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Abstract

We carry out a pseudo out-of-sample density forecasting study for U.S. GDP with

an autoregressive benchmark and alternatives to the benchmark than include both oil

prices and stochastic volatility. The alternatives to the benchmark produce superior

density forecasts. This comparative density performance appears to be driven more

by stochastic volatility than by oil prices. We use our density forecasts to compute

a recession risk indicator around the Great Recession. The alternative model that

includes the real price of oil generates the earliest strong signal of a recession; but it

also shows increased recession risk after the Great Recession.
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1 Introduction

In this paper we carry out a pseudo out-of-sample (OOS) density forecasting exercise to

examine the predictive content of oil prices for U.S. real GDP growth. Our point of departure

is the seminal paper of Hamilton (1983), who shows that large crude oil price increases

systematically Granger-caused U.S. recessions from the early post-World War II period to

the beginning of the 1980s. Important work in the subsequent literature on oil prices and

output includes, among others, Hamilton (1996), Hooker (1996), Bernanke et al. (1997),

Barsky and Kilian (2002), Hamilton (2003), Barsky and Kilian (2004), Hamilton and Herrera

(2004), Kilian (2008), Edelstein and Kilian (2009), Hamilton (2009), Kilian (2009), Kilian

(2010), and Baumeister and Peersman (2013). These papers primarily focus on the in-sample

predictive power of oil prices for real output.

A recent branch of the literature extends the study of the oil price-GDP relationship to an

OOS framework. Key papers include Bachmeier et al. (2008), Kilian and Vigfusson (2011),

Alquist et al. (2013), Kilian and Vigfusson (2013), and Ravazzolo and Rothman (2013).1

The OOS experiments in these papers evaluate point forecasts, with and without oil prices,

of output growth.

Complete probability distributions over outcomes provide information helpful for making

economic decisions; see, for example, Tay and Wallis (2000), Garratt et al. (2003), Gneiting

(2011), and Clark (2011). In particular, density forecasts provide a characterization of

forecast uncertainty. Such information about forecast uncertainty is particularly useful to

central banks. For example, as part of the U.K.’s shift to an inflation-targeting regime, the

Bank of England began publishing its inflation forecast as a probability distribution in the

form of a fan chart in 1996; see Britton et al. (1998). Similarly, Alessi et al. (2014) explain

how the Federal Reserve Bank of New York produced measures of macroeconomic risk during

the Global Financial Crisis via density forecasts. Since the pioneering work of Diebold et al.

(1998), there has been increasing interest in evaluating density forecasts of economic and

financial data. In this paper we evaluate density forecasts, with and without oil prices, of

GDP. We carry out this evaluation using statistical criteria as well as an integral-based risk

measure employed by Kilian and Manganelli (2008), which they show is quite general and

includes as special cases many measures of risk developed in the economic risk management

literature. We use this to compute a risk of recession measure around the Great Recession.

Building upon the burgeoning literature documenting significant evidence of time-varying

1Kilian and Vigfusson (2011) do both in-sample and OOS analysis on this question.



volatility in macroeconomic times series of many advanced economies, Clark and Ravazzolo

(2015) study the OOS forecasting implications of incorporating models of such volatility in

autoregressive (AR) and vector autoregressive models. Their results favor use of a stochastic

volatility (SV) models to capture time-varying volatility, especially with respect to density

forecasting. Accordingly, we condition the analysis in this paper by adding an SV component

to our forecasting models with and without oil prices.

Our main results are as follows. The AR benchmark without SV dominates in point

forecasting. But the alternatives to the benchmark that include both oil prices and an SV

component often produce superior density forecasts. Two models that generate particularly

accurate density forecasts relative to this benchmark are those that include the real price of

oil and the “net oil-price increase” measure of Hamilton (1996). It appears that SV plays

a bigger role than oil prices in this comparative density forecast performance. The relative

performance of these alternative density forecasts generally improves between the 1990-1991

recession and the Great Recession, and after the Great Recession. Further, our model which

includes the real price of crude oil and SV produces, at the shorter forecast horizon, the

earliest strong signal of recession risk during the Great Recession.

In Section 2 we present our forecasting models and the OOS evaluation criteria. The

OOS results are presented in Section 3 and Section 4 concludes.

