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1 Introduction

It is commonly known that models such as vector autoregressions (VARs) or dynamic stochastic

general equilibrium (DSGE) models that are effective in medium-term macroeconomic forecasting

are not as effective at short-horizon forecasting. As a result, VARs and DSGE models are often

combined with current-quarter forecasts, or nowcasts, from another source. One such source is a

judgmental forecast from a central bank or a survey of professional forecasters, motivated by evi-

dence that such forecasts often provide useful information beyond that contained in econometric

models (e.g. Ang, Bekaert, and Wei, 2007; Faust and Wright, 2013). Alternatively, relatively accu-

rate short-horizon forecasts can be obtained from bridging equations or factor models, surveyed in

Banbura, Giannone, and Reichlin (2013) and Banbura, Giannone, Modugno, and Reichlin (2013).

Compared to medium-term forecasting models, these nowcasting approaches improve near-term

forecast accuracy by better adding up information in data releases for the current quarter and

require dealing with differences in data release dates within the quarter (what is known as the

“ragged edge” of data).

A number of methods for combining (VAR or DSGE) medium-term forecasts with nowcasts

from another source have been used in the recent literature. Faust and Wright (2009) use short-

horizon forecasts from the Federal Reserve Board’s Greenbook as jumping-off points (treating

them as data, appended to the actual data) for forecasts obtained from autoregressive and factor-

augmented autoregressive models of GDP growth and inflation. Similarly, Faust and Wright (2013)

use current-quarter forecasts from the Survey of Professional Forecasters as jumping-off points for

inflation forecasts from a range of autoregressive, Phillips curve, and DSGE models. Schorfheide

and Song (2015) and Wolters (2015) treat nowcasts from the Greenbook as data in forming forecasts

at subsequent horizons from, respectively, a Bayesian VAR (BVAR) and DSGE models. Del Negro

and Schorfheide (2013) combine current quarter Blue Chip Consensus forecasts of GDP growth,

inflation, and interest rates with DSGE model forecasts by treating the Blue Chip forecasts as noisy

data for the quarter, using Kalman filter methods for signal extraction. Frey and Mokinski (2015)

use survey nowcasts in estimating the parameters of a VAR. While we are not aware of published

examples, in practice it also seems to be common to use conditional forecast methods (see e.g.

Doan, Litterman, and Sims, 1984) to incorporate nowcast information into medium-term forecasts

from BVARs. Finally, while this discussion and our analysis focuses on combining forecasts from

different sources, an alternative approach is to specify a single model in mixed frequency data
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(e.g., quarterly and monthly). For example, Schorfheide and Song (2015) and Giannone, Monti,

and Reichlin (2014) develop mixed frequency BVAR and DSGE models, respectively.

As this review suggests, there is no single, standard approach for combining forecasts from

medium-term projection models with short-term forecasts from other sources, either surveys or

nowcasting models. In this paper, we examine the effects of using entropic tilting to combine such

forecasts. Entropic tilting is a technique for modifying a baseline distribution such that it matches

certain moment conditions of interest. Robertson, Tallman, and Whiteman (2005) introduced tilt-

ing into macroeconomic forecasting, using it to impose conditions on policy rates in a small BVAR

forecasting model. Cogley, Morozov, and Sargent (2005) used tilting to produce BVAR forecasts

that conditioned on information in the Bank of England’s forecast. More recently, Altavilla, Gia-

comini, and Ragusa (2013) use entropic tilting to combine survey-based forecasts of short-term in-

terest rates with yield curve forecasts from econometric models, and Lewis and Whiteman (2015)

use tilting to improve forecasts of tax revenues in Iowa. These studies primarily focus on point

forecasts — not only tilting based on point forecasts but also measuring performance in terms of

point forecast accuracy.

Compared to some other existing approaches for combining forecasts from multiple sources,

tilting has the advantage of being highly flexible. This flexibility is needed here. In particular,

merging a multi-step BVAR forecast density with an external nowcast is not a traditional density

combination problem in the spirit of Stone (1961), Hall and Mitchell (2007), Geweke and Amisano

(2011) and Gneiting and Ranjan (2013). All of these studies consider a set of densities f1, . . . , fn

which refer to the same (univariate or multivariate) random variable. Our setting is different in

two respects: first, the nowcast refers to a univariate random variable whereas the BVAR density

is jointly for five forecast horizons. Second, the nowcast does not come as a full density but only

as a set of moment conditions. Furthermore, compared to simpler approaches such as treating

the nowcast as additional data, the flexibility of tilting permits the forecaster to properly capture

uncertainty around the combined forecast.

Building on the aforementioned prior research, we use tilting to improve macroeconomic fore-

casts from BVARs by combining them with nowcasts from surveys and specialized models. Ex-

tending past research, we consider tilting the BVAR forecast distributions toward not just the

means but also the variances of the nowcasts, and we consider the effects of tilting on the accuracy

of not only point forecasts but also density forecasts. We also compare how proper combination
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of forecasts via tilting affects estimates of forecast uncertainty compared to cruder approaches that

do not account for nowcast uncertainty.

In our implementation, we focus on forecasts of (U.S.) GDP growth, the unemployment rate,

inflation in GDP price index, and the 3-month Treasury bill (T-bill) rate. A range of studies have

considered similar variable sets (e.g. Clark, 2011; D’Agostino, Gambetti, and Giannone, 2013). We

use forecasts from a BVAR with stochastic volatility as in Clark and Ravazzolo (2015). The survey-

based forecasts we consider are taken from the Survey of Professional Forecasters (SPF). We also

consider model-based nowcasts (current-quarter forecasts); for GDP and inflation, the model uses

the Bayesian mixed frequency formulation of Carriero, Clark, and Marcellino (2014), while for

the unemployment and T-bill rates, we use small VARs in monthly data (to construct quarterly

nowcasts), detailed below.

Broadly, our results show entropic tilting to be a flexible, powerful, and effective tool for com-

bining forecasts from BVARs with external nowcasts. We show that tilting, like other approaches to

combining BVAR forecasts with nowcasts, systematically improves the accuracy of point forecasts

of standard macroeconomic variables. Extending previous work, we also find that tilting based

on nowcast means systematically improves the accuracy of density forecasts from our BVAR. We

go on to show that tilting the BVAR forecasts based on not only nowcast means but also nowcast

variances yields slightly greater gains in density accuracy than does just tilting based on the now-

cast means. For less persistent variables such as GDP growth, the accuracy gains tend to die out

as the forecast horizon increases, but for unemployment and interest rates, the gains carry over

to horizons as long as five quarters. Our results also show that tilting toward the nowcast mean

and variance produces sharper forecast distributions than tilting toward the nowcast mean only.

This is because the former approach incorporates the reduced variance of the nowcast – which

uses intra-quarter information – whereas the latter approach implicitly conditions on the BVAR

variance. Again, these effects are much more pronounced for the more persistent variables.

As to the merits of the survey-based (SPF) nowcasts compared to the model-based nowcasts,

for GDP and inflation, survey forecasts from the SPF are hard to beat, so the BVAR is improved

more by tilting toward the SPF nowcast than the model-based nowcasts. But for the unemploy-

ment and T-bill rates, our model-based nowcasts are more accurate than their SPF counterparts,

with corresponding effects on the tilted BVAR forecasts. In a comparison of tilting on a variable-

by-variable basis to tilting jointly toward the nowcasts for all four variables of the BVAR, we find
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that the overall differences in forecast performance for the joint treatment of variables versus the

individual treatment of variables are small.

The paper proceeds as follows. Sections 2 and 3 detail the data and models, respectively. Sec-

tion 4 explains the implementation of tilting and provides examples. Section 5 provides our main

results on entropic tilting. Section 6 presents comparisons to some related combination methods

proposed in the literature, and Section 7 concludes. The appendix provides details of our priors

and estimation algorithms and presents some analytical derivations mentioned in the paper. A

supplementary appendix available online provides additional robustness results (for other com-

bination methods, a shorter sample period, alternative prior settings, and some additional VAR

specifications), as well as some additional analysis of the effects of tilting on the forecast distribu-

tions.

2 Data

2.1 Data for models

We use quarterly data to estimate BVAR models (detailed below) for growth of real GDP, inflation

in the GDP price index or deflator (henceforth, GDP inflation), the unemployment rate, and the

3-month T-bill rate. We compute GDP growth as 400 times the log difference of real GDP and

inflation as 400 times the log difference of the GDP price index, to put them in units of annual-

ized percentage point changes. The unemployment rate and interest rate are also defined in units

of percentage points (annualized in the case of the interest rate), with quarterly rates formed as

within-quarter averages of monthly rates.

In constructing model-based nowcasts of growth, inflation, unemployment, and the T-bill rate

using models detailed in the next section, we rely on a small set of other indicators. For now-

casting GDP growth, we use two monthly coincident indicators taken from Carriero, Clark, and

Marcellino (2014): employment growth and the Institute of Supply Management’s production in-

dex for manufacturing. For nowcasting GDP inflation, we use monthly inflation rates of the CPI ex

food and energy, the CPI for food, the CPI for energy, the PPI for capital goods, and the price de-

flator for new one-family houses under construction. We form nowcasts of unemployment using

monthly data on not only unemployment but also growth in payroll employment and new claims

for unemployment insurance. Finally, we construct nowcasts of the T-bill rate using monthly data
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on the average (for the month) T-bill rate and the 3-month and 6-month T-bill rates on the 15th of

the month.

In forming all of our model-based forecasts and nowcasts, for those indicators subject to sig-

nificant revisions and for which we can easily obtain the needed data, we use real-time data from

the Federal Reserve Bank of Philadelphia’s Real Time Dataset for Macroeconomists (RTDSM). The

variables for which we use real time data are the following: GDP, GDP price index, monthly un-

employment, and monthly employment. Note that, for simplicity, we use “GDP” and “GDP price

index” to refer to the output and price series to be forecast, even though the measures are based

on GNP and a fixed weight deflator for some of the sample. As described in Croushore and Stark

(2001), the quarterly vintages of the RTDSM are dated to reflect the information available around

the middle of each quarter. In vintage t, the available GDP and GDP price index data run through

period t− 1. For all remaining variables, we use currently available data obtained from either the

FRED database of the Federal Reserve Bank of St. Louis or from the FAME database of the Fed-

eral Reserve Board of Governors: quarterly unemployment and T-bill rates, the Institute of Supply

Management’s production index for manufacturing, new claims for unemployment insurance, the

CPI ex food and energy, the CPI for food, the CPI for energy, the PPI for capital goods, and the

price index for new home construction.

2.2 SPF forecast data

We obtain quarterly SPF forecasts of GDP growth, unemployment, GDP inflation, and the T-bill

rate from the website of the Federal Reserve of Philadelphia. At each forecast origin, the available

forecasts span five quarterly horizons, from the current quarter through the next four quarters. We

take the point forecast to be the median of the SPF responses. In some entropic tilting results, we

also use a measure of forecast uncertainty. In the presented results, we consider what Clements

(2014) refers to as an ex post measure: the variance of recent forecast errors, which we compute over

the previous 20 forecasts. Specifically, denote by Ŷt,h the (median) SPF forecast of Yt at forecast

horizon h (i.e., the forecast for t based on data up to t − h). Then, our h-period error measure is

computed as

σ̂2
t,h =

1

20

19∑
r=0

(Yt−D−r − Ŷt−D−r,h)2,

whereD reflects the delay (in quarters) with which the forecaster learns of the relevant realizations

data. In line with the considerations in the next section, we set D = 2 for all variables except T-bill
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(D = 1). When considering model-based nowcasts, we instead compute the variance from the

model’s simulated predictive distribution.

