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Abstract 
This paper develops a model of persuasive demand inducement, where a physician frames the 
healthcare decision faced by a patient with prospect-theoretic preferences, such as to make the 
patient see the decision from the perspective of a particular reference point. We derive the 
reference point that maximises the probability that the patient buys treatment under two 
scenarios, namely the decision to buy a safe preventive treatment rather than no treatment, 
and the decision to buy a risky curative treatment rather than no treatment. It is shown that in 
the curative scenario, the physician sets a high reference point, whereas in the preventive 
scenario, the physician sets a low reference point is the patient’s loss aversion is small, and a 
high reference point when the patient’s loss aversion is large. Furthermore, we derive how the 
patient’s degree of risk aversion, how the manner in which this degree of risk aversion 
changes with wealth, and how the level of loss aversion, affect the reference point that is 
optimal from the perspective of the physician. 
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1. Introduction 
 
One of the most popular themes in health economics is the supplier-induced demand (SID) 

hypothesis, stating that physicians whose income gets under pressure (e.g. because of 
physician entry) are able to create demand for their own services (Evans, 1974; for an 
overview, see e.g. Peacock and Richardson, 2007). From a theoretical point of view, the 
model underlying this hypothesis is simply a version of the Dorfman and Steiner (1954) 
model of advertising (Stano, 1987). By taking persuasive effort, the physician is able to shift 
the demand. A weakness of this model is that it does not explain how physicians can persuade 
patients, and that there is no limit on how much demand physicians can induce. 

To fill the theoretical gap, part of the health economics literature takes a different approach 
to SID, and starts from the premise of a rational patient with less information than the 
physician (Dranove, 1988; Labelle et al., 1994; Calcott, 1999; De Jaegher and Jegers, 2000; 
De Jaegher and Jegers, 2001; Xie et al., 2006; De Jaegher, 2012). The physician may give 
wrong information, but the patient anticipates this, and if the physician overprescribes too 
much the patient refuses treatment or consults another physician. While an attractive feature 
of there models is that there now is a constraint on the extent to which physicians can induce 
demand,  at the same time they are remote from the original concept of persuasive SID.  

The current paper shows that behavioural economics (for health-economics applications see 
Frank, 2004; Barigozzi and Levaggi, 2008) can contribute to constructing a model of 
persuasive SID. In this model, the physician’s information is always truthful, but the 
physician persuades the patient by framing the information. Our starting point is a modified 
version of an experiment due to Tversky and Kahneman (1981) known as the Asian Disease 
Problem. In a variant of this problem, assume that a patient is confronted with the following 
situation: 
 
Your life expectancy was initially 80 years, but you have now been diagnosed with a rare 
disease. Without treatment, this rare disease reduces your life expectancy to 74 years. You 
can choose from two alternative treatments. 
 
In the first scenario, the patient is given a choice between treatments A and B: 
 
Scenario 1. Without treatment, your life expectancy is 74 years. If you adopt treatment A, your 
life expectancy improves by 2 years. If you adopt treatment B, with probability 1/3 it improves 
by 6 years, and with probability 2/3 it does not improve.” 
 
In the second scenario, the patient is given a choice between treatments C and D: 
 
Scenario 2. Without the rare disease, your life expectancy would have been 80 years. If you 
adopt treatment C, your life expectancy will be four years less. If you adopt treatment D, with 
probability 1/3 your life expectancy will not be less, and with probability 2/3 it will be six 
years less. 
 

Some reflection teaches us that the first and the second scenario are logically equivalent. 
The only difference between the first scenario and the second scenario is that the outcomes of 
the treatments have been framed in a different manner. In a meta-analysis of framing studies 
(Kühberger, 1998), framing by formulating the decision maker’s reference point in different 
manners is found to have a systematic and significant effect. Concretely, in a gains frame such 
as Scenario 1, participants in experiments typically behave in a risk averse manner, and 
choose the safe treatment A. In a loss frame such as Scenario 2, however, participants 
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typically behave in a risk loving manner. A physician who seeks to induce the safe rather than 
the risky treatment should therefore frame the patient’s decision problem in terms of gains, 
presenting Scenario 1 rather than Scenario 2, while the opposite is  true for a physician who 
seeks to induce the risky rather than the safe treatment. Applied to the question of how 
healthy behaviour can be induced, the simple conclusion that gains framing is more effective 
in inducing behaviour that avoids risk whereas loss framing is more effective in inducing 
behaviour that involves risk, can be found in Rothman and Salovey (1997) and Rothman et al. 
(2006), without any modelling effort. 

Yet, the physician need not limit herself to either scenarios with pure gains or with pure 
losses, as illustrated by a third logically equivalent scenario: 
 
Scenario 3. If you adopt treatment E, your life expectancy is 76 years. If you adopt treatment 
F, with probability 1/3 you do four years better, and with probability 2/3 you do two years 
worse. 
 
In Scenario 3, the risky treatment F is framed as a mix of gains and losses. It is well-known 
that in lotteries involving mixed gains and losses, losses have more impact than gains, a 
phenomenon referred to as loss aversion. Because of loss aversion the patient may be risk 
averse over mixed gains and losses, and possibly more risk averse than in the pure gains 
region. A physician who wants to induce the safe rather than the risky treatment may then be 
better off when framing Scenario 3 rather than Scenario 1. More generally, many more 
logically equivalent scenarios can be envisaged: e.g., if average life expectancy is larger than 
80 years, this may be framed as the reference point, where all outcomes are then seen as 
losses. As the level of risk aversion need not be constant for pure gains and pure losses, an 
open question is then what is precisely the optimal reference point of a physician who wants 
to induce a safe action, and one who wants to induce a risky action. 

The paper is structured as follows. Section 2 contains the model, where the patient is 
assumed to have prospect-theoretic preferences. In Section 3, we find the physician’s optimal 
frame depending on the precise form of the patient’s preferences. We end with a discussion in 
Section 4. 
 