2 Forecasting GDP with Oil Prices

We generate and evaluate forecasts using both ex-post revised and real-time data. We use

data for U.S. real GDP and the consumer price index (CPI) downloaded from the Philadel-

phia Federal Reserve Bank’s real-time database. From past issues of the U.S. Energy In-

formation Agency’s Petroleum Marketing Monthly (PMM ) available in electronic form, we

constructed vintages of real-time data for the imported refiner’s acquisition cost of crude

oil (RAC); we use the value of the imported RAC in the third month of the quarter as the

quarterly value.2

We generate h−step ahead OOS point and density forecasts, for h = 1 and h = 5, of

quarterly U.S. real GDP growth rates. Our h = 1 forecast is a “nowcast” of the quarter

t+ 1 real GDP growth rate using real-time data vintage t+ 1. The real-time OOS forecasts

are evaluated with the actual data realization of real GDP given by the last vintage release

2The date of the first issue of the PMM available in this form is 1998M1. Issues of the PMM include
RAC data for at most three years, so that we backcasted by approximating pre-1995M1 data with ex-post
revised data; a similar approach is used by Baumeister and Kilian (2011).
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available at the time our computational work was carried out, i.e., 2013Q1. For all the

models we use direct forecasting for the 5−step ahead forecasts, such that we do not employ

multi-equation systems to produce these forecasts.

2.1 Predictive Regressions

A standard benchmark to forecast real GDP growth at horizon h is an autoregressive model

of order p (AR):

∆yt+h = α +

p−1∑
i=0

βi∆yt−i + νt+h, (1)

where ∆yt = logGDPt − logGDPt−1, GDPt = real GDP for observation t, and νt+h ∼
WN (0, σ2). In the oil and the macroeconomy literature, the lag order p is often set equal

to 4 with quarterly data; see, for example, Hamilton (2003). We follow this practice. To

facilitate our density forecasts, we also assume νt+h ∼ N(0, σ2). Bayesian inference is applied

with weak informative conjugate priors to restrict regression coefficients to zero. We use a

normal-inverse-gamma prior with means for α and the βi equal to zero and variances equal

to 100. For the variance σ2 we use an inverse-gamma with degrees of freedom equal to

the number of regressors including the intercept. The predictive densities are Student−t
distributed and the means (which are the same as the medians in this case) of the densities

are used as point forecasts; see, for example, Koop (2003) for details.3

We also use an autoregressive benchmark with stochastic volatility (AR-SV):

∆yt+h = α +

p−1∑
i=0

βi∆yt−i + νt+h, (2)

where νt+h = λ0.5
t+hεt+h, εt+h ∼ N(0,1), log(λt+h) = log(λt+h−1) + νt+h, νt+h ∼ N(0, σ2

t+h).

Clark and Ravazzolo (2015) report that this random walk process for log volatility generates

superior forecasts for U.S. GDP relative to a stationary AR(1) specification; in particular,

see Table II of their paper. The random walk specification has the benefit of eliminating the

need to estimate two parameters in the latent equation and allows us to avoid possibly large

associated estimation errors.

In our alternatives to the benchmarks we add an oil price measure and also allow for

3The degrees of freedom of these Student−t distributions equals the sample size of the vintage used to
produce the forecast plus the prior degrees of freedom.
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random walk log volatility:

∆yt+h = α +
3∑
i=0

βi∆yt−i +
3∑
i=0

δioilt−i + νt+h, (3)

where νt+h follows the specification in (2) and oilt is the oil-price measure at time t. We

refer to models given by (3) as autoregressive distributed lag models with stochastic volatility

(ADL-SV). Point forecasts for the AR-SV and ADL-SV models are equal to the medians of

the associated density forecasts. The oil-price measures we use are listed in Table 1. They

are based on Kilian and Vigfusson (2013).

The models are estimated and forecasts are produced via a sequence of recursive windows.

The first recursive window in-sample period is 1975Q1-1989Q4. For h = 1 and h = 5, the last

in-sample periods are 1975Q1-2012Q3 and 1975Q1-2011Q3. The 1975Q1 initial observation

is dictated by the lags we allow for and the availability of the RAC data.