2.3 Forecast evaluation sample

We evaluate forecasts from 1988:Q3 through 2013:Q2 (and over a pre-crisis sample of 1988:Q3-

2007:Q4, in results presented primarily in the supplementary appendix). The start date of 1988:Q3

marks the earliest possible for a common sample size across variables; SPF forecasts of the T-bill

rate do not begin until 1981:Q3, and we require additional observations for computing the fore-

cast error variance at all horizons. For each forecast origin t starting with 1988:Q3, we estimate

the forecast models and construct forecasts of quarterly values of all variables for periods t and

beyond. Consistent with the availability of SPF forecasts, we report results for forecast horizons

of 1-5 quarters ahead. In light of the time t − 1 information actually incorporated in the quar-

terly BVAR models used for forecasting at t, the 1-quarter ahead forecast is a current quarter (t)

forecast, while the 2-quarter ahead forecast is a next quarter (t + 1) forecast, etc. For the BVAR

used to forecast the four variables of interest, the starting point of the model estimation sample is

1955:Q1; we use data for the 1948-54 period to set the priors on some parameters, as detailed in the

appendix. For the GDP and inflation nowcasting models, the starting point of model estimation

is always 1970:Q2 and 1965:Q1, respectively. For the unemployment rate and T-bill nowcasting

models, the estimation samples begin with January 1955 and January 1965, respectively, reflecting

data availability.

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore (2006),

evaluating the accuracy of real-time forecasts requires a difficult decision on what to take as the

actual data in calculating forecast errors. We follow studies such as Romer and Romer (2000) and

Faust and Wright (2009) and use the second available estimates of GDP/GNP and the GDP/GNP

deflator as actuals in evaluating forecast accuracy. In the case of h-quarter ahead forecasts made

for period t + h with vintage t data ending in period t − 1, the second available estimate is taken

from the vintage t+ h+ 2 data set. In light of our abstraction from real-time revisions in quarterly

unemployment and interest rates, we use final vintage data for evaluating forecasts of these series.
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3 Models

This section provides the specifications of our models and an overview of the estimation methods.

The priors and estimation algorithms are detailed in the appendix.

3.1 BVAR specification

We focus on forecasts from a BVAR with random walk stochastic volatility, the specification that

Clark and Ravazzolo (2015) found to perform relatively well in a comparison of the forecasting

performance (both point and density — stochastic volatility is particularly important for density

accuracy) of a range of autoregressive models with and without time-varying volatility.

Let yt denote the k × 1 vector of model variables, B0 denote a k × 1 vector of intercepts, and

Bi, i = 1, . . . , p, denote a k × k matrix of coefficients on lag i. For our set of k = 4 variables, we

consider a VAR(p) model with stochastic volatility, with a lag length of p = 4:

yt = B0 +

p∑
i=1

Biyt−i + vt,

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt ≡ diag(λ1,t, . . . , λk,t), (1)

log(λi,t) = log(λi,t−1) + νi,t, i = 1, . . . , k,

νt ≡ (ν1,t, ν2,t, . . . , νk,t)
′ ∼ N(0,Φ),

whereA is a lower triangular matrix with ones on the diagonal and non-zero coefficients below the

diagonal, and the diagonal matrix Λt contains the time-varying variances of underlying structural

shocks. This model implies that the reduced form variance-covariance matrix of innovations to the

VAR is var(vt) ≡ Σt = A−1ΛtA
−1′. Note that, as in Primiceri’s (2005) implementation, innovations

to log volatility are allowed to be correlated across variables; i.e., Φ is not restricted to be diagonal.

To estimate this BVAR, we use a Gibbs sampler, detailed in the appendix. Stochastic volatility

is estimated with the algorithm of Kim, Shephard, and Chib (1998), as detailed in Primiceri (2005),

and correcting the ordering of sampling steps as proposed by Del Negro and Primiceri (2015). The

VAR coefficients are drawn from a conditional posterior distribution that is multivariate normal,

with a GLS-based mean and variance given in Clark (2011). All of our reported results are based on

samples of 5,000 posterior draws of the model parameters, obtained by retaining every 8th draw
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of a total sample of 40,000 post-burn draws, with a burn period of 5,000 draws.1

The posterior distributions of forecasts reflect the uncertainty due to all parameters of the

model and shocks occurring over the forecast horizon. To simulate the predictive density of the

BVAR, from a forecast origin of period T , for each retained draw of the model parameters or la-

tent states (B, A, Λt up through T , and Φ), we: (1) draw innovations to log volatilities for periods

T + 1 through T + H from a multivariate normal distribution with variance-covariance matrix Φ

and use the random walk model of log λt+h to compute λT+1, . . . , λT+H ; (2) draw innovations to

yT+h, h = 1, . . . ,H , from a normal distribution with variance ΣT+h = A−1ΛT+hA
−1′, and use the

vector autoregressive structure of the model along with the coefficients B to obtain draws of yT+h,

h = 1, . . . ,H . We repeat steps (1) and (2) five times for each draw of the model parameters. This

yields 25,000 draws of yT+h, which we use to compute the forecast statistics of interest.

3.2 Nowcast model: GDP growth

To align with the typical timing of the Survey of Professional Forecasters, we use the Bayesian

mixed frequency modeling approach of Carriero, Clark, and Marcellino (2014) to produce a current-

quarter forecast of GDP growth with data available around the end of the first week of the second

month of the quarter. More specifically, we forecast the quarterly growth rate of GDP in month

two of the current quarter based on the regression:

yt = X ′tβ + vt,

vt = λ0.5
t εt, εt ∼ i.i.d.N(0, 1), (2)

log(λt) = log(λt−1) + νt, νt ∼ i.i.d.N(0, φ),

where t is measured in quarters and the vector Xt contains predictors available at the time the

forecast is formed.

The specification of the regressor vector Xt is a function of the way the monthly variables are

sampled. For the timing we follow in this analysis, the vector Xt contains variables available at

about the end of the first week of month 2 of quarter t. Specifically, in our implementation, it

contains a constant, GDP growth in quarter t − 1, employment growth in month 1 of quarter t,

and the ISM index in month 1 of quarter t. We use employment and the ISM because, for our

1All numerical computations in this paper were done using the R programming language R Core Team (2015), with
some of the graphical illustrations based on the ggplot2 package Wickham (2009).
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information timing, these are the two major coincident indicators that are available for forecasting

GDP growth in the quarter. Our model with this small set of indicators performs comparably to

models with the larger sets of indicators considered in Carriero, Clark, and Marcellino (2014).

3.3 Nowcast model: inflation in GDP price index

Our nowcast model for inflation takes the same form as that described above for GDP growth,

but with a different set of indicators included in Xt. While the information set of the typical SPF

response has included just week 1 of month 2 of the quarter since the Philadelphia Fed took over

the survey, prior to that time the information set (and survey response date) changed over time,

and it was often later in the month. Accordingly, for simplicity, we construct nowcasts of GDP

inflation using (inflation rates of) monthly price indexes released in the second half of month 2

of the quarter, for the CPI ex food and energy, the CPI for food, the CPI for energy, the PPI for

capital goods, and the price index for new home construction. This set of indicators reflects major

measures of consumption and investment prices, as typically available in the middle of the quarter.

3.4 Nowcast model: unemployment rate

To align with current SPF timing, we obtain a nowcast of the quarterly average rate of unemploy-

ment by averaging the observed rate for month 1 of the quarter with forecasts for months 2 and

3. As noted above, the typical SPF response is based on an information set that includes labor

market indicators for the first month of the quarter. We produce the forecasts of months 2 and 3

of the quarter using a BVAR(3) with stochastic volatility in monthly data, for the unemployment

rate, growth in payroll employment, and new claims for unemployment insurance. We include

unemployment claims in the model because they are commonly thought to be a leading indicator

with some predictive content for the unemployment rate (e.g., Montgomery, Zarnowitz, Tsay, and

Tiao, 1998), whereas employment is a major coincident indicator of the business cycle that might

have predictive content for the unemployment rate, which has sometimes been considered to be a

lagging indicator of the business cycle. This model takes the same basic form as the BVAR detailed

above, except in monthly rather than quarterly data.

10



3.5 Nowcast model: T-bill rate

To align with SPF timing, we obtain a nowcast of the quarterly average 3-month T-bill rate by

averaging the observed rate for month 1 of the quarter with forecasts for months 2 and 3. As SPF

timing has shifted over time and respondents have access to a wide range of financial indicators,

we incorporate information through the 15th of month 2 of the quarter (in the event the 15th is

not a business day, we use the preceding business day). Specifically, to forecast the monthly T-bill

rate for months 2 and 3 of the quarter, we use a BVAR(3) with stochastic volatility in which the

variable vector yt is monthly and contains the average 3-month T-bill rate in t and the 3-month

and 6-month T-bill rates on the 15th of month t + 1. We include the daily rates in the model as

a way of capturing current information that would be available to a forecaster under our timing

assumption. We include the 6-month rate because, under the expectations hypothesis, it should

contain information about the expected future path of the 3-month rate. This BVAR takes the same

form as the one detailed above, except in monthly rather than quarterly data.

4 Entropic tilting: methodology and examples

This section first details the general implementation of entropic tilting and then provides examples

of our use.

4.1 General methodology

In using tilting to incorporate information from survey forecasts or model-based nowcasts into

medium-term forecasts from a BVAR with stochastic volatility, our starting point is a “raw” sample

of I (possibly vector-valued) MCMC forecast draws,

f := {yi}Ii=1,

where yi ∈ Rp, p ≥ 1. In the following we interpret f as a discrete distribution with I possible out-

comes, each of which has probability 1/I . For simplicity, at this stage we suppress dependence on a

certain variable, forecast origin date and forecast horizon. We consider modifying the distribution

f by imposing the moment condition

Eg(y) = ḡ,
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where g : Rp → Rm and ḡ ∈ Rm,m ≥ 1. The following functional optimization problem is often

called “entropic tilting”:

minf̃∈F KLIC(f̃ , f) subject to Ef̃ g(y) = ḡ. (3)

Here F denotes the class of all discrete distributions that can be constructed by re-weighting

the draws from f in an admissible way (such that the weights are positive and sum to one). Fur-

thermore,

KLIC(f̃ , f) =
I∑
i=1

π̃i log(Iπ̃i)

= log(I) +

I∑
i=1

π̃i log(π̃i) (4)

is the Kullback-Leibler divergence between the candidate distribution f̃ (which places weight π̃i

on the ith MCMC draw) and f (which uses flat weights 1/I). Finally,

Ef̃ g(y) =

I∑
i=1

π̃i g(yi)

is the expectation of y under f̃ . As discussed by Robertson, Tallman, and Whiteman (2005) and

others, the tilting solution is given by setting

π∗i =
exp

(
γ∗
′
g(yi)

)
∑I

i=1 exp (γ∗′g(yi))
, (5)

γ∗ = arg minγ

I∑
i=1

exp
(
γ
′
(g(yi)− ḡ)

)
. (6)

We should note the following broad implications. First, the solution of the tilting problem

comes in the form of a set of weights for the existing sample f . The squared error and CRPS,

which we use to evaluate forecasts (see Section 5), can be computed directly for this new set of

weights, without the need for additional simulation. Second, in practice tilting requires solving the

minimization problem in (6), whose dimension equals the number of moment conditions (below

we consider dimensions of one, two, four, and eight). This is often easy to do, given that the

objective function is usually globally convex, and computing the gradient with respect to γ (and

passing it to a numerical optimizer) is straightforward. In our implementation, we use the optim

function of the R programming language (R Core Team, 2015), together with the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm. In case the algorithm fails to converge, we impose a very
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small penalty on the L2 norm of the candidate parameter γ in order to regularize the problem.

