percent highest credible set707

is entirely above 0.10. The model and the data set are the same as in Smets and Wouters, 2007.708

LT refers to linearly detrended data, FOD to growth rates and Flexible to the approach this paper709

suggests.710
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Figure 1: US real and nominal great ratios
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On-line Appendix (not intended for publication)789

A. The basic DSGE model of section 2790

The bundle of goods consumed by the representative household is791

Ct =

�Z 1

0

Ct(j)
�t�1
�t dj

� �t
�t�1

(10)

where Ct(j) is the consumption of the good produced by �rm j and �t the elasticity of substi-792

tution between varieties. Maximization of the consumption bundle, given total expenditure,793

leads to794

Ct(j) =

�
Pt(j)

Pt

���t
Ct (11)

where Pt(j) is the price of the good produced by �rm j. Consequently, the price de�ator is795

Pt =
�R 1

0
Pt(j)

1��tdj
� 1
1��t and PtCt = [

R 1
0
Pt(j)Ct(j)dj].796

The representative household chooses sequences for consumption and leisure to maximize797

E0

1X
t=0

�t
�
Xt

1

1� �c
(Ct � hCt�1)

1��c � 1

1 + �n
N1+�n
t

�
(12)

where Xt is an exogenous utility shifter following an AR(1) in logs:798

�t = ���t�1 + ��t (13)

where �t = lnXt and �
�
t � N(0; �2�). The household budget constraint is799

PtCt + btBt = Bt�1 +WtNt (14)

where Bt are one-period bonds with price bt, Wt is nominal wage and Nt is hours worked.800

There is a continuum of �rms, indexed by j 2 [0; 1], each of which produces a di¤erenti-801

ated good. The common technology is:802

Yt(j) = ZtNt(j)
1�� (15)

where Zt is an exogenous productivity disturbance following an AR(1) in log,

zt = �zzt�1 + �zt
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where zt = lnZt and �zt � N(0; �2z). Each �rm resets its price with probability 1 � �p in803

any t, independently of time elapsed since the last adjustment. Therefore, aggregate price804

dynamics are805

�1��tt = �p + (1� �p)(P
�
t =Pt�1)

1��t (16)

A reoptimizing �rm chooses the P �t that maximizes the current value of discounted pro�ts806

max
P �t

1X
k=0

�kpEtQt;t+k

�
P �t Yt+kjt � TCt+k(Yt+kjt)

�
(17)

subject to the sequence of demand constraints807

Yt+kjt =

�
P �t
Pt+k

���t+k
Yt+k (18)

k = 0; 1; 2; ::: where Qt;t+k � �k(Ct+k=Ct)(Pt=Pt+k), TC(:) is the total cost function, and808

Yt+kjt denotes output in period t+ k for a �rm that resets its price at t.809

Finally, the monetary authority sets the nominal interest rate according to810

rt = �rrt�1 + (1� �r)(���t + �ygdpt) + �rt (19)

where �rt � N(0; �2ms).811

The �rst order conditions of the optimization problems are:812

0 = Xt(Ct � hCt�1)
��c � �t (20)

0 = �N��n
t � �t

Wt

Pt
(21)

1 = Et

�
�
�t+1
�t

Pt+1
Pt

Rt

�
(22)

0 =
1X
k=0

�kpEtQt;t+kYt+kjt
�
P �t �Mt+kMCn

t+kjt)
�

(23)

where �t is the Lagrangian multiplier associated with the consumer budget constraint, Rt �813

1+ it = 1=bt is the gross nominal rate of return on bonds,MCn(:) are nominal marginal cost814

and815

Mt = �e�
�
t (24)
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where ��t � N(0; �2�) and � is the steady state markup.816

Market clearing requires817

Yt(j) = Ct(j) (25)

Nt =

Z 1

0

Nt(j)dj (26)

and letting the aggregate output be GDPt �
�R 1

0
Yt(j)

�t�1
�t dj

� �t
�t�1 we have Ct = GDPt.818

The shocks driving the dynamics of the model are: a preference disturbance �t, a tech-819

nology disturbance zt, a markup shock �
�
t and a monetary shock �

r
t .820

B. The solution with transitory shocks821

When all the shocks are transitory, the log-linearized equilibrium conditions are:822

wt = (
�n
1� �

+
�c
1� h

)yt �
h�c
1� h

yt�1 �
�n
1� �

zt � �t (27)

yt = Et[
1

1 + h
yt+1 �

h

1 + h
yt�1 +

1� h

(1 + h)�c
(�t+1 � �t + rt � �t+1)] (28)