A note is in order about how we estimate our models with real-time data. As explained

by Clark and McCracken (2009), difficulties arise when comparing real-time OOS forecasts

due to different degrees of data revision across forecast origins. One solution is to use Koenig

et al.’s (2003) “strategy 1” for estimation of the predictive regressions: first-release data are

used for the left-side variables; at each point in the sample, the latest available data at that

date are used for right-side variables. Under this estimation approach, predictability tests

developed for the case of non-revised data can be applied; see Clark and McCracken (2011).

As a result, we implement Koenig et al.’s (2003) strategy 1 for estimation of our models.

2.2 Forecast Evaluation

The accuracy of point forecasts is measured with the mean squared prediction error (MSPE)

metric. The density forecasts are evaluated via the average log score and average continu-

ous ranked probability score (CRPS). The log score is considered the most comprehensive

measure of density forecast accuracy. But the CRPS is thought to have advantages over

the log score in that it is less sensitive to outliers and more sensitive to predictions that are

close to but not equal to the outcome. Useful references on these density forecast measures

include Mitchell and Hall (2005), Gneiting and Raftery (2007), Geweke and Amisano (2010),

Gneiting and Ranjan (2011), and Ravazzolo and Vahey (2014).

The average log score is negative, and a higher average log score for the alternative model

indicates that it performs better than the benchmark. The average CRPS is positive, and

a lower average CRPS for the alternative model indicates that it performs better than the
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benchmark. In our tables we report MSPE, average log score, and average CRPS ratios

relative to our benchmarks. A ratio less than 1 indicates superior forecast performance for

the alternative to the benchmark, i.e., the model which includes oil prices. To assess whether

differences in forecast accuracy are significant, we apply Diebold and Mariano (1995) t−tests;

the associated t−statistics are computed with serial correlation-robust standard errors.

3 Out-of-Sample Results

We organize our discussion as follows. First we focus on MSPEs of the point forecasts.

Then we analyze the log scores and CRPS values of our density forecasts. The OOS MSPE,

average log score, and average CRPS results are reported in Tables 2 and 3. We conclude by

using our density forecasts to compute a GDP growth rate variant of Kilian and Manganelli’s

(2008) risk of a negative gap measure around the most recent recession.

3.1 MSPE Comparisons

At forecast horizon h = 1, the point forecasts from the ADL-SV alternatives all perform worse

relative to the AR(4) benchmark using both ex-post revised and real-time data. Against the

AR-SV benchmark at this forecast step, the relative performance of the ADL-SV alternatives

improves considerably, since the AR-SV MSPEs are a good deal higher than the AR(4)

MSPEs. Using ex-post revised data the ADL-SV MSPEs are lower than the AR-SV MSPE

in roughly half of the cases, and using real-time data they are lower in all but one case.

None of these MSPE reductions against the AR-SV benchmark, however, are significant at

conventional levels.

At forecast horizon h = 5, the point forecasts from the ADL-SV alternatives perform

much better against the AR(4) benchmark relative to the h = 1 case. Using ex-post revised

data the ADL-SV MSPEs are lower than the AR MSPE in roughly three-quarters of the

cases, and using real-time data they are lower in all but one case. Only a few of these

MSPE reductions against the AR benchmark are significant. The ADL-SV versus AR-SV

MSPE results are quite similar, with the exception that the p−value for the equal MSPE

null hypothesis is below 0.10 in five cases.

3.2 Log Score and CRPS Comparisons

At forecast horizon h = 1, the ADL-SV average log score and average CRPS ratios against

the AR(4) benchmark are all less than 1, using both ex-post revised and real-time data.
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In all but three cases, the equal average log score null hypothesis is rejected at the 10%

significance level in favor of the ADL-SV models. In only one case is the p−value less than

0.10 for the null that the ADL-SV and AR(4) average CRPSs are equal. Against the AR-

SV benchmark, the density forecast improvement obtained with the ADL-SV alternatives

is considerably weaker. The ADL-SV average log score is higher than that of the AR-SV

benchmark in twelve out of eighteen cases, and the ADL-SV average CRPS is higher than

the AR-SV CRPS in roughly half of the cases. In only two out of eighteen cases is the

ADL-SV average log score significantly higher than the AR-SV average log score, and in

only three out of eighteen cases is the ADL-SV average CRPS significantly lower than the

AR-SV average CRPS.