 
2. The model 

 
The physician-patient game proceeds as follows. The uninformed patient (he) visits his 

informed physician (she). At stage 1, the physician observes the patient’s health status, and by 
assumption truthfully communicates to the patient all available objective information, 
meaning the actions available to the patient, and for each action the corresponding objective 
density function over outcomes. Only a risky action and a safe action are available. The safe 
action always yields outcome M. The risky action yields outcome H with objective probability 
p, and outcome L with objective probability )1( p− , where LMH >> . While the physician 
by assumption reveals the aforementioned objective information to the patient, she can still 
strategically set the patient’s reference point R. This R can be chosen from a set ],[ maxmin RR , 
where LR <min  and HR >max . The patient sees outcome HMLX ,,=  as a gain )( RX −  if 

RX ≥ , and as a loss )( XR −  if RX < . At stage 2, following the principle of informed 
consent, after hearing the objective information provided by the physician and given the 
reference point R set by the physician, the patient calculates his expected psychic valuation 
(defined below, henceforth in short valuation) for each action, and picks the action with the 
highest expected valuation. Crucially, by assumption, the patient does not consider expected 
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valuations from the perspective of reference points other than the reference point set by the 
physician. Our patient is thus not aware that the physician strategically sets his reference 
point, and that if he would consider the decision problem from the perspective of another 
reference point, he could come to a different decision. This makes our physician-patient game 
a behavioural game rather than a standard game, as the patient does not act as a standard 
rational player. 

We now look at the physician’s and the patient’s payoffs. The physician always prefers the 
patient to get treatment rather than not to get treatment. This translates into two possible 
scenarios for the game. In the preventive scenario, the safe action is interpreted as getting a 
costly treatment that prevents the patient from ever getting ill, and the risky action is 
interpreted as not getting any treatment. If the patient does not get ill, not getting any 
treatment leads to a high outcome (H), as the cost of treatment is then also avoided. If the 
patient does get ill, not getting treatment leads to illness and a low outcome (L). Getting the 
treatment leads to a safe, intermediate outcome (M).  

In the curative scenario, the risky action is interpreted as getting treatment, and the safe 
action is interpreted as not getting any treatment. Not getting the treatment means that the 
patient is never cured, leading to a safe intermediate outcome (M). The costly treatment either 
cures the patient, leading to a high outcome (H), or does not cure the patient, leading to a low 
outcome (L), as the patient is then not cured but still incurs the cost of treatment. 

We now specify the patient’s valuation function, in accordance with prospect theory. The 
patient does not directly value the absolute outcomes L, M and H, but instead values these 
outcomes as gains or losses with respect to the reference point R set by the physician, where 
the patient thinks differently about gains and losses. For given R, the patient’s valuation 
function f(X) of any outcome X takes the following form (Tversky and Kahneman,  1992): 

 
 

 
 

with 0)0(,0'',0' =<> vvv  and 1>λ . (1) 
 

 
 
Figure 1 Psychic valuation function 

 
 
The valuation function is sketched in Figure 1, and is assumed to be increasing ( 0(.)' >v ) 

and concave ( 0(.)'' <v ). By using function v(.) for the psychic valuation in the gains region, 
and the negative of this function for the valuation in the loss region, it is assumed that the 
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patient is risk averse in the gains region and risk loving in the loss region (the so-called 
reflection effect 1 ), in line with experimental observations. The patient therefore has 
diminishing sensitivity to small changes in the outcome, the further away from the reference 
point. 
λ  is the patient’s degree of loss aversion: by including in the valuation function a 

coefficient 1>λ  for losses (dashed part of the valuation function in Figure 1), one adapts the 
model to the empirical observation that decision makers with prospect-theoretic preferences 
care more about losses (say, a loss of one year in life expectancy) than about equally-sized 
gains (say, a gain of one year in life expectancy). 

We finally assume that any patient i does not use the objective probabilities to calculated his 
expected valuation, but instead weighted probabilities, according to the probability weighting 
function )( pip , where p is any given objective probability. The weighted probabilities may 
differ from the objective probabilities for the following two reasons. First, following prospect 
theory, the patient may apply subjective weights to the objective probabilities. In particular, it 
is known that decision makers typically overweigh small probabilities (and thus underweight 
large probabilities). The weighting function )( pip  has a positive slope, but is such that there 
is a critical p* such that for any *pp < , ppi >)(p  (overweighting), and for any *pp > , 

ppi <)(p  (with **)( ppi =p ). Second, the probability of success and failure may be affected 
by personal characteristics of the patient, known to the patient but not to the physician. With 
some abuse of terminology, the objective probability of success is then interpreted as the 
average probability of success across patients, and the weighted probability is determined by 
the patient’s deviation from the average probability. 

It follows now that a patient i prefers the risky action if 
 

⇔
≥+ )()()()()( MfHfpLfp HiLi pp  
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and prefers the safe action when the inequality sign in (2) is reversed. α denotes the benefit of 
getting the high outcome rather than the intermediate outcome, relative to the benefit of 
getting the intermediate outcome rather than the low outcome, and is thus an inverse measure 
of the degree of concavity of the valuation function, and at the same time a measure of the 
patient’s risk tolerance. ),( HLi ppo  denotes the patient’s weighted odds of failure. Given the 
patient’s prospect-theoretic preferences in (1), α is a function of R, denoted as α(R). It follows 
that for a patient with given ),( HLi ppo , in the curative treatment scenario the physician 
should choose any R such that α exceeds ),( HLi ppo , and in the preventive treatment scenario 
should choose any R such that α does not exceed ),( HLi ppo . 

We obtain more fine-tuned results, because we take the realistic assumption that the 
physician faces a distribution of patients. In particular, we assume all patients to have 
identical valuation functions f(.), and therefore identical α in (2), but to have different 
probability weighting functions. Each patient observes his own probability weighting 
function, but the physician only knows the distribution of such functions across patients. 
                                                 
1 The reflection effect is in line with the well-known psychological principle (Weber-Fechner law, see Thaler, 
1999, p. 185) stating that, formulated in health terms, the difference between a gain (respectively loss) of 1 year 
in life expectancy and a gain (loss) of 2 years in life expectancy appears larger than the difference between a 
gain (loss) of 10 years in life expectancy and a gain (loss) of 11 years in life expectancy. 
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Formally, we then add a stage 0 preceding stage 1 to the game, where Nature decides on the 
individual patient’s probability weighting function (.)iπ . From the perspective of the 
physician, the patient’s subjective odds of failure are now distributed over ],[ maxmin oo . In the 
curative scenario, for any given α, all patients with o≥α  choose the curative treatment, 
whereas all patients with  choose no treatment. The physician therefore chooses the 
optimal reference point, denoted RC, which maximises α(R) (= maximises risk tolerance). In 
the preventive scenario, for any given α, all patients with o≤α  choose the preventive 
treatment, whereas all patients with o>α  choose no treatment. The physician now chooses 
the optimal reference point, denoted RP, which minimises α(R) (= minimise risk tolerance). 
 