The corresponding R code is available from the first author. Third, Equation (5) implies that the

functional form of the tilting weights is determined by the choice of g(·); we explore this point in

our first example below. Finally, it is possible to ensure some smoothness on the tilted forecast

distribution by targeting a higher dimensional vector ḡ of moment conditions. We explore this

below by experimenting with different sets of moment conditions.

4.2 Tilting variants considered in this paper

In the results to be presented below, we will consider the following variants of entropic tilting.

First, for a given variable – indicated by the index (k) – we tilt the BVAR forecast distribution of the

vector
[
y

(k)
t+1 . . . y

(k)
t+5

]
to match a certain nowcast mean of variable k (dubbed “small m” below).

Second, we tilt the same distribution to match a certain nowcast mean and variance for variable

k (“small m/v”). Third, we consider the joint forecast distribution for the 20-dimensional vector[
y

(1)
t+1 . . . y

(4)
t+5

]
comprising four variables and five forecast horizons. We tilt this distribution

to simultaneously match the nowcast means of all four variables (“big m”). Finally, we again

consider the full 20-dimensional distribution and tilt it to simultaneously match the nowcast means

and variances for all four variables (“big m/v”). To avoid clutter, we henceforth suppress the

superindex (k) whenever we refer to a representative variable.

4.3 Example: tilting the mean vs. mean and variance

In this section we illustrate how the forms of entropic tilting we will examine below are imple-

mented and affect forecast distributions. In these examples, the forecast origin date is 2008:Q4,

which is interesting because it coincides with the recent recession becoming much more severe,

which the SPF nowcasts pick up in real time but the BVAR in quarterly data by itself is slower to

detect. The p = 5 variate vector of interest, yt:t+4 =
[
yt, yt+1, yt+2, yt+3, yt+4

]′, contains the

GDP growth rates from 2008:Q4 to 2009:Q4 (i.e., forecasts for GDP growth zero to four quarters

ahead). The two panels of Figure 1 illustrate the following implementations of tilting:

• Targeting the SPF nowcast mean for GDP growth in 2008:Q4 (small m). This corresponds to
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setting

g(yt:t+4) = yt,

ḡ = −2.94.

As expected, the figure shows that the tilted distribution is located left of the raw one; this is

necessary to implement the SPF nowcast mean which is much smaller than the original one.

In this case, the tilted density has a somewhat unconventional shape, featuring substantial

probability mass at the lower end of its support.

• Targeting the SPF nowcast mean and variance (small m/v) corresponds to

g(yt:t+4) =
[
yt, (yt + 2.94)2

]′
ḡ =

[
−2.94, 2.41

]′
.

In this case, the tilted density again reaches the SPF nowcast mean, but the distribution is

now bell-shaped and tighter than before. This is the result of targeting the nowcast variance

in addition to the mean.

In these examples, π∗t,i — the tilting weight on the ith MCMC draw — is a function of yt,i (the first

element of the vector yt:t+4,i) alone; this follows from the specific choices of g(·) made here. For

each example, the solutions to the tilting weights are given by the following.

• Small m:

π∗t,i =
exp(−0.40 yt,i)∑I
i=1 exp(−0.40 yt,i)

.

• Small m/v:

π∗t,i =
exp(−0.58 yt,i − 0.19 (yt,i + 2.94)2)∑I
i=1 exp(−0.58 yt,i − 0.19 (yt,i + 2.94)2)

.

Figure 2 plots the relationship for the two tilting variants. As the solutions and charts make clear,

the choice of g(·) significantly affects the re-weighting of the draws in the tilted distribution. While

the weight is a monotonic function of yt,i in the first variant, the relationship is bell-shaped in the

second variant.
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Figure 1: Histograms for raw and tilted samples. In each panel, the black vertical line shows the
ex-post outcome of −6.55.
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Figure 2: Tilting weight π∗t,i, as a function of the first element yt of the vector yt:t+4. The solid
line corresponds to tilting toward the nowcast mean only; the dashed line corresponds to tilting
toward the nowcast mean and variance.
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4.4 Example: spillover effects on longer horizon forecasts

The results just presented demonstrate how tilting toward an external nowcast mean and variance

yields a combined nowcast density. However, imposing moment conditions on the nowcast yt also

affects other elements of the vector of forecasts, yt:t+4 =
[
yt, yt+1, yt+2, yt+3, yt+4

]′. While ef-

fects on other forecast horizons are difficult to see in the non-parametric solutions provided above

in equations (5) and (6), we can use a Gaussian benchmark case (extending the example in Robert-

son, Tallman, and Whiteman, 2005) to provide some intuition.

Consider a five-variate vector yt:t+4, and suppose a forecaster uses a multivariate normal distri-

bution f = N (θ,Σ), where θ =
[
θ1 . . . θ5

]′ and Σ is a positive definite matrix with elements Σi,j

(suppressing the dependence of the parameters on time and forecast horizon for simplicity). Con-

sider the tilted density f∗ which imposes that the first system variable have mean µ1 and variance

Ω1,1. Then, f∗ is multivariate normal N (µ,Ω), with parameters

µ2:5 = θ2:5 + Σ−1
1,1Σ1,2:5 (µ1 − θ1) , (7)

Ω2:5,2:5 = Σ2:5,2:5 − Σ2:5,1Σ−1
1,1Σ1,2:5 ×

(
1− Ω1,1

Σ1,1

)
, (8)

Ω2:5,1 = Σ2:5,1Σ−1
1,1Ω1,1, (9)

where Ai:j, k:l denotes the matrix consisting of rows i : j, columns k : l of any matrix A. We write

Ai:j, k if the “matrix” is a column vector, and Ai, k:l if it is a row vector. This Gaussian example

yields the following implications.

• In the special case that yt is fixed, such that Ω1,1 = 0, we end up at the textbook formulas for

conditioning in the multivariate normal distribution. That is, entropic tilting is exactly the

same as conditional forecasting. It is also exactly the same as treating the nowcast as data or

jumping-off points for forecasts at subsequent horizons (Faust and Wright, 2009, 2013). See

Section 6.1 for further discussion of this equivalence.

• The special case that Ω1,1 = Σ1,1 corresponds to a scenario in which the tilted variance for

yt+1 is the same as the un-tilted variance. Interestingly, the same solution obtains when tar-

geting a mean of θ1 only, without making a tilting assumption about Ω1,1 – see e.g. Altavilla,

Giacomini, and Ragusa (2013, Section 3.1). This implies that, at least in the Gaussian case,

targeting the mean only is equivalent to targeting the mean and the original variance.
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• If Ω1,1 < Σ1,1 and Σ2:5,1 6= 0 in (8), tilting “reduces” (in a matrix sense) the variance of the

forecasts at other horizons.

• The magnitude of the impact on θ2:5 and Ω2:5,2:5 mainly depends on Σ2:5,1, the correlation of

the nowcast with the other horizons. This correlation matrix reflects the persistence of the

time series, as predicted by the BVAR.

The results we obtain for our examples using the non-parametric entropic solution are broadly

consistent with the implications of the Gaussian specification. In the interest of brevity, we sup-

press the details and provide a simple example here. As the forecast horizon increases from the

current quarter through the following four quarters, tilting has more persistent effects on the fore-

casts of the unemployment and T-bill rates (the most persistent variables) than the forecasts of

GDP growth and inflation. That is, tilting based on the nowcast for 2008:Q4 has larger effects

on the 2009:Q4 forecasts for the unemployment and T-bill rates than on the 2009:Q4 forecasts for

growth and inflation. Figure 3 illustrates these points for GDP and unemployment forecasts. The

figure uses boxplots to visualize the raw and tilted distributions, for the nowcast (2008:Q4) and

the one-year-ahead forecast (2009:Q4). For GDP (left panel), tilting leads to a strong downward

revision of the nowcast. At the same time, the one-year-ahead forecast distribution is not strongly

revised. For unemployment (right panel), the mean of the one-year-ahead forecast is revised al-

most as strongly as that of the nowcast itself, with the revision pointing to higher unemployment

rates in both cases. The stronger spillover effects for unemployment (compared to GDP) are due

to larger entries in Σ2:5,1, which represents the persistence of the series (as predicted by the BVAR).

For example, the predicted first-order autocorrelation is only 0.17 in the case of GDP, but 0.76 in

the case of unemployment.

4.5 Example: joint tilting across variables and forecast horizons

In the examples above, we performed tilting on a variable-by-variable basis. However, the method-

ology allows us to directly consider the full multivariate forecast distribution comprising all vari-

ables and forecast horizons. Forecasts tilted based on the joint set of nowcasts should be concep-

tually preferable. In practice one is likely to have available and to be interested in using nowcasts

for all model variables. Tilting based on the set of nowcasts together yields a single set of forecasts

of all variables that reflects the BVAR-captured historical relationships among the variables. To

see the logic of it, consider the very simple (and parametric) approach of incorporating nowcasts
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Figure 3: Vertical axis: boxplots of raw and tilted forecast distributions at origin date 2008:Q4.
Horizontal axis: forecast horizon h. Boxes range from the 25 % to the 75 % quantile of a forecast
distribution; the end of the upper vertical line is the 75% quantile plus 1.5 times the interquartile
range. Forecast draws exceeding that value are plotted as points.

through Gaussian conditional forecasting. One could first condition on the nowcast for variable

1 and produce BVAR forecasts for all variables, then condition on the nowcast for variable 2 and

produce BVAR forecasts for all variables, etc. This would of course produce an entire set of al-

ternative forecasts for each variable, reflecting conditions imposed one at a time. In practice, it is

more likely the case that the entire set of nowcast conditions would be imposed at once, to obtain

a single set of forecasts that reflects the joint set of conditions. The reasoning is the same for a joint

approach to entropic tilting.