At forecast horizon h = 5, the average log score and average CRPS comparisons against

the AR(4) benchmark are roughly the reverse of what occurs at h = 1. More specifically,

at h = 5 there is much stronger evidence of density forecast improvement over the AR(4)

benchmark with the ADL-SV alternatives via the average CRPS metric, while at h = 1

the ADL-SV density forecasts perform much better via the average log score criterion. In

seventeen out of eighteen cases, the average CRPS ratios are less than 1. That said, at

h = 5 significant ADL-SV average CRPS reductions over the AR(4) benchmark are more

common with use of ex-post revised data; p−values for tests of the equal average CRPS null

below 0.10 in seven out of nine cases versus three out of nine cases with use of real-time

data. With the AR(4) model as the benchmark, in no case is the equal average log score

null rejected at the 10% significance level at h = 5. In only three out of eighteen cases is the

ADL-SV average log score significantly higher than the AR-SV average log score, and the

ADL-SV average CRPS is significantly lower than the AR-SV average CRPS in only four

out of eighteen cases.

To study the performance of the density forecasts across the OOS period, in Figures 1

and 2 we track the cumulative sums of the log score and CRPS for several models relative to

the log score and CRPS of the AR(4) model. The cumulative sum of the relative log score

at observation t is given by:

cusumls
t =

t∑
N+1

log Sat − log Sbt , t = N + 1, ..., T , (4)

N = 1989Q4, T = 2012Q4, S = score, a = alternative model, and b = AR(4) benchmark

model. Similarly, the cumulative sum of the relative CRPS at observation t is:
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cusumcrps
t =

t∑
N+1

CRPSbt − CRPSat , t = N + 1, ..., T . (5)

Increases in a cusumt measure indicate improvement in the alternative model’s density

forecast relative to the AR(4) benchmark. Likewise, if cusumls
t > 0 (cusumcrps

t > 0), then

the average log score (average CRPS) for the alternative is higher (lower) than that of the

AR(4) model when calculated over observations N + 1, ..., t. We consider the following three

alternatives to the AR(4) model in these graphs: the AR-SV, ADL-SVrrac, and ADL-SVnet+

models. These comparisons are particularly interesting since they allow us, respectively, to

focus on: (i) the all else equal effect of adding a stochastic volatility component to the AR(4)

model; (ii) the oil-price measure that leads to generally strong density forecasts via both the

average log score and average CRPS; and (iii) the well-known oil-price measure introduced

in Hamilton (1996).

Our cusumt results are presented in Figures 1 and 2, which show that the relative per-

formance of the alternatives to the AR(4) benchmark are qualitatively similar across the

cusumls
t and cusumcrps

t graphs for both ex-post revised and real-time data. At h = 1, the

AR(4) benchmark dominates through the 1990-1991 recession. But after that downturn,

the alternatives dominate and steadily improve, up to the beginning of the Great Recession.

During the Great Recession, as in the 1990-1991 recession, the AR(4) model improves rela-

tive to its alternatives. The alternatives dominate after the Great Recession. This pattern

shows that the h = 1 average log score and CRPS results in Table 2 are driven primarily by

the dominant behavior of the alternatives to the AR(4) benchmark between 1991 and 2008.

The ex-post revised and real-time cusumt results at h = 5 differ somewhat. The behavior

of the real-time h = 5 cusumt measures mirror pretty well what occurs at h = 1. In contrast,

the ex-post revised cusumls
t and cusumcrps

t graphs show a worsening of the alternatives’

relative performance beginning a few years before the 2001 recession. Also, the ex-post

revised h = 5 cusumls
t plots show a particularly pronounced improvement in the AR(4)

model’s relative density forecast performance during the Great Recession, especially against

the ADL-SVnet+ model; this improvement in the Great Recession is strong enough to push

the associated average log score ratio for this case in Table 2 above one.

3.3 Risk of Recession

In their generalization of the Taylor rule, Kilian and Manganelli (2008) define the risk of a

negative gap (NGR) as:
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NGRγ = −
∫ x

∞
(x− x)γdFx(x), γ ≥ 0, (6)

where the parameters x is the deviation of output from potential, x is the central bank’s

lower threshold for x, and γ is a measures of risk aversion. NGR measures the probability-

weighted average loss when x < x. Shifting from the output gap to the GDP growth rate,

∆yt, and setting the lower threshold for GDP growth at zero, we define the risk of recession

(RR) as:

RRγ = −
∫ 0

∞
(∆yt)

γdF∆yt(∆yt), (7)

which is the probability-weight average loss when output contracts, i.e., ∆yt < 0.