�t = �Et�t+1 + �p(�
�
t + wt +

�

1� �
yt �

1

1� �
zt) (29)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt (30)

nt =
1

1� �
(yt � zt) (31)

where all variables are expressed in deviation from the (constant) steady state, kp =
(1���p)(1��p)

�p

1��
1��+ � ,823

zt = �zzt�1 + �zt , �t = ���t�1 + ��t , �
r
t and �

�
t are iid. Equation (27) de�nes the equilibrium824

real wage, (28) is an Euler equation, (29) a Phillips curve, (30) a Taylor rule and (31) a825

labour demand function.826

This is the model �tted to �ltered data (�rst four columns on the top part of table 2)827

and to transformed data (the next three columns of table 2).828

C. The solution with a stochastic trend in the technology829

Assume that the technology has a stochastic linear trend, i.e. zt = bt + �zt , while the other830

three shocks are assumed to be transitory. A log-linearized solution can be found only setting831
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�c = 1. De�ning �h = exp(b)h, the equations in this case are832

wt = (
�n
1� �

+
1

1� �h
)yt �

�h

1� �h
yt�1 � �t +

�h

1� �h
(�z;pt�1 � �z;pt ) (32)

yt =
1

1 + �h
Et(yt + hyt�1 � (1� �h)(�t+1 � �t + rt � �t+1) + �h�

z;p
t�1 + �z;pt+1 � (1� �h)�

z;p
t )(33)

�t = �Et�t+1 +
1� �

1� �� ��

(1� ��p)(1� �p)

�p
(��t + wt +

�

1� �
yt) (34)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt (35)

nt =
1

1� �
(yt � zt) (36)

where all variables are expressed in deviation from the (constant) steady state, kp =
(1���p)(1��p)

�p

1��
1��+ � ,833

�t = ���t�1 + ��t , �
r
t and �

�
t are iid. Then834

lnYt � cy � bt = yt + �zt (37)

lnWt � cw � bt = wt + �zt (38)

�t � c� = �t (39)

Rt � cr = rt (40)

where capital letters indicate the observable variables, lower case letters the model variables835

and cj are constants (the mean of each process). This is the model �tted to the data in836

columns 8 and 10 of the bottom part of table 2.837

D. The solution with non-stationary preference shocks838

Assume that �t = �t�1 + ��t . A log linearized solution can be found only setting �c = 1:0839

and � = 0. The log-linearized equilibrium conditions are840
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wt = (�n +
1

1� h
)yt �

h

1� h
yt�1 � �nzt +

h

1� h
��;pt ) (41)

yt =
1

1 + h
Et(yt+1 + hyt�1 � (1� h)(rt � �t+1)� (h��;pt + ((1� h)�n � h)��;pt+1)) (42)

�t = �Et�t+1 +
(1� ��p)(1� �p)

�p
(��t + wt � zt) (43)

rt = �rrt�1 + (1� �r)(�yyt + ���t) + �rt (44)

nt = yt � zt (45)

where all variables are expressed in deviation from the (constant) steady state, kp =
(1���p)(1��p)

�p
,841

zt = �zzt�1 + �zt , �
r
t and �

�
t are iid. Then842

ln�Yt � cy = yt + ��t (46)

lnWt � cw = wt (47)

�t � c� = �t (48)

Rt � cr = rt (49)

where capital letters indicate the observable variables, lower case letters the model variables843

and cj are constants (the mean of the process). This is the model �tted to the data in column844

9 of table 2.845

E. Simulating data from a model with non-stationary preference846

shocks847

Let Y o
t be a N � 1 vector of observables and let:848

Y o
t = �(��; #�) +Hnsxnst +Hsxst (50)

where xst is Ns � 1 vector containing the variables rescaled by the non-stationary preference849

shock in log deviations from the steady state, �(��; #�) is an N �1 vector of the logarithm of850

the (rescaled) variables at the steady state, and xnst is Nns�1 vector containing the logarithm851
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of the non-stationary preference shock. Hns is an N � Nns selection matrix and Hs is an852