Interestingly, big tilting turns out to be a more stringent version of the four small problems (one

variable at a time). To see this, denote by f the full (20 dimensional) empirical MCMC distribution

for all variables and horizons, by f (k) the distribution for variable k (five dimensions = forecast

horizons), and by C(k) the set of moment conditions imposed on variable k. Then, big tilting solves

min
f̃

KLIC(f̃ , f) subject to C(1) ∪ . . . ∪ C(4). (10)

Small tilting for variable k solves

min
f̃ (k)

KLIC(f̃ (k), f (k)) subject to C(k). (11)

Notice that the candidate distributions f̃ from (10) and f̃ (k) from (11) are both characterized by
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a weight vector of dimension 25,000 (the number of MCMC draws), and the raw distributions f

and f (k) both feature flat weights. Hence, for a given weight vector, we have that KLIC(f̃ , f) =

KLIC(f̃ (k), f (k)), and thus (11) is equivalent to solving

min
f̃

KLIC(f̃ , f) subject to C(k). (12)

Hence the minimization problem (12) for small tilting is a variant of the problem (10) for big

tilting, featuring a less stringent set of constraints. This implies that big tilting will typically entail

a more drastic move away from the baseline distribution compared to small tilting. In order to

illustrate this point, we again consider the 2008:Q4 example, and tilting based on the SPF nowcast

means and variances (big m/v, small m/v). Table 1 illustrates the logical necessity that the four

small tilting approaches are KLIC-closer to raw MCMC than the big tilting approach (although,

in this steep recession example, all approaches are fairly far away from the equal weights of raw

MCMC, because the nowcast of growth is so different from the BVAR forecast). Similarly, Figure

4 presents Lorenz curves for the observation weights resulting from big versus small tilting. The

figure shows that the weights for big tilting are highly unequal, with a fairly small number of in-

fluential MCMC draws (for example, the fifty largest weights sum up to 0.35). The weights for the

small tilting problems are much more equal, i.e. the Lorenz curves in Figure 4 are left of the one

for big tilting. Note that the small tilting method for inflation generates by far the most uniform

weights (leftmost Lorenz curve), which is in line with the fact that in 2008:Q4 the current quarter

MCMC forecast (2.72) is already close to the SPF mean nowcast (2.6). The supplementary ap-

pendix contains further analysis of the tilting weights, illustrating broader patterns of the weights

over time. It also demonstrates that, given the sample sizes common in MCMC, numerical issues

caused by unequal weights seem to have very little practical impact on forecasting performance.

KLIC divergence
Method Variable from equal weights

big m/v (all) 24993.831

m/v

GDP 24992.512
UNE 24991.846
INF 24990.030
TBI 24991.320

Table 1: KLIC divergences for big versus small tilting in the 2008Q4 example. See Equation (4) for
the underlying formula.
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Figure 4: Lorenz curve of weights in the 2008Q4 example. Reading example: The topmost line
indicates that for inflation, the 25 % smallest weights (horizontal axis) add up to roughly 0.07
(vertical axis).
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5 Forecast results

We first consider the accuracy of point forecasts (defined as posterior means), using root mean

square errors (RMSEs). We then consider density forecasts, using the average continuous ranked

probability score (CRPS). Studies such as Gneiting and Raftery (2007) and Gneiting and Ranjan

(2011) discuss the advantages of the CRPS over other measures. The CRPS, defined such that a

lower number is a better score, is given by

CRPSt(yot+h) =

∫ ∞
−∞

(
F (z)− 1{yot+h ≤ z}

)2
dz, (13)

where yot+h denotes the observed outcome, F denotes the cumulative distribution function asso-

ciated with the (posterior) predictive density f , and 1{yot+h ≤ z} denotes an indicator function

taking value 1 if yot+h ≤ z and 0 otherwise. In our analysis, F takes the form of an empirical dis-

tribution function, whereby the observation weights are equal in the case of raw MCMC but not

in the case of tilted distributions. We employ the algorithm by Hersbach (2000, Section 4) – which

allows for non-equal weights – to compute the CRPS in both cases.

In order to test the statistical significance of differences in predictive performance, we consider

pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano, 1995; West,

1996) in terms of either RMSE or CRPS. All EPA tests we conduct compare the raw BVAR fore-

casts against a given variant of entropic tilting, using two sided tests and standard normal critical

values. Based on simulation evidence in Clark and McCracken (2013), in computing the variance

estimator which enters the test statistic, we employ a rectangular kernel truncated at lag h− 1 and

incorporate the finite sample correction due to Harvey, Leybourne, and Newbold (1997). In the

rare cases in which the rectangular kernel yields a negative variance estimate, we resort to Bartlett

kernel weights (Newey and West, 1987) in order to ensure positivity. In these cases, we use the au-

tomatic bandwidth selection procedure of Newey and West (1994) as implemented in R’s sandwich

package (Zeileis, 2004).

Our use of EPA tests based on normal critical values may be viewed as an approximation

that simplifies an inference problem that, in our context, features many complexities — possible

nesting of forecasts and tilting that bears similarities to conditional forecasting — not necessarily

easily dealt with in the forecast evaluation literature (see e.g. Clark and McCracken, 2013, 2014).2

2At the one-step horizon, the tilted forecasts are, by construction, essentially the nowcasts, so the benchmark BVAR
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Under the asymptotics of Giacomini and White (2006), a test of a null of equal forecast accuracy

in the finite sample (at estimated model parameters) is generally normally distributed, subject to

a requirement that the model parameters be estimated with a rolling sample of data. While we

have not estimated the BVAR with a rolling sample of data, Monte Carlo evidence in Clark and

McCracken (2013) indicates that, with nested models estimated with an expanding data sample

(the approach we have used with our BVAR), EPA tests compared against normal critical values

can be viewed as a somewhat conservative (modestly under-rejecting compared to nominal size)

test for equal accuracy in the finite sample.

As noted in Section 4, we consider the following variants of entropic tilting: small m, in which

we tilt the BVAR forecast distribution of the vector
[
y

(k)
t+1 . . . y

(k)
t+5

]
to match a certain nowcast

mean of variable k; small m/v, in which we tilt the forecast distribution of variable k to match

the nowcast mean and variance; big m, in which we tilt the entire 20 element vector of variables

and horizons to simultaneously match the nowcast means of all four variables; and big m/v, in

which we tilt the entire 20 element vector of variables and horizons to simultaneously match the

nowcast means and variances of all four variables. We separately apply each of the tilting variants

to nowcasts from the SPF and from the nowcasting models described in Section 3. In the case of

the SPF-based results, the variances used in tilting are computed as described in Section 2.2; for

model-based nowcasts, the variances used in tilting are defined as the variance of the posterior

distribution of BVAR forecasts for the period in question.

5.1 Comparison of current-quarter forecasts

Before examining the effects of entropic tilting of BVAR forecasts toward different nowcasts, it

is useful to compare the accuracy of current quarter forecasts from the BVAR, the SPF, and the

nowcasting models. Table 2 provides the RMSEs and CRPS scores of each current quarter forecast

(except that we don’t provide CRPS scores for the SPF forecasts because the SPF does not include

the forecast density information needed to compute the CRPS over our sample). These results

yield the following findings.

forecast and each tilted forecast are not nested, in which case the application of the EPA test is valid. At longer horizons,
the picture is less clear; the tilted forecasts are functions of the nowcasts and the underlying BVAR forecasts. Under some
conditions, at horizons of 2 or more periods, the tilted and BVAR forecasts could be seen as nested under a null of equal
accuracy. Regardless, the multi-step tilted forecasts bear similarities to conditional forecasts; Clark and McCracken
(2014) propose a modified test of EPA necessary for application to conditional forecasts.
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• Consistent with previous studies, current-quarter forecasts from the SPF and the models

designed for nowcasting are generally more accurate than the current quarter forecasts from

the BVAR. For example, in the case of GDP growth over the pre-crisis sample, the SPF and

mixed frequency nowcasting models have RMSEs of 1.580 and 1.682, respectively, compared

to the BVAR’s RMSE of 1.975. The differences (for GDP growth and unemployment) are even

larger in the full sample than in the pre-crisis sample.

• Compared to SPF, some of the nowcasting models yield better accuracy, while others yield

less accuracy. For GDP growth, the mixed frequency nowcasting model is almost as accu-

rate as SPF in the pre-crisis sample and modestly less accurate in the full sample, reflecting

the better job the SPF did in picking up the sharp downturn of the Great Recession (see the

discussion in Carriero, Clark, and Marcellino, 2014). For unemployment and the T-bill rate,

the model-based nowcasts are at least somewhat more accurate than the SPF forecasts. These

gains are likely due to the use of intra-quarter information about the predictand (c.f. Mont-

gomery, Zarnowitz, Tsay, and Tiao, 1998, for similar results on unemployment). For instance,

in the pre-crisis sample, the model-based nowcast of the T-bill rate has an RMSE of 0.066,

compared to the SPF RMSE of 0.133.

• The CRPS scores move closely in line with the RMSEs, both qualitatively and in terms of the

magnitude of improvements of nowcasts over current-quarter forecasts from the BVAR.

Pre Crisis (88:Q3 – 07:Q4) Complete (88:Q3 – 13:Q2)
GDP UNE INF TBI GDP UNE INF TBI

RMSE
SPF 1.580 0.125 0.767 0.133 1.591 0.151 0.809 0.133
BMF 1.682 0.095 0.861 0.066 1.899 0.095 0.985 0.072
BVAR 1.975 0.157 0.876 0.406 2.390 0.235 0.938 0.406

CRPS BMF 0.960 0.053 0.495 0.037 1.048 0.053 0.554 0.035
BVAR 1.123 0.089 0.504 0.214 1.274 0.116 0.539 0.214

Table 2: Root Mean Squared Error and CRPS for different nowcasts (SPF = Survey of Professional Forecast-
ers, BMF = Bayesian Mixed Frequency, BVAR = Bayesian VAR with stochastic volatility). SPF and BMF use
data up to daily frequency; BVAR is based on quarterly data.

5.2 Main results

We now consider tilting longer-horizon forecasts based on just current-quarter forecasts. Table 3

presents the full-sample results (see the supplementary appendix for results from the pre-crisis
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period). In light of the common central bank practice of reporting growth and inflation rates that

are averages over four quarters, the table provides results for (annualized) quarterly forecasts four

and five quarters ahead and for four-quarter averages four and five quarters ahead (in the columns

“4*” and “5*”, respectively). These results yield the following key take-aways.

• In all cases, tilting forecasts based on just the nowcast (point or point and variance) from ei-

ther the SPF or the nowcasting models improves the accuracy of point and density forecasts

at horizons of one, two and three quarters. For example, in the results for GDP growth at

the three quarters-ahead horizon, under the small m approach, tilting toward the nowcast

from the mixed frequency model lowers the RMSE of the BVAR forecast from 2.656 to 2.572;

the difference is significant at the 5% level (two-sided test). For the same sample and hori-

zon, tilting the T-bill forecasts toward the model-based nowcasts (small m approach) lowers

the RMSE of the BVAR from 1.056 to 0.821 (difference significant at 1% level). Tilting has

quantitatively similar effects on density forecast accuracy as measured by the CRPS.

• At forecast horizons of four and five quarters, the performance of forecasts tilted toward

nowcasts is more mixed. At these horizons, tilting has relatively little benefit for forecasts

of GDP growth and inflation. But it has some benefit for forecasts of the more persistent

variables, the unemployment and T-bill rates. As an example, at the five step horizon, tilting

the T-bill forecasts toward the model-based nowcasts lowers the RMSE of the BVAR from

1.591 to 1.425 (difference significant at 1% level). Again, tilting has quantitatively similar

effects on density forecast accuracy as measured by the CRPS. These patterns align with the

observations drawn in the illustration of Section 4.4.