 
3. Results 

 
The main results are contained in Proposition 1. The technical proof is in the Appendix, but 

the intuition can be understood separately. As seen above, in order to induce the risky curative 
treatment (safe preventive treatment), the physician should maximise (minimise) the patient’s 
risk tolerance. Risk tolerance α as a function of the reference point R is represented in Figures 
2-4, where the solid curve represents the case without loss aversion ( 1=λ ), whereas the 
dashed curve and dash-dotted curves represent low (λL) and high (λH) loss aversion. As the 
patient is risk averse (risk loving) for pure gains (pure losses), risk tolerance is low (high) for 
low (high) reference points. For intermediate reference points, where the patient perceives 
mixed gains and losses, he is more risk averse the more loss averse he is, as loss aversion 
creates a kink in the valuation around the reference point. It follows that, roughly, when 
inducing the risky curative treatment the physician should set a high reference point, and, 
when inducing the safe preventive treatment, the physician should set a low reference point 
for low loss aversion, but an intermediate reference point for high loss aversion. 

We now proceed with a detailed intuition. Risk tolerance is the inverse of risk aversion, and 
a standard measure of the latter is absolute risk aversion (henceforth ARA, equal to '/'' ff− ). 
As an increase in the patient’s reference point is the analogue of a decrease in wealth, the 
manner in which R affects α at first sight depends on whether the patient has a DARA 
(decreasing), CARA (constant), or IARA (increasing ARA) valuation. In the pure gains and 
pure loss region, this is indeed the case. With CARA, α is low and flat for LR ≤ , and is high 
and flat for HR ≥  (Figure 2). With DARA (Figure 3), as an increase in R is the analogue of a 
decrease in wealth, and as in the gains region a decrease in wealth means higher risk aversion 
and therefore lower risk tolerance, α(R) decreases in R for LR ≤ . Because of the symmetry 
imposed by the reflection effect, in the loss region risk lovingness is higher for higher wealth, 
so that higher R means lower risk tolerance and lower α(R). By the same reasoning, with 
IARA (Figure 4), α(R) increases in R in both the gains and the loss region. 

Strictly speaking, the ARA is a measure of local risk aversion, defined for infinitesimal 
gambles. While the risky action of our patient is not an infinitesimal gamble (L and H are not 
arbitrarily close to M), in the pure gains and pure loss region, results still depend only on 
whether we have DARA, CARA or IARA. For R such that the patient perceives both gains 
and losses, however, we need a measure of global risk aversion. An inverse measure of global 
risk aversion is found precisely in α, as it is an inverse measure of global concavity. Leaving 
out loss aversion for the moment and focusing purely on the reflection effect, the following is 
now clear. First, the slope of α(R) just above L is the same as just below L; the same applies 
for the slopes around M and H. Furthermore, it is clear that an R between L and H exists such 
that R is globally risk neutral, meaning that while α is low for LR ≤  and high for HR ≥ , it is 
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intermediate for intermediate R. E.g., if M happens to lie exactly between L and H, the patient 
is globally risk neutral for MR = . Finally, α(R) is increasing R approaching MR =  from the 
right. To see why, note that for MR = , a slight increase in R has two effects. Because of 
diminishing sensitivity, first, the difference in the valuation of M and L becomes smaller. 
Second, the difference in the valuation of H and M becomes larger; this effect is further 
reinforced because the convex region of the valuation function is entered. 

For CARA and IARA, these results suggest a monotonous increase from low to high risk 
tolerance in the region of mixed gains and losses, as depicted by the solid curves in Figures 2 
and 4. If follows that with CARA the physician should set RP in any way such that LRP ≤  
and RC in any way such that LRC ≥ ; with IARA the physician should set minRRP =  and 

maxRRP = . For DARA, the picture is more complex. By the previous, α is now low and 
decreasing in R around L, is intermediate and increasing in R around M, and is high but 
decreasing in R around H. This suggests that for DARA, α as a function of R takes the form 
of the solid curve in Figure 3. It follows that MRL P << , and HRM C << . As these results 
apply in the absence of loss aversion, it is intuitive that similar results apply for sufficiently 
low loss aversion, which explains in Proposition 1 for IARA the cases (i)(a) and (ii)(d), and 
for DARA the cases (i)(b) and (ii)(a). α(R) with low loss aversion (λL) is represented by the 
dashed curves in Figures 2-4. 

When adding loss aversion to the analysis, the following facts are clear. First, loss aversion 
does not impact α(R) in the pure gains or pure loss region. Thus, when we add to Figures 2-4 
the dashed and dash-dotted curves for α(R) with loss aversion (λL and λH), for LR ≤  and 

HR ≥ , they coincide with the solid curves for α(R) without loss aversion. This is because 
loss aversion only has an impact for mixed gains and losses. Second, as we let loss aversion 
become very large, global risk tolerance at MR P = becomes minimal, as the kink in the 
valuation function around the reference point becomes extreme. It follows that as long as loss 
aversion is sufficiently high, MR P =  (see Proposition 1(i)(c)). Third, the slope of α in R 
approaching M from the right continues to be positive when there is loss aversion. Loss 
aversion has the additional effect that the difference between the valuation of M and L is 
further increased as the loss region is entered. 