N � Ns selection matrix. Finally, � 2 �s is the vector of structural parameters describing853

the stationary dynamics of the DSGE model and # 2 �ns is the vector of parameters that854

de�nes the non-stationary dynamics. Moreover, �� 2 ��s � �s and #
� 2 ��ns � �ns are855

the vectors of parameters that a¤ect the steady state values. Rescaled variables, xst , evolve856

according to857

xst+1 = �(�; #)x
s
t +	(�; #)�t+1 �t � N(0;�(�; #)) (51)

where �t is the vector of the structural innovations of the shock processes, �t = [�
ns
t ; �

s
t ]
0. It858

turns out that, for the particular model we have chosen, these equations are given (41)-(45)859

The vector of non-stationary shock processes logXP
t is assumed to follow860

lnXP
t = lnX

P
t�1 + eX;Pt (52)

while the vector of transitory shock processes is861

log zt = �z log zt�1 + ezt (53)

log�t = ��log�t�1 + e�t (54)

vt = evt (55)

�t = e�t (56)
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Thus:862

xst = [yt; wt; �t; rt; zt; �t]
0 (57)

xnst = lnXP
t (58)

�st = [ezt ; e
�
t ; vt; �t]

0 (59)

�nst = eX;Pt (60)

�(��; #�) = [ln ys; lnWs; ln�s; lnRs]
0 (61)

Hns = [1; 1; 0; 0]0 (62)

Hs =

�
I4�4 04�2

�
(63)

� = [h; �n; �r; �y; ��; kp; �z; ��; �z; �x; �r; ��] (64)

# = �X;P (65)

F. The medium scale DSGE model used in section 5863

(a): The variables of the model864

Label De�nition
yt : output
ct : consumption
it : investment
qt : Tobin�s q
kst : capital services
kt : capital
zt : capacity utilization
rt : real rate
�pt : price markup
�t : in�ation rate
�wt : wage markup
Nt : total hours
wt : real wage rate
Rt : nominal rate

865



REFERENCES 47

(b): The parameters of the model866

Label De�nition
�c elasticity of intertemporal substitution
�l elasticity of labour supply with respect to real wages
h habit persistence parameter
� depreciation rate
�p � 1 share of �xed costs in production
� steady state elasticity of capital adjustment cost function
 positive function of the elasticity of capital utilization adjustment costs function.
� share of capital services in production
p price indexation parameter
�p price stickiness parameter
�p curvature of good market aggregator
w wage indexation parameter
�w wage stickiness parameter
�w curvature of labour market aggregator
Label De�nition
�r interest smoothing parameter
�� in�ation parameter
�y output parameter
gy government expenditure to output ratio
ky steady state capital output ratio
r� = ��1 steady state rental rate
w� steady state real wage rate
N�=C� steady state hours to consumption ratio

867
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(c): The equations of the model (in deviation from steady states)868

yt = (1� gy � � ky)ct + � ky it + r� ky zt + gt (C.1)

ct =
h
1+h

Etct+1 +
h
1+h

ct�1 � (�c�1)w�N�=C�
(1+h)�c

(Nt � EtNt+1)� 1�h
(1+h)�c

(Rt � Et�t+1 + ebt) (C.2)

it =
�
1+�

Etit+1 +
1
1+�

xt�1 +
��1

1+�
qt + eit (C.3)

qt = �(1� �)Etqt+1 + (1� �(1� �))Etrt+1 � (Rt � Et�t+1 + ebt) (C.4)

yt = �p(�k
s
t + (1� �)Nt + eat ) (C.5)

kst = kt�1 + zt (C.6)

zt =
1� 
 
rt (C.7)

kt+1 = (1� �) kt + � it + � (1 + �)  eit (C.8)

�pt = �(kst �Nt) + eat � wt (C.9)

�t =
�

1+�p
Et�t+1 +

p
1+�p

�t�1 � Tp�
p
t + ept (C.10)

rt = �(kt �Nt) + wt (E.11)

�wt = wt � (�lNt + (1� h)�1(ct � hct�1) (C.12)

wt =
1
1+�

wt�1 +
�
1+�
(Et�t+1 + Etwt+1)� 1+�w

1+�
�t +

w
1+�

�t�1 � Tw�
w
t + ewt (C.13)