• Tilting the BVAR forecasts toward both the mean and variance of nowcasts (m/v) — rather

than just the mean or point nowcast (m)— yields small additional gains in density forecast

accuracy. This pattern is very robust: In 23 out of 24 scenarios (variables and forecast hori-

zons) covered by Table 3, the CRPS score of the best m/v specification is smaller than that of

the best m specification. For example, in the case of the unemployment rate and h = 2, the

best specification based on the mean only (BMF small m) attains a CRPS of 0.146, whereas

the best mean/variance specification (BMF big m/v) attains a CRPS of 0.131. By comparison,

the CRPS of the raw BVAR distribution is 0.217.

• Jointly considering the nowcasts of all four variables (“big m/v”) versus considering all vari-

ables separately (“small m/v”) tends to perform similarly well, with each approach outper-
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forming the other in a number of scenarios. While one interpretation might be that joint

treatment offers little overall advantage, an alternative interpretation might be that it is con-

ceptually preferable for imposing tilting at a system level and does so at little (if any) cost, in

terms of forecast accuracy.

5.3 Entropic tilting and nowcast uncertainty

Table 3 implies that tilting toward the nowcast mean and variance consistently yields better CRPS

scores than tilting toward the mean only. For h = 1, this effect is simply a consequence of the now-

cast distributions being more accurate than the BVAR ones, which is well known in the literature.

Much more interestingly, the result also holds for h ≥ 2, which suggests that the m/v approach

produces more favorable spillover effects on the horizons that are not directly affected by tilting.

Table 4 investigates this result in more detail, by reporting the length and coverage of central pre-

diction intervals obtained from both approaches (nominal level of 70%). In particular, we define

length as the spread between the 15th and 85th percentiles of the forecast distribution and report

the average length over time, and we measure coverage as the percent of actual outcomes of each

variable falling within the 70% confidence band.

For all variables and forecast horizons, we observe that the m/v specifications produce shorter

prediction intervals than the m specifications, which implies sharper (i.e., more concentrated) fore-

cast distributions. This result is natural: The SPF and model nowcasts generally have lower vari-

ance than the current quarter forecasts produced by the BVAR. While m/v imposes this infor-

mation, m fails to do so. Instead, it penalizes the KLIC divergence from the BVAR distribution,

and thus implicitly targets the BVAR variance (c.f. Section 4.4). These effects are clearest for the

T-bill and unemployment rates, where the m/v approaches produce prediction intervals whose

average lengths (over time) are often about 20-40 percent shorter than those of the m approaches.

The differences are much smaller for GDP growth and inflation, where the average lengths of the

prediction intervals typically differ by less than five percent.

Naturally, the reduced length of the m/v prediction intervals comes along with reduced cov-

erage rates compared to m. For GDP, unemployment and inflation, the coverage rates of m/v are

mostly still above 60 percent (recall that the nominal level is 70 percent). A similar statement holds

for the T-bill rate and h ∈ {2, 3}. For the T-bill rate and h ∈ {4, 5}, the coverage rates of the m
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Forecast Horizon 1 2 3 4 5 4* 5*

GDP

RMSE

raw 2.390 2.589 2.656 2.640 2.617 2.084 2.140
SPF small m 1.591∗∗ 2.413∗ 2.540∗∗ 2.650 2.651 1.704∗ 2.076
SPF small m/v 1.591∗∗ 2.390∗ 2.511∗ 2.637 2.631 1.688∗ 2.052
SPF big m 1.591∗∗ 2.439 2.562 2.665 2.628 1.716∗ 2.093
SPF big m/v 1.596∗∗ 2.435∗ 2.524∗ 2.632 2.631 1.700∗ 2.060
BMF small m 1.899∗∗ 2.475∗∗ 2.572∗ 2.654 2.636 1.835∗ 2.096
BMF small m/v 1.899∗∗ 2.464∗∗ 2.563∗ 2.643 2.627 1.829∗ 2.085
BMF big m 1.900∗∗ 2.649 2.736 2.753 2.655 1.964 2.215
BMF big m/v 1.917∗∗ 2.478∗ 2.611 2.699 2.670 1.873∗ 2.139

CRPS

raw 1.274 1.380 1.414 1.408 1.403 1.122 1.158
SPF small m 0.985∗∗ 1.304∗ 1.358∗∗ 1.414 1.418 0.936∗∗ 1.122
SPF small m/v 0.906∗∗ 1.280∗∗ 1.335∗∗ 1.411 1.411 0.912∗∗ 1.113
SPF big m 0.993∗∗ 1.326 1.379 1.422 1.398 0.944∗ 1.127
SPF big m/v 0.909∗∗ 1.300∗∗ 1.350∗ 1.411 1.403 0.920∗∗ 1.123
BMF small m 1.074∗∗ 1.330∗∗ 1.376∗ 1.414 1.413 0.991∗∗ 1.133
BMF small m/v 1.042∗∗ 1.317∗∗ 1.366∗∗ 1.412 1.410 0.977∗ 1.129
BMF big m 1.077∗∗ 1.363 1.440 1.456∗ 1.432 1.043 1.190
BMF big m/v 1.049∗∗ 1.320∗∗ 1.385 1.457 1.427 1.000∗ 1.159

UNE

RMSE

raw 0.235 0.464 0.706 0.940 1.147
SPF small m 0.151∗ 0.348 0.575 0.811 1.028
SPF small m/v 0.151∗ 0.350 0.573 0.808 1.024
SPF big m 0.151∗ 0.332 0.542 0.769 0.987
SPF big m/v 0.153∗ 0.335 0.551 0.778 0.995
BMF small m 0.095∗∗ 0.239 0.470 0.716 0.958
BMF small m/v 0.096∗∗ 0.251 0.470 0.708 0.945
BMF big m 0.095∗∗ 0.247 0.476 0.725 0.966
BMF big m/v 0.092∗∗ 0.256 0.483 0.727 0.964

CRPS

raw 0.116 0.217 0.333 0.453 0.569
SPF small m 0.087∗∗ 0.179 0.280 0.396 0.510
SPF small m/v 0.083∗∗ 0.175∗ 0.276∗ 0.391 0.505
SPF big m 0.088∗∗ 0.173∗ 0.267∗ 0.377∗ 0.491
SPF big m/v 0.082∗∗ 0.167∗ 0.262∗ 0.372∗ 0.487
BMF small m 0.071∗∗ 0.146∗ 0.242 0.357 0.477
BMF small m/v 0.054∗∗ 0.135∗ 0.233∗ 0.346 0.462
BMF big m 0.072∗∗ 0.147∗ 0.241∗ 0.355∗ 0.474∗

BMF big m/v 0.053∗∗ 0.131∗∗ 0.231∗∗ 0.346∗ 0.466∗

Table 3: Empirical results for entropic tilting, complete sample (1988:Q3 – 2013:Q2). “RMSE” rows con-
tain root mean squared errors. “CRPS” rows contain mean cumulative ranked probability scores. raw –
MCMC output of BVAR-SV model. Alternative tilting targets: SPF small m – SPF mean nowcast for the
same variable. SPF small m/v – SPF nowcast mean and variance for the same variable. SPF big m – SPF
nowcast means for all four variables. SPF big m/v – SPF nowcast means and variances for all four variables.
BMF small m, BMF small m/v, BMF big m and BMF big m/v are defined analogously. One and two stars
indicate rejections of equal predictive ability at the five and one percent level (two sided tests; implementa-
tion details described in the beginning of Section 5).
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Forecast Horizon 1 2 3 4 5 4* 5*

INF

RMSE

raw 0.938 0.996 1.012 1.051 1.170 0.717 0.795
SPF small m 0.809∗∗ 0.917∗∗ 0.974 1.030 1.144 0.636∗ 0.746
SPF small m/v 0.809∗∗ 0.915∗∗ 0.973 1.029 1.144 0.634∗ 0.746
SPF big m 0.809∗∗ 0.908∗∗ 0.972 1.018 1.135 0.622∗∗ 0.735
SPF big m/v 0.807∗∗ 0.906∗∗ 0.966 1.003 1.128 0.617∗∗ 0.731
BMF small m 0.985 1.026 1.049 1.075 1.194 0.765 0.828
BMF small m/v 0.985 1.027 1.050 1.075 1.196 0.766 0.829
BMF big m 0.985 1.010 1.050 1.075 1.204 0.753 0.823
BMF big m/v 0.986 1.002 1.051 1.054 1.197 0.751 0.817

CRPS

raw 0.539 0.578 0.575 0.610 0.687 0.413 0.463
SPF small m 0.471∗∗ 0.540∗∗ 0.563 0.602 0.676 0.378∗ 0.444
SPF small m/v 0.463∗∗ 0.534∗∗ 0.558 0.597 0.672 0.369∗ 0.438
SPF big m 0.473∗∗ 0.544∗ 0.565 0.600 0.677 0.380∗ 0.445
SPF big m/v 0.462∗∗ 0.532∗∗ 0.555 0.582 0.663 0.361∗∗ 0.431
BMF small m 0.544 0.588 0.589 0.619 0.697 0.428 0.476
BMF small m/v 0.553 0.591 0.590 0.618 0.697 0.430 0.476
BMF big m 0.542 0.589 0.598∗ 0.625 0.701 0.431 0.479
BMF big m/v 0.554 0.586 0.589 0.606 0.694 0.424 0.469

TBI

RMSE

raw 0.406 0.756 1.056 1.336 1.591
SPF small m 0.133∗∗ 0.529∗∗ 0.871∗∗ 1.183∗∗ 1.469∗∗

SPF small m/v 0.132∗∗ 0.514∗∗ 0.854∗∗ 1.162∗∗ 1.450∗∗

SPF big m 0.133∗∗ 0.522∗∗ 0.856∗∗ 1.152∗∗ 1.423∗∗

SPF big m/v 0.134∗∗ 0.511∗∗ 0.847∗∗ 1.142∗∗ 1.418∗∗

BMF small m 0.072∗∗ 0.473∗∗ 0.821∗∗ 1.137∗∗ 1.425∗∗

BMF small m/v 0.073∗∗ 0.457∗∗ 0.800∗∗ 1.112∗∗ 1.402∗∗

BMF big m 0.083∗∗ 0.465∗∗ 0.791∗∗ 1.092∗∗ 1.372∗∗

BMF big m/v 0.070∗∗ 0.447∗∗ 0.815∗∗ 1.104∗∗ 1.387∗∗

CRPS

raw 0.214 0.419 0.611 0.794 0.970
SPF small m 0.159∗∗ 0.343∗∗ 0.530∗∗ 0.715∗∗ 0.898∗∗

SPF small m/v 0.070∗∗ 0.272∗∗ 0.479∗∗ 0.680∗∗ 0.872∗∗

SPF big m 0.162∗∗ 0.340∗∗ 0.522∗∗ 0.699∗∗ 0.872∗∗

SPF big m/v 0.072∗∗ 0.271∗∗ 0.475∗∗ 0.670∗∗ 0.853∗∗

BMF small m 0.152∗∗ 0.328∗∗ 0.511∗∗ 0.694∗∗ 0.876∗∗

BMF small m/v 0.041∗∗ 0.239∗∗ 0.445∗∗ 0.645∗∗ 0.838∗∗

BMF big m 0.165∗∗ 0.331∗∗ 0.499∗∗ 0.672∗∗ 0.845∗∗

BMF big m/v 0.047∗∗ 0.238∗∗ 0.447∗∗ 0.636∗∗ 0.822∗∗

Table 3: continued.
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approaches are already well below 70 percent, with the rates of m/v being even lower.