Fourth, the kink in the valuation function around the reference point is translated into a kink 
in α for R around L, M and H. Starting at LR = , as R is increased and the loss region is 
entered, the difference in the valuation of M and L increases because of loss aversion. By (2), 
it follows that the slope of α is smaller approaching L from the right than from the left. This 
means that at LR = , α(R) never has a peak for CARA or DARA, but does have a peak for 
IARA when loss aversion is sufficiently high. Starting at MR = and lowering R, the 
difference in valuation between M and L decreases as one partially enters the gains region. 
For sufficiently large loss aversion, this has a large impact on the denominator of α (see (2)), 
so that for sufficiently large loss aversion, α decreases in R approaching M from the left, and 
has a peak at MR = . Finally, starting at HR =  and lowering R, the presence of loss aversion 
decreases the difference in valuation of H and M. For sufficiently large loss aversion, this has 
a large impact on the numerator of α (see (2)). It follows that loss aversion makes the slope of 
α larger approaching H from the right than from the left. This means that at HR = , α(R) 
never has a peak for CARA or IARA, but does have a peak for DARA when loss aversion is 
sufficiently high. 
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Figure 2. Global risk tolerance (α) as function of patient’s reference point (R) for CARA valuation function. 
Solid curve: no loss aversion (λ = 1); dashed curve: low loss aversion (λL); dash-dotted curve: high loss aversion 
(λL). RC (RP) indicates optimal reference point in curative (preventive) scenario. 
 
 

 
 
 
 
Figure 3. Idem as Figure 2, but for DARA valuation function. 

 
 

 
 
 
 

 
Figure 4. Idem as Figure 2, but for IARA valuation function.  
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All results in Proposition 1 are now readily obtained when assuming that, first, the sign of 
the slope of α(R) changes at most once in each of the ranges MRL <<  and HRM << , and 
second, that the patient is everywhere risk averse in the range MRL << .2 For CARA, as 
soon as there is loss aversion, LRP >  (dashed and dash-dotted curves in Figure 2); when loss 
aversion is sufficiently high, MRP =  (dash-dotted curve). With or without loss aversion, it 
remains the case that RC can be put anywhere equal to or larger than H. For both DARA and 
IARA, if loss aversion is small, the results are qualitatively the same as without loss aversion; 
if loss aversion is sufficiently large, MRP = . For DARA, for sufficiently large loss aversion, 
α(R) has a peak at H, so that HRC =  (see dashed and dash-dotted curves in Figure 3). For 
IARA, for sufficiently large loss aversion, α(R) has a peak at L. Yet at HR = , the patient is 
risk averse rather than risk loving, so that it continues to be the case that RC should be as large 
as possible ( maxRRC = ). Given the peak at LR = , as long as loss aversion is not so large as to 
minimise α(R) for MR = , the level of RP depends on the relative height of α(Rmin). For 
instance, in the dashed curve in Figure 4, α(R) has a local minimum at R*; however, as 

*)()( min RR αα < , we have *RR P = . With a large level of loss aversion, in the dash-dotted 
curve in Figure 4, α(R) has a local minimum at M; as )()( min MR αα > , we have MRP = . 
 
 
Proposition 1. Assume that α(R) is single-peaked in both the range MRL <<  and the range 

HRM << , and that the patient is risk averse in the range MRL << . Then the physician’s 
optimal reference point is the following: 
(i) Preventive scenario: MRP ≤ , and in particular: 

a) minRRP = : IARA with )( minRα  sufficiently low and/or loss aversion sufficiently low;  
b) a unique PR  such that MRL P << : sufficiently low loss aversion, and either 

CARA/DARA, or IARA with )( minRα  sufficiently high;  
c) MR P = : loss aversion sufficiently high, and either CARA/DARA, or IARA with 

)( minRα  sufficiently high. 
(ii) Curative scenario: MRC > , and in particular: 

a) a unique CR  such that HRM C << : DARA with loss aversion sufficiently low; 
b) HRC = : DARA with los aversion sufficiently high; 
c)  any CR  such that maxRRH C ≤≤ : CARA; 
d) maxRRC = : IARA. 

Proof: See Appendix. 
 
 

We next look in Proposition 2 at how the optimal reference point is affected by the patient’s 
degree of risk aversion and loss aversion for two valuation functions commonly used in 
applied theory, namely the CARA valuation function and the CRRA valuation function 3 

                                                 
2 These assumptions can be checked to be valid for the HARA valuation function (of which CARA and CRRA 
(constant relative risk aversion) valuation functions are special cases). 
3 For the CRRA valuation function, we only consider RRAv −= 1(.)(.)  for 10 <≤ RRA . This excludes higher 

levels of RRA (Wakker, 2008), for which the valuation function takes the form RRAv −−= 1(.)(.)  for 1>RRA  (
ln(.)(.) =v  for 1=RRA ). The problem is that )0(v  is then not defined, which is problematic as what 

happens at the reference point plays a crucial role in our analysis. Still, in the overview of estimates of the 
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(constant relative risk aversion (henceforth RRA), where the RRA equals '/'' fXf− ), where 
the latter has the DARA form. For both valuation functions, RP increases in λ (see Proposition 
2(i)) because a physician who wants to discourage a patient from taking the risk of not buying 
preventive treatment, has more reason to set the reference point such that losses are perceived 
when the patient is more loss averse, as the extent to which the patient is risk averse for mixed 
gains and losses is now larger (see Figures 2 and 3). For the same reason, the physician who 
wants to induce a risky curative treatment rather than no treatment has more incentives to stay 
out of the gains region when the patient is more loss averse. For CRRA, this means again an 
increase in RC (see Figure 3 and Proposition 2(i)(a)), for CARA it does not change RC as in 
this case there is no incentive to enter the loss region even without loss aversion (see Figure 2 
and Proposition 2(i)(b)). 

We next look at the effect of changes in ARA and RRA, and look first at the effect on RP. In 
the absence of loss aversion and focusing purely on the reflection effect, with CARA, as 
shown in Figure 2 by the solid curve, the physician sets LRP = , i.e. frames all outcomes as 
gains; with CRRA, as shown in Figure 3 more generally for DARA valuation function, the 
physician sets MRL P << . To focus purely on the effect of loss aversion and leave the 
reflection effect out, consider a linear valuation function v(.), and consider  (note that the 
linear valuation function can be considered as a limit case with extremely small curvature of 
both CARA and CRRA). In this case, MRP = , as the patient is now only risk averse when 
perceiving mixed gains and losses. As increasing ARA or RRA makes the impact of the 
reflection larger, intuitively, it follows that increasing ARA or RRA will makes the RP smaller 
(see Proposition 2(i)). 