Via equation 7 under quadratic preferences, i.e, with γ = 2, we compute RR around the

Great Recession using the AR(4), AR-SV, ADL-SVrrac, and ADL-SVnet+ density forecasts

at h = 1 and h = with both ex-post revised and real-time data. Our results are shown in

Figure 3. Examination of RR under these difference density forecasts allows us to compare

the extent to which these different density forecasts signaled the arrival of this extremely

deep recession.

At h = 1 using ex-post revised data, the ADL-SVrrac density forecast delivers the earliest

strong signal of the recession. The eventual decline in RR under the AR(4) density forecast

is larger, but it is also later, peaking near the recession’s end. RR under the AR-SV and

ADL-SVnet+ forecast densities begins to decline at roughly the same point as under the ADL-

SVrrac forecast, but the decline is considerably smaller. Using real-time data, the relative

behavior of RR under the AR(4) and ADL-SVrrac density forecasts is similar during the

recession. However, the ADL-SVrrac forecast density sends a strong false signal of increased

recession risk in 2011.

At h = 5, RR declines strongly during the recession only for the ADL-SVrrac density

forecast. But this occurs when the recession is close to ending. With both ex-post revised

and real-time data, this density forecast also generates a strong false signal of increased

recession risk late in the OOS period.

4 Conclusions

Motivated by the recent out-of-sample focus in the oil and the macroeconomy literature

opened by Hamilton (1983), and by recent work which has provided increasing evidence the

time-varying volatility in macroeconomic time series is well captured by SV modeling, we
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study the density forecasts of models which include both oil prices and SV. There is a sharp

contrast between the OOS forecasting performance of the ADL-SV models relative to the

AR benchmark across point and density forecasts. The AR benchmark dominates in point

forecasting and the ADL-SV models dominate in density forecasting. The relative strength

of the ADL-SV density forecasts appears to be accounted more so by SV than by oil prices.

At the shorter forecast horizon considered, the density forecast of the ADL-SV model

that includes the real price of oil provides the strongest early signal of recession risk during

the Great Recession. However, this density forecast also generates ex-post false signals of

increased recession risk after the Great Recession.

It would be interesting to extend our analysis to a VAR-SV framework. This would

allow our risk of recession measure to depend upon more than the behavior of GDP growth.

Adding density forecasts of, for example, employment growth into this measure might better

approximate the factors that go into the decisions of the NBER’s Business Cycle Dating

Committee.
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Table 1: Definitions of Oil-Price Measures

Label Oil-Price Measure
rrac oilt = log real RAC (rt)
gr oilt = ∆rt
net+ oilt = max(0, rt − r∗), r∗ = max of rt over preceding 3 years
net− oilt = min(0, rt − r∗∗), r∗∗ = min of rt over preceding 3 years
net oilt = max(0, rt − r∗) + min(0, rt − r∗∗)
anet oilt = [max(0, rt − r∗),min(0, rt − r∗∗)]′

gap oilt = rt − r∗

large oilt = ∆rtI(|∆rt| > std(∆rt)), std = sample standard deviation
large+ oilt = ∆rtI(∆rt > std(∆rt))

Notes: This table gives the definitions of the oil-price measures used in (3). See Kilian
and Vigfusson (2013) for the motivation behind each; the net+ case is the “net oil-price
increase” measure introduced in Hamilton (1996). For the anet (short for asymmetric
net change) oil-price measure, the δi parameters in (3) are 2-element vectors, allowing
the coefficients on lags of net+ and net− to differ; with the net oil-price measure, these
lags are constrained to be equal.
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Table 2: AR Benchmark vs. ADL-SV Alternatives Out-of-Sample
Forecasting Results, 1990Q1-2012Q4

Ex-Post Revised Real-Time
MSPE Avg Log Score Avg CRPS MSPE Avg Log Score Avg CRPS

Forecast horizon h = 1
AR 0.325 -1.095 0.346 0.271 -1.082 0.325
ADL-SVrrac 1.101

(0.795)
0.816
(0.028)

0.918
(0.098)

1.141
(0.843)

0.784
(0.008)

0.932
(0.116)

ADL-SVgr 1.205
(0.910)

0.841
(0.020)