On balance, the increased sharpness of m/v appears to come at a small cost, in that the coverage

rates are similarly close to (or far from) their nominal level as under the m variant. This assessment

is consistent with the fact that the CRPS – which can be seen as a trade-off between sharpness and

correct coverage, see e.g. Gneiting, Balabdaoui, and Raftery (2007) – consistently favors m/v over

m.
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Forecast Horizon 1 2 3 4 5 4* 5*

GDP

Coverage

SPF m 0.870 0.700 0.720 0.700 0.670 0.640 0.560
SPF m/v 0.710 0.670 0.690 0.690 0.670 0.600 0.560
BMF m 0.790 0.710 0.690 0.690 0.660 0.620 0.560
BMF m/v 0.710 0.680 0.700 0.690 0.660 0.610 0.560

Length

SPF m 5.217 4.872 4.922 4.957 4.964 2.984 2.960
SPF m/v 3.326 4.638 4.730 4.795 4.830 2.628 2.851
BMF m 4.921 4.794 4.838 4.881 4.908 2.903 2.914
BMF m/v 3.973 4.656 4.731 4.787 4.819 2.715 2.852

CRPS

SPF m 0.985 1.304 1.358 1.414 1.418 0.936 1.122
SPF m/v 0.906 1.280 1.335 1.411 1.411 0.912 1.113
BMF m 1.074 1.330 1.376 1.414 1.413 0.991 1.133
BMF m/v 1.042 1.317 1.366 1.412 1.410 0.977 1.129

UNE

Coverage

SPF m 0.860 0.820 0.750 0.700 0.650
SPF m/v 0.760 0.730 0.730 0.650 0.590
BMF m 0.990 0.910 0.840 0.770 0.710
BMF m/v 0.830 0.770 0.730 0.680 0.620

Length

SPF m 0.448 0.712 0.932 1.118 1.248
SPF m/v 0.292 0.562 0.799 0.999 1.152
BMF m 0.512 0.804 1.026 1.214 1.324
BMF m/v 0.245 0.544 0.794 1.005 1.176

CRPS

SPF m 0.087 0.179 0.280 0.396 0.510
SPF m/v 0.083 0.175 0.276 0.391 0.505
BMF m 0.071 0.146 0.242 0.357 0.477
BMF m/v 0.054 0.135 0.233 0.346 0.462

INF

Coverage

SPF m 0.790 0.740 0.760 0.720 0.700 0.830 0.790
SPF m/v 0.690 0.720 0.750 0.710 0.700 0.830 0.780
BMF m 0.660 0.700 0.710 0.750 0.710 0.770 0.770
BMF m/v 0.620 0.700 0.710 0.730 0.690 0.740 0.760

Length

SPF m 2.036 2.238 2.418 2.595 2.777 1.822 2.052
SPF m/v 1.665 2.121 2.318 2.499 2.680 1.660 1.944
BMF m 2.008 2.222 2.411 2.581 2.767 1.810 2.045
BMF m/v 1.823 2.160 2.357 2.536 2.719 1.728 1.990

CRPS

SPF m 0.471 0.540 0.563 0.602 0.676 0.378 0.444
SPF m/v 0.463 0.534 0.558 0.597 0.672 0.369 0.438
BMF m 0.544 0.588 0.589 0.619 0.697 0.428 0.476
BMF m/v 0.553 0.591 0.590 0.618 0.697 0.430 0.476

TBI

Coverage

SPF m 0.970 0.810 0.680 0.600 0.470
SPF m/v 0.820 0.750 0.620 0.490 0.430
BMF m 0.990 0.820 0.700 0.620 0.530
BMF m/v 0.940 0.770 0.650 0.510 0.450

Length

SPF m 0.987 1.403 1.716 1.996 2.241
SPF m/v 0.301 0.888 1.290 1.615 1.892
BMF m 1.024 1.434 1.741 2.022 2.260
BMF m/v 0.242 0.859 1.269 1.602 1.884

CRPS

SPF m 0.159 0.343 0.530 0.715 0.898
SPF m/v 0.070 0.272 0.479 0.680 0.872
BMF m 0.152 0.328 0.511 0.694 0.876
BMF m/v 0.041 0.239 0.445 0.645 0.838

Table 4: Impact of accounting for nowcast uncertainty, complete sample (1988:Q3 – 2013:Q2). Coverage and Length refer to central
prediction intervals with a nominal level of 70 % (reported length is on average over time). CRPS reports the continuous ranked
probability score (best = lowest number printed in bold). Note that the CRPS scores are identical to those in Table 3, and are reprinted
here for ease of reference.



6 Comparisons to other combination methods

We next compare entropic tilting to two related methods that can be used for combining BVAR and

external nowcasts. We first describe these methods and then present the results of the comparison.

6.1 Jumping-off approach (Faust and Wright, 2009, 2013)

The “jumping-off” method of Faust and Wright (2009, 2013) appends the nowcast to the actual

data, thus treating it as known. Under Gaussianity, this approach is equivalent to conditional

forecasting discussed in Section 4.4. To see this, suppose that yt follows an AR(1) process, i.e.

yt = φyt−1 + εt, εt ∼ N(0, σ2). The usual h step ahead forecast distribution for yt+h is Gaussian

with mean φhyt and variance σ2
∑h−1

j=0 φ
2j . Under the jumping-off approach, the nowcast µ1 is

treated as data for period t + 1, and we form the forecast for period t + h as an (h − 1)-step

ahead forecast using the pseudo-data for t + 1. Thus, the forecast distribution is Gaussian with

mean φh−1µ1 and variance σ2
∑h−2

j=0 φ
2j . Under the Gaussian conditional forecasting approach,

the forecast for period t + h is formed under the condition that yt+1 take the nowcast value of

µ1, without any uncertainty around it. Using the more general formulas of Section 4.4, it is easily

checked (see the last section of the appendix) that this conditional forecast distribution coincides

with the jumping-off approach.

In our empirical implementation, we approximate the BVAR forecast distribution for a given

variable and dates t + 1, . . . , t + 5 via a five-variate Gaussian, and then apply the method just

illustrated, whereby the (SPF or model based) nowcast for date t+ 1 takes the role of µ1.

6.2 Soft conditioning (Waggoner and Zha, 1999)

Waggoner and Zha (1999) consider VAR forecasts that condition on a certain path for one or more

of the system variables. A key example is to forecast the evolution of inflation and output growth,

given a certain path of the federal funds rate. They also consider approximate (“soft”) conditions

which formulate a corridor for some of the system variables. Their resulting algorithm (Algorithm

2 of their paper) simply prescribes to keep the simulated forecast draws which satisfy the specified

conditions, and discard the other draws. We apply this method on a variable-by-variable basis,

and require the forecast draws for the current quarter t to lie in the interval
[
Ŷt,1 ± 1.96

√
σ̂2
t,1

]
,
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where Ŷt,1 and σ̂2
t,1 denote the nowcast mean and variance for the variable of interest. We use 5, 000

posterior draws of the BVAR parameters, as well as 20 forecast paths for each parameter draw (in

the notation of Waggoner and Zha, we thus use an oversampling rate of n2 = 20). The resulting

number of forecast paths that satisfy the nowcast condition is never below 207, and exceeds 5, 000

in about 97% of all cases.

6.3 Empirical results

Table 5 summarizes the performance of the methods in terms of RMSE and CRPS.

• Tilting performs similarly to jumping-off and soft conditioning, in that differences in RMSE

or CRPS across these methods are typically smaller than differences across nowcast types

(model based versus survey).

• In some cases, tilting attains markedly better RMSE and CRPS results than soft conditioning

at the current quarter horizon. This may be due to unrealistic behavior of the soft condi-

tioning method in case the nowcast deviates substantially from the BVAR forecast. Figure 5

provides an example, based on the current quarter distribution for GDP growth in 2008:Q4.

The soft conditioning distribution consists of 7879 draws between −5.49 and −0.38 (draws

within the rectangle on the left panel). The draws are clearly skewed toward the right end-

point of the interval. This is because they are taken from the left tail of the (roughly bell

shaped) BVAR distribution.

Overall, these results indicate that, in terms of RMSE and CRPS accuracy, the empirical perfor-

mance of tilting is competitive with, but not necessarily better than, other state of the art methods

for combining BVAR forecasts with external nowcasts. However, as described above, tilting has

other advantages, in terms of properly accounting for nowcast uncertainty, as well as flexibility.

7 Conclusion

This paper is concerned with the problem of combining forecasts from a BVAR with nowcasts

from other sources. This combination problem is non-standard, in that the BVAR implies a joint

forecast distribution for several forecast horizons, whereas the nowcast information is restricted to
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SPF Nowcasts BMF Nowcasts

Horizon 1 2 3 4 5 1 2 3 4 5

GDP

RMSE
Tilting 1.591 2.390 2.511 2.637 2.631 1.899 2.464 2.563 2.643 2.627
Soft Conditioning 1.649 2.433 2.550 2.633 2.622 2.037 2.514 2.608 2.637 2.620
Jumping-off 2.403 2.522 2.649 2.637 2.469 2.568 2.647 2.629

CRPS
Tilting 0.906 1.280 1.335 1.411 1.411 1.042 1.317 1.366 1.412 1.410
Soft Conditioning 0.972 1.302 1.359 1.408 1.407 1.125 1.343 1.390 1.407 1.406
Jumping-off 1.302 1.352 1.421 1.419 1.327 1.375 1.419 1.415

UNE

RMSE
Tilting 0.151 0.350 0.573 0.808 1.024 0.096 0.251 0.470 0.708 0.945
Soft Conditioning 0.152 0.355 0.585 0.823 1.039 0.079 0.257 0.487 0.728 0.962
Jumping-off 0.351 0.574 0.810 1.027 0.251 0.467 0.704 0.940

CRPS
Tilting 0.083 0.175 0.276 0.391 0.505 0.054 0.135 0.233 0.346 0.462
Soft Conditioning 0.086 0.176 0.281 0.399 0.515 0.046 0.134 0.238 0.354 0.474
Jumping-off 0.177 0.277 0.392 0.506 0.136 0.234 0.347 0.464

INF

RMSE
Tilting 0.809 0.915 0.973 1.029 1.144 0.985 1.027 1.050 1.075 1.196
Soft Conditioning 0.853 0.954 0.984 1.028 1.153 0.944 1.008 1.025 1.055 1.180
Jumping-off 0.915 0.974 1.030 1.144 1.025 1.050 1.074 1.195

CRPS
Tilting 0.463 0.534 0.558 0.597 0.672 0.553 0.591 0.590 0.618 0.697
Soft Conditioning 0.501 0.555 0.561 0.595 0.676 0.545 0.584 0.578 0.607 0.689
Jumping-off 0.534 0.560 0.600 0.675 0.593 0.592 0.620 0.699

TBI

RMSE
Tilting 0.132 0.514 0.854 1.162 1.450 0.073 0.457 0.800 1.112 1.402
Soft Conditioning 0.147 0.532 0.871 1.179 1.465 0.089 0.470 0.810 1.120 1.409
Jumping-off 0.518 0.860 1.170 1.459 0.460 0.807 1.121 1.412

CRPS
Tilting 0.070 0.272 0.479 0.680 0.872 0.041 0.239 0.445 0.645 0.838
Soft Conditioning 0.079 0.285 0.494 0.695 0.888 0.042 0.245 0.451 0.651 0.845
Jumping-off 0.283 0.491 0.689 0.878 0.256 0.463 0.661 0.850

Table 5: Root Mean Squared Errors and CRPS scores (the smaller, the better) for the complete
sample (1988:Q3 – 2013:Q2). Tilting is based on the small m/v variant as described below Table 3.
The best performing method in each comparison is printed in bold.
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Figure 5: Left panel: histogram of all 100, 000 BVAR draws for 2008:Q4 (current quarter forecasts).
The 7, 879 draws within the rectangle satisfy the soft condition imposed by SPF nowcasts. Right
panel: zoomed histogram for the draws that satisfy the nowcast condition. In both panels, the
vertical line marks the realizing value of −6.55.

mean and variance predictions for the current quarter. We argue that entropic tilting is a powerful

tool to tackle these challenges; unlike other methods proposed in the literature, it does not require

restrictive assumptions such as joint normality of the VAR system or zero variance of the nowcast.