Rt = �rRt�1 + (1� �r)(���t + �yyt) + ert (C.14)

869

The seven disturbances are: TFP shock (eat ); monetary policy shock (e
r
t ); investment870

shock (eit); price markup shock (e
p
t ); wage markup shock (e

w
t ); risk premium shock (ebt);871

government expenditure shock (egt ). The compound parameters in equation (C.11) and872

(C.13) are de�ned as: Tp � 1
1+p

(1���p)(1��p)
((�p�1)�p)�p

and Tw � 1
1+�

(1���w)(1��w)
((�w�1)�w)�w

.873

(d): The process for the shocks874

et = (eat ; e
r
t ; e

i
t; e

p
t ; e

w
t ; e

b
t ; e

g
t )

et = �et�1 + �t
875

where both � and � = Et�t�
0
t are diagonal.876
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G. Additional Tables and Graphs877

LT HP FOD BP
Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)

�c 1.68 (0.30) 1.53 (0.26) 0.04 (0.01) 2.98 (0.49)
�n 1.73 (0.15) 1.62 (0.12) 5.28 (0.07) 0.55 (0.06)
h 0.85 (0.03) 0.87 (0.03) 0.40 (0.01) 0.89 (0.02)
� 0.05 (0.02) 0.08 (0.03) 0.41 (0.01) 0.04 (0.02)
�r 0.18 (0.06) 0.16 (0.05) 0.64 (0.01) 0.13 (0.03)
�� 1.36 (0.07) 1.36 (0.08) 1.48 (0.02) 1.42 (0.06)
�y -0.17 (0.03) -0.17 (0.04) 0.05 (0.00) -0.11 (0.03)
�p 0.82 (0.01) 0.82 (0.02) 0.64 (0.01) 0.83 (0.01)
�� 0.66 (0.04) 0.67 (0.04) 0.54 (0.01) 0.81 (0.03)
�z 0.97 (0.02) 0.97 (0.01) 0.99 (0.01) 0.76 (0.02)
�� 0.63 (0.18) 0.65 (0.21) 4.63 (0.07) 0.45 (0.12)
�z 0.19 (0.04) 0.23 (0.05) 2.89 (0.19) 0.14 (0.02)
�mp 0.11 (0.01) 0.11 (0.01) 2.69 (0.14) 0.12 (0.01)
�� 23.13 (1.99) 29.07 (0.94) 7.63 (0.10) 30.22 (1.12)

878

Table G.1 Parameters estimates obtained with standard transformations; real variables �ltered,879

nominal variables demeaned.880
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DGP1
True LT HP FOD BP Ratio1 Flexible

Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.)
�n 0.50 0.71 ( 0.14) 0.22 (0.18) 0.54 (0.33) 0.16 ( 0.15) 0.28 ( 0.54) 0.73 ( 0.15)
h 0.70 0.71 ( 0.09) 0.72 (0.08) 0.69 (0.68) 0.82 ( 0.88) 0.97 ( 0.04) 0.36 ( 0.18)
� 0.30 0.29 ( 0.10) 0.10 (0.09) 0.29 (0.32) 0.05 ( 0.02) 0.09 ( 0.11) 0.05 ( 0.03)
�r 0.70 0.47 ( 0.04) 0.48 (0.10) 0.61 (0.59) 0.45 (0.48) 0.33 ( 0.13) 0.80 ( 0.08)
�� 1.50 1.57 ( 0.05) 1.52 (0.06) 1.55 (1.55) 1.42 (1.49) 1.62 ( 0.08) 1.55 ( 0.08)
�y 0.40 -0.01 (0.02) -0.05 (0.10) -0.01 (0.07) -0.04 ( 0.04) 0.01 ( 0.08) 0.40 ( 0.16)
�p 0.75 0.92 (0.02) 0.94 (0.02) 0.91 (0.91) 0.91 ( 0.97) 0.91 ( 0.21) 0.92 ( 0.01)
�� 0.50 0.45 (0.07) 0.31 (0.06) 0.52 ( 0.51) 0.50 ( 0.48) 0.52 ( 0.17) 0.76 ( 0.04)
�z 0.80 0.98 (0.09) 0.58 (0.14) 0.80 (0.88) 0.58 ( 0.59) 0.79 ( 0.15) 0.59 ( 0.16)
�� 1.12 2.47 (1.68) 0.53 (0.85) 3.17 (3.48) 0.40 ( 0.19) 4.17 ( 0.90) 0.20 ( 0.03)
�z 0.50 1.71 (1.60) 0.39 ( 0.87) 2.28 (2.85) 0.32 ( 0.11) 0.37 ( 0.42) 0.10 ( 0.02)
�r 0.10 1.27 (1.69) 0.28 (0.96) 2.04 (2.72) 0.27 ( 0.06) 0.07 ( 0.00) 0.06 ( 0.00)
�� 1.60 5.22 (0.79) 5.94 (1.00) 5.81 (5.48) 7.81 ( 7.92) 7.79 ( 1.76) 0.21 ( 0.03)