0.959
(0.283)

1.272
(0.901)

0.881
(0.200)

0.981
(0.421)

ADL-SVnet+ 1.161
(0.831)

0.823
(0.022)

0.940
(0.220)

1.249
(0.850)

0.817
(0.040)

0.966
(0.337)

ADL-SVnet− 1.167
(0.826)

0.888
(0.215)

0.944
(0.246)

1.259
(0.868)

0.794
(0.009)

0.967
(0.334)

ADL-SVnet 1.178
(0.821)

0.831
(0.032)

0.942
(0.249)

1.263
(0.863)

0.832
(0.046)

0.972
(0.365)

ADL-SVanet 1.116
(0.794)

0.799
(0.007)

0.923
(0.125)

1.167
(0.838)

0.768
(0.002)

0.938
(0.161)

ADL-SVgap 1.297
(0.937)

0.866
(0.059)

0.986
(0.463)

1.324
(0.872)

0.815
(0.031)

0.985
(0.460)

ADL-SVlarge 1.478
(0.984)

0.884
(0.118)

1.033
(0.719)

1.403
(0.912)

0.790
(0.009)

0.998
(0.500)

ADL-SVlarge+ 1.189
(0.811)

0.819
(0.023)

0.942
(0.239)

1.254
(0.870)

0.795
(0.009)

0.968
(0.338)

Forecast horizon h = 5
AR 0.467 -1.173 0.388 0.376 -1.173 0.347
ADL-SVrrac 0.949

(0.152)
0.970
0.371)

0.928
(0.021)

0.934
(0.049)

0.902
(0.113)

0.942
(0.009)

ADL-SVgr 0.981
(0.270)

0.997
(0.383)

0.945
(0.062)

0.974
(0.222)

0.964
(0.288)

0.967
(0.103)

ADL-SVnet+ 0.969
(0.182)

1.049
(0.498)

0.947
(0.065)

0.987
(0.248)

0.930
(0.240)

0.972
(0.130)

ADL-SVnet− 0.975
(0.225)

1.048
(0.508)

0.944
(0.063)

0.985
(0.240)

0.986
(0.304)

0.969
(0.113)

ADL-SVnet 0.964
(0.158)

1.053
(0.532)

0.942
(0.060)

0.980
(0.180)

0.911
(0.164)

0.964
(0.083)

ADL-SVanet 0.949
(0.135)

0.985
(0.383)

0.938
0.034)

0.969
(0.103)

0.931
(0.162)

0.961
(0.058)

ADL-SVgap 1.005
(0.411)

1.046
(0.513)

0.964
(0.153)

0.981
(0.337)

0.898
(0.131)

0.960
(0.115)

ADL-SVlarge 1.160
(0.878)

1.084
(0.609)

1.024
(0.607)

1.051
(0.661)

0.898
(0.077)

0.996
(0.300)

ADL-SVlarge+ 0.960
(0.145)

1.026
(0.472)

0.942
(0.051)

0.991
(0.319)

0.992
(0.312)

0.971
(0.130)

Notes: Table reports results for out-of-sample tests of equal predictability for models of US GDP growth at two forecasting
horizons, h = 1 and h = 5 steps ahead. The models were estimated using recursive windows of data; the first in-sample
window is 1974Q1-1989Q4. The panel labeled “Ex-Post Revised Data” reports results using the latest vintage of data for both
estimation and forecasting. The panel labeled “Real-Time” reports results using vintages of real-time data via “strategy 1” of
Koenig et al. (2003), with OOS forecast errors computed using the first available real-time vintages of data. For the AR(4)
benchmark models, MSPEs, average log scores, and average CRPS values reported; for alternatives to the benchmark, the
ratio of the alternative model’s MSPE, average log score, and average CRPS relative to those of the benchmark reported. In
parentheses under these ratios are reported p−values for the Diebold and Mariano (1995) t−test for equal forecast accuracy.
See Table 1 for the oil-price measures associated with the ADL-SV models.