We next look at the effect of ARA and RRA on RC. As with CARA, α(R) is flat for HR ≥ , 
and increases in R approaching H from the left as soon as there is at least some loss aversion 
(see Figure 2), it is clear RC is not affected by ARA (see Proposition 2(ii)(a)). For CRRA, take 
as a starting point a case with intermediate RRA, and with loss aversion small enough for it to 
be the case that HRM C << . Compare this, first, to the limit case where v(.) approaches a 
linear function (RRA approaches zero). Then only the effect of loss aversion is at work, and 
the physician wants to avoid the patient perceiving any gains, as this reduces risk tolerance, so 
that HRC = . As a decrease in RRA means an increase in RC, this means that RC decreases in 
RRA. Second, compare to the limit case where RRA becomes extremely large. Then by the 
fact that ARA = RRA/Y, the ARA is large just above the reference point. Again, the physician 
wants to avoid the patient perceiving ay gains, and sets HRC = . As this is the result of an 
increase in ARA, it follows that RC increases in RRA. This intuition explains the ambiguous 
result in Proposition 2(ii)(b). 
 
Proposition 2. 
(i) Consider the preventive scenario, and let there be a unique PR  with MRL P << . Then 

a) under CARA, 0/ >∂∂ λPR  and 0/ <∂∂ ARARP ; 
b) under CRRA, 0/ >∂∂ λPR , and 0/ <∂∂ RRARP . 

(ii) Consider the curative scenario, and let there be a unique CR  with HRM C << . Then 
a) under CARA, 0/ =∂∂ λCR , and 0/ =∂∂ ARARC ; 
b) under CRRA, 0/ >∂∂ λCR , and 0/ <∂∂ RRARC  for small RRA, whereas 

0/ >∂∂ RRARC  for large RRA. 
Proof: 
See Appendix. 
                                                                                                                                                         
CRRA valuation functions in the context of prospect theory, Booij et al. (2010) report only a single study where 
RRA is estimated larger than 1. 
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4. Discussion 
 
Several simplifying assumptions of our model deserve attention. First, the risky action in 

our model has only two possible outcomes. As soon as there are more outcomes, the patients’ 
probability weighting function plays a role in the optimal reference point. Second, we have 
considered the same valuation function for gains and for losses. However, literature which 
estimates the valuation function using the power function (CRRA) often finds the valuation 
function to be closer to linearity in the loss part than in the gains part (for a recent overview 
see Booij et al., 2010). Still, the differences in the estimated powers are small, so that the 
effect on our results is limited. Third, we have assumed that patients value healthcare 
decisions along a single dimension. Yet, patients may consider several dimensions, such as 
health outcome, monetary cost, or unpleasantness of the treatment. Separate framing may then 
take place for each dimension, where framing may be easier for dimensions that are more 
salient (Rothman et al., 2006). Using the techniques of our analysis, it is possible to extend 
the model along these lines. Fourth, prospect theory is based on observed decisions over 
lotteries with monetary outcomes. Yet, prospect-theoretic preferences may have a specific 
form for healthcare decisions, because of the large stakes involved (Attema et al., 2012), and 
because outcomes are obtained in the distant future (Van der Pol and Ruggeri, 2008). Further 
empirical research is needed here to guide plausible estimates of patients’ prospect-theoretic 
preferences. Fifth, we have assumed that the physician can freely set the patient’s reference 
point, even if it deviates considerably from the patient’s expectations. In Kőszegi and Rabin’s 
(2006) influential theory of reference-dependent preferences, however, a decision maker’s 
reference point is fully determined by his or her expectations. For a physician inducing a safe 
treatment, this does not pose a problem, as the optimal reference point coincides with the 
outcome expected by the patient. A physician inducing a risky treatment, however, should set 
the reference point equal to the best possible outcome, where this outcome deviates from the 
patient’s expectations. The question arises then whether the physician can set a reference 
point remote from the patient’s expectations. Solving this issue requires setting up an 
experiment that can test the framing-based approach to reference points against the 
expectations-based approach. Our theory may guide such an experiment, as we make 
predictions for the framing-based approach. 

This brings us to the relevance of the present theory for empirically testing the SID 
hypothesis. While the vast empirical literature on SID shows that physicians respond to 
financial incentives (see e.g. recently Van Dijk et al., 2013), doubt remains as to whether this 
proves the existence of SID: simply, we cannot hope to observe what patients with the same 
information as the physicians would do. The theory in this paper has the benefit of predicting 
how persuasive SID could take place. Yet, this still does not mean that empirically, one is able 
to catch physicians in the act of inducing demand. As an alternative, one may offer 
hypothetical and simplified treatment decisions to participants in an experiment, frame these 
in different manners, and look whether participants respond in the manner we predict, also as 
a function of their characteristics. This may then at least provide indication of physicians’ 
ability to induce demand – if not evidence that they actually induce demand. 
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Appendix 
 
Using the psychic valuation function in (2), we can see that as a function of the relation 
between R and the outcomes, the expression for α can take on four possible forms: 
 

( )
)()(
)()(

RLvRMv
RMvRHvLR

−−−
−−−

=≤α  (3) 

( )
)()(
)()(

LRvRMv
RMvRHvMRL
−+−
−−−

=≤<
λ

α  (4) 

( )
)()(
)()(

MRvLRv
MRvRHvHRM

−−−
−+−

=≤<
λλ
λα  (5) 

( )
)()(
)()(

MRvLRv
HRvMRvHR

−−−
−−−

=>α  (6) 

 
 
Proof of Proposition 1. 
Step 1. Let us first compare all the cases where R is equal to exactly one of the values L, M, 
H:  
 

( )
)(

)()(
LMv

LMvLHvLR
−

−−−
==α  (7) 

( )
)(
)(

LMv
MHvMR
−
−

==
λ

α  (8) 

( )
)()(

)(
MHvLHv

MHvHR
−−−

−
==α  (9) 

 
It is clear from (7)-(9) that for 1=λ , given diminishing sensitivity, 

)()()( MHvLMvLHv −<−−−  and )()()( LMvMHvLHv −<−−− , so that 
( ) ( ) ( )HRMRLR =<=<= ααα . The same result is obtained as long as 

1*
)()(

)(
<=

−−−
−

< λλ
LMvLHv

MHv  (note  that the LHS of λ* is larger than 1 as soon as there is 

diminishing sensitivity). If 
)()(

)(*
LMvLHv

MHv
−−−

−
>λ ,  then ( ) ( )LRMR =<= αα  

( )HR =<α . 
We next check how expressions (3)-(6) change as a function of R, where we pay particular 

attention to the cases where R lies close to one of the values L, M, H. In Step 2, we start with 
the cases LR ≤  and HR > . 
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Step 2. 