DGP2
True LT HP FOD BP Ratio1 Flexible

Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.)
�n 0.50 0.70 ( 0.05) 0.17 ( 0.05) 0.92 ( 0.37) 0.15 ( 0.11) 0.16 ( 0.20) 0.78 ( 0.10)
h 0.70 0.60 ( 0.07) 0.70 ( 0.07) 0.67 ( 0.67) 0.87 ( 0.88) 0.98 ( 0.04) 0.30 ( 0.02)
� 0.30 0.33 ( 0.04) 0.09 ( 0.06) 0.29 ( 0.32) 0.05 ( 0.03) 0.16 ( 0.13) 0.04 ( 0.01)
�r 0.70 0.49 ( 0.03) 0.48 ( 0.08) 0.51 ( 0.51) 0.47 ( 0.48) 0.34 ( 0.14) 0.83 ( 0.04)
�� 1.50 1.55 ( 0.04) 1.55 ( 0.05) 1.57 ( 1.58) 1.52 ( 1.52) 1.62 ( 0.10) 1.53 ( 0.09)
�y 0.40 -0.00 ( 0.00) -0.06 ( 0.09) 0.12 ( 0.12) -0.04 ( 0.04) 0.01 ( 0.03) 0.42 ( 0.11)
�p 0.75 0.91 ( 0.01) 0.94 ( 0.01) 0.90 ( 0.91) 0.97 ( 0.97) 0.95 ( 0.00) 0.92 ( 0.00)
�� 0.50 0.52 ( 0.06) 0.30 ( 0.05) 0.55 ( 0.53) 0.49 ( 0.47) 0.58 ( 0.13) 0.78 ( 0.05)
�z 0.80 1.00 ( 0.00) 0.59 ( 0.05) 0.62 ( 0.82) 0.63 ( 0.61) 0.80 ( 0.11) 0.55 ( 0.06)
�� 1.12 4.43 ( 1.19) 0.27 ( 0.16) 2.87 ( 3.07) 0.37 ( 0.20) 4.27 ( 0.98) 0.21 ( 0.02)
�z 0.50 3.53 ( 1.01) 0.25 ( 0.58) 1.88 ( 1.50) 0.26 ( 0.11) 0.41 ( 0.59) 0.09 ( 0.00)
�r 0.10 3.16 ( 1.16) 0.11 ( 0.23) 1.12 ( 0.07) 0.26 ( 0.06) 0.07 ( 0.00) 0.06 ( 0.00)
�� 1.60 4.83 ( 0.39) 6.15 ( 0.87) 6.11 ( 5.60) 9.15 ( 8.51) 7.94 ( 1.36) 0.22 ( 0.02)

881

Table G.2:Average Posterior mean estimates and dispersions across replications. In DPG1 there is a unit882

root component to the preference shock and
�nc�
�T�

= [1:11:9]. In DGP2 all shocks are stationary but883

there is measurement error in each equation and �u
�T�
= [0:090:11]. The MSE is computed using 50884

replications. LT refers to linearly detrended data, HP to Hodrick and Prescott �ltered data, FOD885

to demeaned growth rates, BP to band pass �ltered data, Ratio1 to real variables scaled by hours,886

and Flexible to the approach suggested in the paper.887
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Figure G.2: Data and estimated non-model based components, samples 1964:1-1979:4 and890

1984:1-2007:4, �exible approach891
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Figure G3: Impulse responses to transitory shocks, true and estimated with �exible approach, no
permanenent shocks