In our empirical analysis, tilting systematically improves the accuracy of both point and den-

sity forecasts, and tilting the BVAR forecasts based on nowcast means and variances yields slightly

greater gains in density accuracy than does just tilting based on the nowcast means. In a compar-

ison of tilting on a variable-by-variable basis to tilting jointly toward the nowcasts for all four

variables of the BVAR, we find that the overall differences in forecast performance for the joint

treatment of variables versus the individual treatment of variables are small.

The analysis presented in this paper (in addition to results presented in the supplementary

appendix) shows that the benefits of tilting are not limited to a specific empirical setup, but hold

across a range of choices for both the external nowcast and the BVAR specification to which tilting

is applied. Finally, our analysis in Section 6 documents that the empirical performance of tilting

is competitive with, but not necessarily better than, other state of the art methods for combining

information. Given their similar empirical performance, a user’s choice of combination method

may thus depend on additional factors such as theoretical appeal, flexibility and ease of use. We

think that tilting is attractive along each of these dimensions.
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Appendix

This appendix provides details of our priors and estimation algorithms and presents some analyt-

ical derivations establishing the equivalence of the jumping off approach to Gaussian conditional

forecasting.

A Prior for BVARs with stochastic volatility

We describe in this section the priors used with the BVAR-SV models to produce quarterly forecasts

of the variables of interest and nowcasts of unemployment and the T-bill rate.

For the VAR coefficients, we use a conventional Minnesota prior, without cross-variable shrink-

age (note that i and j refer to the row and column of Bl):

µ
B

such that E[B
(ij)
l ] = 0 ∀ i, j, l, (14)

ΩB such that V [B
(ij)
l ] =

{
θ2

l2
σ2
i

σ2
j

for l > 0,

ε2σ2
i for l = 0.

(15)

Following common settings, we set θ = 0.2, ε = 1000, and the scale parameters σ2
i at estimates of

residual variances from AR(p) models from the estimation sample. With all of the variables of

our VAR models defined so that they should be stationary, we set the prior mean of all the VAR

coefficients to 0.

In the prior for the volatility-related components of the model, we use an approach to setting

them similar to that of such studies as Cogley and Sargent (2005), Primiceri (2005) and Clark (2011).

(The supplementary appendix provides evidence that our results are robust to alternative settings

of the volatility-related priors.) The prior for A is uninformative, with a mean and variance for

each row vector of µ
a,i

= 0, Ωa,i = 10002 · Ii−1, i = 2, . . . , k. We make the priors on the volatility-

related parameters loosely informative. The prior for Φ is inverted Wishart, with mean of 0.01× Ik
and k + 1 degrees of freedom. For the initial value of the log volatility of each equation i, we

use a mean of log λ̂i,0,OLS and variance of 4. To obtain log λ̂i,0,OLS , we use the residuals from AR(p)

models estimated over a training sample preceding the estimation sample. For each j = 2, . . . , k, we

regress the residual from the AR model for j on the residuals associated with variables 1 through

j − 1 and compute the error variance σ̂2
i,0. We set the prior mean of log volatility in period 0 at

log λ̂i,0,OLS = log σ̂2
i,0. For the quarterly model and the unemployment nowcasting model, the
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training sample is 1949-54; for the T-bill nowcasting model, the training sample is 1959-63. For

the quarterly model and the unemployment nowcasting model, because a handful of the data

vintages do not start until later than most others, we use the same prior mean on initial volatility

for all vintages (forecast origins), computed using the last available vintage of data.

B Prior for Bayesian mixed frequency models

We describe in this section the priors used for mixed frequency nowcasting models for GDP growth

and inflation. (The supplementary appendix provides evidence that our results are robust to al-

ternative settings of the priors detailed below.) Since the form of the prior is not dependent on

the month timing m, in spelling out the prior we drop the index m from the model parameters for

notational simplicity.

In all cases, for the coefficient vector β, we use a prior distribution that is normal, with mean 0

(for all coefficients) and variance that takes a diagonal, Minnesota-style form. The prior variance

is Minnesota style in the sense that shrinkage increases with the lag (with the quarter, not with

the month within the quarter), and in the sense that we impose more shrinkage on the monthly

predictors than on lags of GDP growth or inflation. The shrinkage is controlled by two hyperpa-

rameters (in all cases, a smaller number means more shrinkage): λ1, which controls the overall

rate of shrinkage; and λ2, which controls the rate of shrinkage on variables relative to GDP or GDP

inflation.

At each forecast origin, the prior standard deviation associated with the coefficient on variable

xi,j,t of Xt, where i denotes the indicator (employment, etc.) and j denotes the month within the

quarter t at which the indicator has been sampled, is specified as follows:

sdi,j,t =
σy
σi,j

λ1λ2. (16)

For coefficients on lag 1 of y, the prior standard deviation is

sd1 = λ1. (17)

Finally, for the intercept, the prior is uninformative:

sdint = 1000σy. (18)

In setting these components of the prior, for σy and σi,j we use standard deviations from AR(4)

models for GDP growth or inflation and xi,j,t estimated with the available sample of data.
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In all of our results, the hyperparameters are set at values that may be considered very common

in Minnesota-type priors (e.g. Litterman, 1986): λ1 = 0.2, and λ2 = 0.2.

Finally, in the prior for the volatility-related components of the model, our approach is similar

to that used in such studies as Cogley and Sargent (2005), Primiceri (2005) and Clark (2011). For

the prior on φ, we use a mean of 0.035 and 5 degrees of freedom. For the period 0 value of volatility

of each equation i, we use a prior of

µ
λ

= log λ̂0,OLS , Ωλ = 4. (19)

To obtain log λ̂0,OLS , we use a training sample of 40 observations preceding the estimation sample

to fit an AR(4) model to GDP growth or inflation.

C Algorithm for BVAR with stochastic volatility

We estimate the BVAR-SV model with a five-step Gibbs sampling algorithm. Let Xt denote the

collection of right-hand side variables of each equation of the VAR and B denote the vector of the

system of VAR coefficients contained in Bi, i = 0, . . . , p, as defined in the paper’s equation (1).

Step 1: Draw the VAR coefficients B conditional on the history of Λt, A, and Φ.

The vector of coefficients is sampled from a conditional posterior distribution that is multivari-

ate normal with mean µ̄B and variance Ω̄B , based on prior mean µ
B

and variance ΩB . Letting

Σt = A−1ΛtA
−1′, the posterior mean and variance are:

vec(µ̄B) = Ω̄B

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

B vec(µ
B

)

}
(20)

Ω̄−1
B = Ω−1

B +
T∑
t=1

(Σ−1
t ⊗XtX

′
t). (21)

Step 2: Draw the elements of A conditional on B, the history of Λt, and Φ.

Following Cogley and Sargent (2005), rewrite the VAR as

A(yt −X ′tB) = Aŷt ≡ ỹt = Λ0.5
t εt, (22)

where, conditional on B, ŷt is observable. This system simplifies to a set of i = 2, . . . , k equa-

tions, with equation i having as dependent variable ŷi,t and as independent variables −1 · ŷj,t, j =
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1, . . . . , i−1, with coefficients aij . Multiplying equation i by λ−0.5
i,t eliminates the heteroskedasticity

associated with stochastic volatility. Then, proceeding separately for each transformed equation i,

draw the i’th equation’s vector of coefficients ai (a vector containing aij for j = 1, . . . , i − 1) from

a normal posterior distribution with the mean and variance implied by the posterior mean and

variance computed in the usual way. See Cogley and Sargent (2005) for details.

Step 3: Draw the elements of the states for the mixture distribution used to approximate the χ2

distribution under the Kim, Shephard, and Chib (1998) algorithm, conditional on B, A, the history

of Λt, and Φ.

See Primiceri (2005) for details. However, we depart from Primiceri by using a 10 state approx-

imation of the χ2 distribution from Omori, Chib, Shephard, and Nakajima (2007) instead of the

7-state approximation from Kim, Shephard, and Chib (1998).

Step 4: Draw the elements of the variance matrix Λt conditional on B, A, Φ, and the mixture

states.

Following Primiceri (2005), the VAR can be rewritten as

A(yt −X ′tB) ≡ ỹt = Λ0.5
t εt,

where εt ∼ N(0, Ik). Taking logs of the squares yields

log ỹ2
i,t = log λ2

i,t + log ε2i,t, i = 1, . . . , k.

The conditional volatility process is

log(λ2
i,t) = log(λ2

i,t−1) + νi,t, i = 1, . . . , k.

The estimation of the time series of λ2
i,t uses the vector of the measured log ỹ2

i,t and Primiceri’s ver-

sion of the Kim, Shephard, and Chib (1998) algorithm; see Primiceri for further detail (we depart

from his implementation by using the Durbin and Koopman (2002) simulation smoother instead

of the one proposed by Carter and Kohn (1994)).

Step 5: Draw the variance matrix Φ, conditional on B, the history of Λt, and A.

Following Primiceri (2005), the sampling of Φ, the variance of innovations to the log variances,

is based on inverse Wishart priors and posteriors. The scale matrix of the posterior distribution

is the sum of the prior mean × the prior degrees of freedom and
∑T

t=1 ν̂tν̂
′
t, where ν̂t denotes the

vector of innovations to the posterior draw of the volatilities for the set of variables.
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D Algorithm for Bayesian mixed frequency model

The mixed frequency nowcasting model with stochastic volatility is estimated with a Metropolis-

within-Gibbs algorithm, used in such studies as Clark (2011) and Carriero, Clark, and Marcellino

(2014). The posterior mean and variance of the coefficient vector are given by

µ̄β = Ω̄β

{
T∑
t=1

λ−1
t Xtyt + Ω−1

β µ
β

}
(23)

Ω̄−1
β = Ω−1

β +
T∑
t=1

λ−1
t XtX

′
t, (24)

where we again omit the m index from the parameters for notational simplicity.