( )
=

∂
≤∂

R
LRα

[ ][ ]
[ ]

[ ][ ]
[ ]2

2

)()(
)(')(')()(

)()(
)()()(')('

RLvRMv
RLvRMvRMvRHv

RLvRMv
RLvRMvRMvRHv

−−−
−−−−−−

+
−−−

−−−−−−
−

 (10) 

 
It follows that the sign of (10) depends on the sign of  
 

)()(
)(')('

)()(
)(')('

RLvRMv
RLvRMv

RMvRHv
RMvRHv

−−−
−−−

−
−−−
−−−

 (11) 

 
Furthermore: 
 

( )
[ ][ ]
[ ][ ]

[ ]2)()(
)(')(')()(
)()()´()('

MRvLRv
MRvLRvHRvMRv
MRvLRvHRvMRv

R
HR

−−−
−−−−−−

−−−−−−−

=
∂
>∂α  (12) 

 
It follows that the sign of (12) depends on the sign of 
 

)()(
)(')('

)()(
)´()´(

MRvLRv
LRvMRv

HRvMRv
MRvHRv

−−−
−−−

+
−−−
−−−

−  (13) 

 
In (11) and (13), each of the terms have a direct relation to the ARA. To see why, note that the 
ARA can be seen as the slope at a particular point of the function ( ))(' 1 fXf −  that expresses 
marginal valuation as a function of the valuation itself (rather than as a function of the 
outcome). Instead, each of the four terms in (11) and (13) measure the slope of the secant 
through two distinct points on this same function, and therefore measure average ARA 
between these two points. It immediately follows that if it is everywhere the case that ARA 
increases, decreases or remains constant for higher outcomes (and therefore also for higher 
utility), then average ARA as reflected in these four terms will also increase, decrease or 
remain constant. We therefore obtain the following cases: 

(i) With CARA, ( ) ( ) 0=
∂
>∂

=
∂
≤∂

R
HR

R
LR αα . 

(ii) With DARA, ( ) 0<
∂
≤∂

R
LRα  and ( ) 0<

∂
>∂

R
HRα . 

(iii) With IARA, ( ) 0>
∂
≤∂

R
LRα  and ( ) 0>

∂
>∂

R
HRα .  

 
We further have: 

 

( )
[ ][ ]
[ ][ ]

[ ]2)()(
)(')(')()(
)()()(')('

LRvRMv
LRvRMvRMvRHv
LRvRMvRMvRHv

R
MRL

−+−
−+−−−−−

−−+−−+−−

=
∂

≤<∂
λ

λ
λ

α  (14) 
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( )
[ ][ ]
[ ][ ]

[ ]2)()(
)(')(')()(
)()()(')('

MRvLRv
MRvLRvRHvMRv
MRvLRvRHvMRv

R
HRM

−−−
−−−−+−

−−−−−−−

=
∂

≤<∂
λλ

λλλ
λλλ

α  (15) 

 
In the following steps, we use (14) and (15) to derive further results about the shape of α as a 
function of R. 
Step 3. Evaluating (10) and (14) around LR = , we obtain: 
 

( )
=

∂
≤∂

=LRR
LRα

[ ][ ]
[ ][ ]

[ ]2)(
)0(')(')()(

)()(')('

LMv
vLMvLMvLHv

LMvLMvLHv

−
−−−−−

+−−−−−

 (16) 

and 
 

( )
[ ][ ]

[ ][ ]
[ ]2)()(

)0(')(')()(
)()(')('

LRvRMv
vLMvLMvLHv

LMvLMvLHv

R
MRL

LR −+−
−−−−−

+−−−−−

=
∂

≤<∂

→ λ
λα  (17) 

 
It follows that 
 

( ) ( )
LRLR R

MRL
R

LR

→= ∂
≤<∂

>
∂
≤∂ αα . (18) 

 
The following therefore applies: 

(i) With CARA, by (18) and Step 2(i), ( ) ( )
LRLR R

LR
R

MRL

=→ ∂
≤∂

=<
∂

≤<∂ αα 0 . 

(ii) With DARA, by (18) and Step 2(ii), ( ) ( )
LRLR R

MRL
R

LR

→= ∂
≤<∂

>
∂
≤∂

>
αα0 . 

(iii) With IARA, by (18) and Step 2(iii), ( ) ( )
LRLR R

MRL
R

LR

→= ∂
≤<∂

>
∂
≤∂ αα , where 

( ) 0>
∂
≤∂

=LRR
LRα . By (17), ( ) 0>

∂
≤<∂

→LRR
MRLα  when Lλλ < , and 

( ) 0<
∂

≤<∂

→LRR
MRLα  when Lλλ > , with 

 

[ ] )0(')()(
)(')()(')(

vLMvLHv
LHvLMvLMvLHv

L −−−
−−−−−

=λ , (19) 

 
where it can be checked that for IARA, 1>Lλ . 
 