15



Table 3: AR-SV Benchmark vs. ADL-SV Alternatives Out-of-Sample
Forecasting Results, 1990Q1-2012Q4

Ex-Post Revised Real-Time
MSPE Avg Log Score Avg CRPS MSPE Avg Log Score Avg CRPS

Forecast horizon h = 1
AR-SV 0.384 -0.909 0.327 0.343 -0.902 0.314
ADL-SVrrac 0.931

(0.143)
0.983
(0.294)

0.975
(0.068)

0.903
(0.153)

0.940
(0.087)

0.965
(0.032)

ADL-SVgr 1.019
(0.657)

1.013
(0.613)

1.012
(0.687)

1.007
(0.562)

1.056
(0.871)

1.022
(0.862)

ADL-SVnet+ 0.982
(0.148)

0.992
(0.326)

0.998
(0.326)

0.989
(0.149)

0.980
(0.235)

1.004
(0.709)

ADL-SVnet− 0.987
(0.128)

1.070
(0.786)

0.999
(0.405)

0.997
(0.301)

0.952
(0.139)

1.000
(0.446)

ADL-SVnet 0.996
(0.258)

1.002
(0.539)

0.999
(0.431)

1.000
(0.467)

0.997
(0.463)

1.002
(0.619)

ADL-SVanet 0.944
(0.091)

0.963
(0.088)

0.976
(0.068)

0.924
(0.116)

0.921
(0.111)

0.971
(0.096)

ADL-SVgap 1.097
(0.943)

1.044
(0.916)

1.045
(0.964)

1.048
(0.790)

0.977
(0.356)

1.016
(0.796)

ADL-SVlarge 1.250
(0.983)

1.065
(0.928)

1.086
(0.974)

1.110
(0.947)

0.947
(0.178)

1.037
(0.898)

ADL-SVlarge+ 1.006
(0.605)

0.987
(0.297)

0.993
(0.122)

0.993
(0.273)

0.953
(0.158)

1.001
(0.578)

Forecast horizon h = 5
AR-SV 0.459 -1.130 0.368 0.374 -1.055 0.338
ADL-SVrrac 0.966

(0.155)
1.008
(0.678)

0.983
(0.133)

0.934
(0.075)

0.902
(0.499)

0.943
(0.031)

ADL-SVgr 0.998
(0.370)

1.036
(0.833)

1.000
(0.463)

0.974
(0.267)

0.964
(0.784)

0.968
(0.410)

ADL-SVnet+ 0.985
(0.113)

1.089
(0.850)

0.997
(0.251)

0.987
(0.170)

0.930
(0.824)

0.970
(0.478)

ADL-SVnet− 0.992
(0.156)

1.088
(0.867)

0.997
(0.271)

0.985
(0.126)

0.986
(0.845)

0.973
(0.337)

ADL-SVnet 0.981
(0.026)

1.094
(0.846)

0.990
(0.038)

0.980
(0.055)

0.911
(0.732)

0.962
(0.014)

ADL-SVanet 0.965
(0.165)

1.023
(0.704)

0.990
(0.147)

0.969
(0.073)

0.931
(0.728)

0.962
(0.106)

ADL-SVgap 1.022
(0.656)

1.087
(0.864)

1.016
(0.792)

0.981
(0.396)

0.898
(0.480)

0.961
(0.317)

ADL-SVlarge 1.180
(0.940)

1.126
(0.957)

1.079
(0.973)

1.051
(0.678)

0.898
(0.467)

0.999
(0.816)

ADL-SVlarge+ 0.976
(0.047)

1.065
(0.814)

0.992
(0.047)

0.991
(0.387)

0.992
(0.857)

0.967
(0.197)

Notes: Notes: Table reports results for out-of-sample tests of equal predictability for models of US GDP growth at two
forecasting horizons, h = 1 and h = 5 steps ahead. The models were estimated using recursive windows of data; the first
in-sample window is 1974Q1-1989Q4. The panel labeled “Ex-Post Revised Data” reports results using the latest vintage of
data for both estimation and forecasting. The panel labeled “Real-Time” reports results using vintages of real-time data via
“strategy 1” of Koenig et al. (2003), with OOS forecast errors computed using the first available real-time vintages of data.
For the AR(4)-SV benchmark models, MSPEs, average log scores, and average CRPS values reported; for alternatives to the
benchmark, the ratio of the alternative model’s MSPE, average log score, and average CRPS relative to those of the benchmark
reported. In parentheses under these ratios are reported p−values for the Diebold and Mariano (1995) t−test for equal forecast
accuracy. See Table 1 for the oil-price measures associated with the ADL-SV models.
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