Step 4. Evaluating (14) and (15) around MR = , we obtain: 
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( ) [ ] [ ]
[ ]2)(

)0(')(')()()(')0('
LMv

vLMvMHvLMvMHvv
R

MRL

MR −
−−−−−−−

=
∂

≤<∂

= λ
λλα  (20) 

 
and 
 

( ) [ ] [ ]
[ ]2)(

)0(')(')()()(')0('
LMv

vLMvMHvLMvMHvv
R

HRM

MR −
−−−−−−−

=
∂

≤<∂

→ λ
λλλλα  (21) 

 
Given diminishing sensitivity, it follows by (21) that it is always the case that 

( ) 0>
∂

≤<∂

→MR

i

R
HRMα . (20) and (21) imply that  ( )

>
∂

≤<∂

→MRR
HRMα  

( )
MRR

MRL

=∂
≤<∂α .  Furthermore, by (20), ( ) 0>

∂
≤<∂

=MRR
MRLα  if 

[ ] )(/)()(')()(')0(' LMvLMvMHvMHvLMvv −−−+−−> . For 

[ ] )(/)()(')()(')0(' LMvLMvMHvMHvLMvv −−−+−−< , ( ) 0>
∂

≤<∂

=MRR
MRLα  if 

Mλλ < , and ( ) 0<
∂

≤<∂

=MRR
MRLα  if Mλλ > , with 

 

[ ] )()(')0(')()('
)()0('

LMvMHvvMHvLMv
MHvv

M −−−−−−
−

=λ ,  (22) 

 
where it can be checked that it is always valid that 1>Mλ .  
 
Step 5. Evaluating (12) and (15) around HR = , we obtain: 
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It follows from (23) and (24) that 
 

( ) ( )
HRHR R

HRM
R

HR
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<
∂
>∂ αα .  (25) 

 
The following now applies: 

(i) For CARA, by (25) and Step 2(i), ( ) ( )
HRHR R

HRM
R

HR

=→ ∂
≤<∂

<=
∂
>∂ αα 0 . 
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(ii) For DARA, by (25) and Step 2(ii), ( ) ( )
HRHR R

HRM
R

HR

=→ ∂
≤<∂

<
∂
>∂ αα  and 

( ) 0<
∂
>∂

R
HRα . In this case, ( ) 0<

∂
≤<∂

=HRR
HRMα iff Hλλ < , and ( ) 0>

∂
≤<∂

=HRR
HRMα  

iff Hλλ > , with  
 

[ ]
{ })()(')()('

)()()0('
MHvLHvLHvMHv

MHvLHvv
H −−−−−

−−−
=λ , (26) 

 
where it can be checked that for DARA, 1>Hλ . 

(iii) For IARA, by (25) and Step 2(iii), ( ) ( )
HRHR R

HRM
R

HR

=→ ∂
≤<∂

<
∂
>∂

<
αα0 . 

Step 6. In this final step, we put all the results of the previous steps together. 
(i) For CARA, by Step 2, )(Rα  is flat in R both for RL ≤  and HR ≥ , where by diminishing 
sensitivity )(Rα  is higher for RH ≥ . By Steps 4 and 5, )(Rα  increases in R just above M 
and just below H, so that by single-peakedness, )(Rα  increases everywhere in R for 

HRM << . By Step 3, )(Rα  decreases in R just above L. By Step 4, if >)0('v  
[ ] )(/)()(')()(' LMvLMvMHvMHvLMv −−−+−− , )(Rα  decreases in R just below M.  
By single-peakedness it follows that )(Rα  decreases in R for MRL << . Yet, by (8) in Step 
1, as loss aversion approaches infinity, )(Mα  approaches zero, which is the lowest value that 

)(Rα  can reach. If <)0('v  [ ] )(/)()(')()(' LMvLMvMHvMHvLMv −−−+−− , )(Rα  
decreases in R just below M if Mλλ < , and )(Rα  increases in R just below M if Mλλ > . By 
single-peakedness, in the former case, )(Rα  has a local minimum for MR = ; in the latter 
case, )(Rα  reaches a local minimum for MRL << . It follows that RC is any value of at least 
H. RP lies strictly between L and M for sufficiently small loss aversion, and lies precisely at M 
for sufficiently high loss aversion. 
(ii) For DARA, by Step 2, )(Rα  is decreasing in R both for RL ≤  and HR ≥ , where by 
diminishing sensitivity )(Rα  is everywhere higher for RH ≥ . For MRL << , by Steps 3 
and 4, the analysis is analogous to CARA. By Step 4, )(Rα  increases in R just above M. By 
Step 5, )(Rα  decreases in R just below H if Hλλ < , and increases in R just below H if 

Hλλ > ; by single-peakedness, )(Rα  reaches a local maximum for HRM <<  in the former 
case, and has a local maximum for HR = in the latter case. It follows that RC lies strictly 
between M and H for sufficiently small loss aversion, and precisely at H for sufficiently high 
loss aversion. RP lies strictly between L and M for sufficiently small loss aversion, and 
precisely at M for sufficiently high loss aversion. 
(ii) For IARA, by Step 2, )(Rα  is increasing in R both for RL ≤  and HR ≥ , where by 
diminishing sensitivity )(Rα  is everywhere higher for HR ≥ . By Steps 4 and 5, )(Rα  
increases in R just above M and just below H, so that by single-peakedness, )(Rα  increases 
everywhere in R for HRM << . For MRL << , by Step 2, just above L, )(Rα  increases in 
R for Lλλ < , and decreases in R for Lλλ > . The analysis for R just above M is identical to the 
one for IARA. By single-peakedness, for sufficiently low loss aversion, )(Rα  increases 
everywhere in R for MRL << ; for sufficiently high loss aversion, it decreases everywhere; 
for intermediate loss aversion, however, )(Rα  may either have a local minimum, or a local 
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maximum strictly between L and M. As the patient can never be more risk tolerant for 
MRL <<  than for HR ≥ , it follows that maxRRC = . For sufficiently small loss aversion, 

minRRP = ; it is also the case that minRRP =  if loss aversion is sufficiently high for there to be 
a local minimum at MR = , but if it is the case that )( minRα  < )(Mα . For sufficiently high 
loss aversion, MRP = ;  it is also the case that MRP = if loss aversion is high enough for 
there to be a peak at M, and if )( minRα  is higher than )(Mα . For loss aversion high enough to 
make )(Rα  decreasing in R just above L, but low enough to make )(Rα  increasing in R just 
below M, RP lies strictly between L and M if )( minRα  is sufficiently high, but continues to 
equal Rmin otherwise. 
 
 
Proof of Proposition 2. 
Step 1. Consider the generic CARA valuation function [ ]XARAXv *exp1)( −−= . Then it is 

easily checked, by putting the RHS of (14) equal to zero, that 
λ
λ

2
1λn1 +

−=
ARA

LR P , so that  

0/ >∂∂ λPR , and for 1>λ  , we have 0/ <∂∂ ARARP . 
Step 2. The sign of λ∂∂ /PR  can be found by taking the total differential of 

( ) 0=
∂

≤<∂

= PRRR
MRLα  with respect to RP and λ, and equating to zero, or 

 
( ) ( ) 0

2

2

2

=
∂∂

≤<∂
+

∂
≤<∂

==

λ
λ

αα d
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MRLdR
R

MRL
PP RR

P
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 (27) 

 
In the same way, the sign of RRARP ∂∂ /  can be found by taking the total differential of 

( ) 0=
∂

≤<∂

= PRRR
MRLα  with respect to RP and RRA, and equating to zero, or 

 
( ) ( ) 0

2

2

2

=
∂∂

≤<∂
+

∂
≤<∂

==

dRRA
RRAR

MRLdR
R

MRL
PP RR

P
RR

αα  (28) 

 

Looking at (14), one obtains ( ) 0=
∂

≤<∂

= PRRR
MRLα  when the numerator of the RHS of (14) 

equals zero, a condition which under the generic CRRA valuation function RRAXXv −= 1)(  can 
be written as 
 

{ } 0)()())(1( =−−−− −− PRRAPRRAP XLHLRRHRRA λ  (29) 
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Clearly, the condition 0=PX  implicitly defines RP. For RRA approaching 0, XP approaches 

11 −
−
−

+
−
−−

LH
LM

LH
MHλ , which is smaller than zero given that 1>λ . It follows that for RRA 
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approaching 0, in the range of RP from L to M, RP should be put as large as possible to 
achieve a minimum α, so that RP approaches M. For RRA approaching 1, XP approaches 

0)1( 1 >
−
−

+







−
−

= −

LH
MH

RM
LRX P

P
P λ . It follows that for RRA approaching 1, in the range of 

RP from L to M, RP should be put as small as possible to achieve a minimum α, so that RP 
approaches L. This suggests that 0/ <∂∂ RRAR P  for RRA from 0 to 1, as we will show. 
Furthermore, for RP such that 0=PX , as we increase λ ,  XP becomes negative, suggesting 
that RP should be increased, as will also be shown. 

Given that the denominator of (14) is positive, and given that PRR =  when the numerator 

of (14) is zero iff 0=PX , we have ( )
P

P

RR R
X

R
MRL

P ∂
∂

=
∂

≤<∂

=

sgnsgn 2

2α  (which is larger than 

zero by the second-order condition, as can indeed be checked). By the same reasoning, we 

have ( )
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∂
∂
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P
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2

. By (27), it follows that 
λλ ∂

∂
−=

∂
∂ PP XR sgnsgn . 

Given that 0/ <∂∂ λPX , it follows that 0/ >∂∂ λPR . By the same reasoning, 
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As PP RHRM −<− , the second term of the RHS of (30) is positive. Furthermore, for 

2/)( MLRP +> , the first term is positive as well, so that 0/ >∂∂ RRAX P , meaning that 
0/ <∂∂ RRAR P . This includes the case where RRA approaching 0, in which case by the above 

RP approaches M, so that 2/)( MLRP +> , 0/ >∂∂ RRAX P . Furthermore, taking the 
derivative of the RHS of (30) with respect to RRA, we obtain: 
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Given that 0/ >∂∂ RRAX P  for the smallest possible RRA, and given that RRAX P ∂∂ /  is 
everywhere increasing in RRA, it follows that it is everywhere the case that 0/ >∂∂ RRAX P , 
meaning that 0/ <∂∂ RRAR P . Indeed, for RRA approaching 1, as already shown above, RP 
approaches L. 
Step 3. By Proposition 1(ii)(c), for any CARA, any CR  such that +∞≤≤ CRH  is optimal. It 
follows that CR  does not change a function of λ or RRA. 
Step 4. The sign of λ∂∂ /CR  can be found by taking the total differential of 

( ) 0=
∂

≤<∂

= CRRR
HRMα  with respect to RP and λ, and equating to zero, or 
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 In the same way, the sign of RRARC ∂∂ /  can be found by taking the total differential of 

( ) 0=
∂

≤<∂

= CRRR
HRMα  with respect to RP and RRA, and equating to zero, or 
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Looking at (15), one obtains ( ) 0=
∂

≤<∂

= CRRR
HRMα  when the numerator of the RHS of 

(15) equals zero, which under the generic CRRA valuation function RRAXXv −= 1)(  can be 
written as 
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Clearly, the condition 0=CX  implicitly defines RC. For RRA approaching 0, XC approaches 

1+
−
−

−
−
−

MH
LH

MH
LMλ , which is larger than zero. It follows that in the range of RC from M to 

H, RC should be put as large as possible to achieve a maximum, so that RC approaches H. For 
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follows that RC once more approaches H. This suggests that for small RRA we have 
0/ <∂∂ RRARC , whereas for large RRA we have 0/ >∂∂ RRARC , which we now show. 

Furthermore, for RC such that 0=CX , as we increase λ , XC becomes positive, suggesting 
that RC should be increased, as will also be shown. 

Given that the denominator of (15) is positive, and given that (33) is valid when 0=CX , 

we have ( )
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2α  (which is smaller than zero by the second-

order condition, as can indeed be checked). In the same way, 
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. By (31), it follows that 
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∂ CC XR sgnsgn . Given that 

0/ >∂∂ λCX , it follows that 0/ >∂∂ λCR . Furthermore, ( )
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As MRLR CC −>− , the second term of the RHS of (34) is positive. Furthermore, for 

2/)( HLRC +> , the first term of the RHS of (34) is negative, so that RRARC ∂∂ /  and 
RRAX C ∂∂ /  may be ambiguous. Indeed, for RRA approaching 0, as already shown, RC 

approaches H, in which case it can be checked that RRAX C ∂∂ /  is negative. Also, for RRA 
approaching 1, RC again approaches H, in which case it can be checked that RRAX C ∂∂ /  is 
positive. 
QED 
 
 
 