E Analytics of jumping-off approach

Denote by Σ1h the predicted covariance between 1-step and h-step ahead forecast errors (under

the standard, unconditional approach without incorporating the nowcast). Furthermore, let ŷut+h
denote the unconditional point forecast of yt+h. For Gaussian conditioning, the results of Section

4.4 imply a point forecast of

ŷct+h = ŷut+h +
Σ1h

Σ11
(µ1 − ŷut+1)

= φhyt +
φh−1σ2

σ2
(µ1 − φyt)

= φh−1µ1.

Given the nowcast condition on yt+1 (without uncertainty around it, so Ω11 = 0), the conditional

forecast error variance is given by

Ωhh = Σhh −
Σ2

1h

Σ11

= (1 + φ2 + . . .+ φ2h−2) σ2 − φ2h−2σ4

σ2

= σ2
h−2∑
j=0

φ2j ,

thus coinciding with the jumping-off approach.

42



Supplementary Appendix to “Using En-
tropic Tilting to Combine BVAR Forecasts
with External Nowcasts”

This supplementary appendix provides additional robustness results — for other combination

methods, a shorter sample period, alternative prior settings, and some additional VAR specifica-

tions — as well as some additional analysis of the effects of tilting on the forecast distributions.

1 Comparisons to other combination methods

We compare entropic tilting to two alternative methods that can be used for combining BVAR and

external forecasts; these methods are more distantly related to entropic tilting, in that they employ

external (survey) forecasts at longer horizons and not just at the current quarter horizon. We first

describe these methods and then present the results of the comparison.

1.1 Linear pooling

A number of recent papers (e.g. Geweke and Amisano, 2011) have found that linear, equally

weighted density forecast combinations are often superior to selecting a single method. Here we

consider such an approach, combining the h step ahead BVAR forecast distribution with a Gaus-

sian distribution constructed from the h step ahead SPF point forecast and its associated variance

measure (see Section 2.2 in the paper). In practice, we simply augment 5, 000 BVAR forecast draws

with 5, 000 draws from the SPF-based Gaussian distribution. We then compute the CRPS for this

sample as described in Section 5 of the paper.

1.2 Long-run prior (Wright, 2013)

Wright (2013) found that using survey forecasts to set the prior on the steady state of a VAR in

the steady state formulation of Villani (2009) and portions of the prior on the VAR coefficients
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improved significantly on the accuracy of a conventional BVAR. We also compare the accuracy

of our BVAR forecasts tilted toward nowcasts to the accuracy of Wright-type forecasts, under the

prior denoted in Wright as D4.

Augmented to include stochastic volatility as in Clark (2011) — although the Wright (2013)

specification did not include stochastic volatility, we include it to avoid giving our BVAR-SV spec-

ification an advantage — the model with the steady-state prior takes the form:

yt − µ =

p∑
i=1

Bi(yt−i − µ) + vt,

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt ≡ diag(λ1,t, . . . , λk,t),

log(λi,t) = log(λi,t−1) + νi,t, i = 1, . . . , k,

νt ≡ (ν1,t, ν2,t, . . . , νk,t)
′ ∼ N(0,Φ),

where µ is a vector of constants containing steady-state means.

In setting the prior on the VAR coefficients and µ, we follow Wright’s usage of information from

the Blue Chip consensus, along with his implementation. At each forecast origin, the prior mean

on the steady states of µ are set to the 6-10 year ahead forecast from Blue Chip. The prior variance

for each steady state is set to be proportional to the difference between the top 10 and bottom 10

forecasts from Blue Chip. The prior mean on each AR(1) coefficient is set at the value implied by

the quarterly forecasts available in each Blue Chip survey, obtained by solving the minimization

problem described by Wright. The priors used at each forecast origin vary with the information

in the associated Blue Chip survey available at that time. Finally, the overall tightness of the prior

on the VAR coefficients is set at the same value (0.2) used in our baseline BVAR-SV specification.3

The priors on the volatility-portion of the model are set just as they are for our baseline BVAR-SV

model.

1.3 Empirical results

Table 1 summarizes the performance of the methods in terms of RMSE and CRPS.

• At the current quarter horizon, linear pooling performs worse than the nowcast based meth-

3Wright (2013) uses a tighter prior, but his model is larger than ours, and it is common in the literature to use tighter
priors for larger models than smaller.
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ods. At longer horizons, the performance of nowcast based methods versus linear pooling is

more mixed. For GDP and inflation, linear pooling performs clearly better, which seems to

be due to the increased accuracy of the SPF distribution (compared to the BVAR) at horizons

beyond the current quarter. For T-bill and unemployment, the methods using SPF nowcasts

perform similar to linear pooling.

• Targeting a long-run prior mean performs clearly worse than tilting, except for inflation at

horizons 3 to 5.

2 Results for the pre-crisis period

Tables 2 is the analogue of the paper’s Table 3, covering the pre-crisis sample (1988:Q3–2007:Q4)

instead of the complete sample (1988:Q3–2013:Q2). Similarly, Table 3 is the pre-crisis analogue of

Table 4. Broadly, results for the pre-crisis sample are very similar to those for the full sample.
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SPF Nowcasts

Horizon 1 2 3 4 5

GDP

RMSE
Tilting 1.591 2.390 2.511 2.637 2.631
Linear Pooling 1.803 2.114 2.279 2.368 2.378
Wright Prior 2.322 2.581 2.657 2.668 2.671

CRPS
Tilting 0.906 1.280 1.335 1.411 1.411
Linear Pooling 0.982 1.138 1.230 1.281 1.291
Wright Prior 1.236 1.373 1.410 1.419 1.427

UNE

RMSE
Tilting 0.151 0.350 0.573 0.808 1.024
Linear Pooling 0.175 0.364 0.559 0.767 0.957
Wright Prior 0.229 0.455 0.697 0.937 1.151

CRPS
Tilting 0.083 0.175 0.276 0.391 0.505
Linear Pooling 0.089 0.177 0.271 0.378 0.482
Wright Prior 0.116 0.214 0.323 0.439 0.553

INF

RMSE
Tilting 0.809 0.915 0.973 1.029 1.144
Linear Pooling 0.841 0.913 0.932 0.985 1.076
Wright Prior 0.935 0.969 0.956 0.956 1.047

CRPS
Tilting 0.463 0.534 0.558 0.597 0.672
Linear Pooling 0.481 0.527 0.535 0.574 0.633
Wright Prior 0.533 0.562 0.547 0.560 0.620

TBI

RMSE
Tilting 0.132 0.514 0.854 1.162 1.450
Linear Pooling 0.246 0.578 0.898 1.208 1.503
Wright Prior 0.381 0.725 1.029 1.308 1.555

CRPS
Tilting 0.070 0.272 0.479 0.680 0.872
Linear Pooling 0.110 0.309 0.510 0.708 0.896
Wright Prior 0.203 0.405 0.597 0.776 0.944

Table 1: Root Mean Squared Errors and CRPS scores (the smaller, the better) for the complete
sample (1988:Q3 – 2013:Q2). Tilting is based on the small m/v variant as described below the
paper’s Table 3. The best performing method in each comparison is printed in bold.
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Forecast Horizon 1 2 3 4 5 4* 5*

GDP

RMSE

raw 1.975 2.039 2.009 1.991 1.973 1.442 1.452
SPF small m 1.580∗ 1.982 1.958 2.038 2.026 1.232∗ 1.459
SPF small m/v 1.580∗ 1.961 1.950∗ 2.026∗ 2.010 1.225∗ 1.440
SPF big m 1.580∗ 1.986 2.011 2.028 1.950 1.231 1.447
SPF big m/v 1.587∗ 1.994 1.958 2.012 1.996 1.225 1.427
BMF small m 1.682 1.973 1.967 2.033 2.011 1.252 1.450
BMF small m/v 1.682 1.960∗ 1.963 2.019 2.000 1.249 1.440
BMF big m 1.682 1.978 2.076 2.089 1.988 1.301 1.494
BMF big m/v 1.679∗ 1.988 2.013 2.060 2.020 1.291 1.473

CRPS

raw 1.123 1.156 1.142 1.134 1.132 0.826 0.832
SPF small m 0.934∗∗ 1.131 1.120 1.155∗ 1.152∗ 0.725 0.830
SPF small m/v 0.900∗∗ 1.116 1.110∗ 1.154∗ 1.149 0.710 0.825
SPF big m 0.942∗∗ 1.146 1.146 1.158 1.116 0.731 0.826
SPF big m/v 0.904∗ 1.133 1.122 1.150 1.133 0.713 0.825
BMF small m 0.980∗ 1.128 1.126 1.150 1.147 0.735 0.827
BMF small m/v 0.956∗ 1.117∗ 1.119∗ 1.147 1.145 0.722 0.824
BMF big m 0.993∗ 1.138 1.174 1.183∗ 1.136 0.767 0.852
BMF big m/v 0.954∗ 1.127 1.142 1.180 1.153 0.744 0.846

UNE

RMSE

raw 0.157 0.274 0.398 0.511 0.605
SPF small m 0.125∗ 0.239 0.352 0.468 0.567
SPF small m/v 0.125∗ 0.240 0.353 0.468 0.565
SPF big m 0.125∗ 0.230∗ 0.333∗ 0.447 0.552
SPF big m/v 0.125∗ 0.230∗ 0.334∗ 0.446 0.545
BMF small m 0.095∗∗ 0.195∗ 0.305∗ 0.414∗ 0.517∗

BMF small m/v 0.096∗∗ 0.191∗ 0.295∗ 0.407∗ 0.509∗

BMF big m 0.095∗∗ 0.182∗ 0.282∗∗ 0.394∗ 0.502∗

BMF big m/v 0.096∗∗ 0.172∗∗ 0.272∗∗ 0.388∗ 0.498∗

CRPS

raw 0.089 0.152 0.222 0.290 0.351
SPF small m 0.074∗∗ 0.137∗ 0.200 0.268 0.329
SPF small m/v 0.070∗∗ 0.133∗ 0.197 0.268 0.329
SPF big m 0.076∗ 0.135∗ 0.194∗ 0.260 0.323
SPF big m/v 0.069∗∗ 0.127∗∗ 0.186∗ 0.253 0.316
BMF small m 0.064∗∗ 0.122∗ 0.182∗ 0.244∗ 0.303∗

BMF small m/v 0.054∗∗ 0.110∗ 0.169∗ 0.233∗ 0.293∗

BMF big m 0.066∗∗ 0.121∗ 0.176∗ 0.239∗ 0.300∗

BMF big m/v 0.054∗∗ 0.103∗∗ 0.159∗∗ 0.224∗∗ 0.289∗

Table 2: Empirical results for entropic tilting, pre-crisis sample (1988:Q3 – 2007:Q4). Design of the table
corresponds to the paper’s Table 3.
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Forecast Horizon 1 2 3 4 5 4* 5*

INF

RMSE

raw 0.876 0.996 0.969 1.007 1.134 0.696 0.782
SPF small m 0.767∗ 0.921∗∗ 0.943 0.997 1.110 0.633 0.745
SPF small m/v 0.767∗ 0.919∗∗ 0.942 0.996 1.110 0.632 0.744
SPF big m 0.767∗ 0.913∗ 0.954 0.991 1.107 0.628 0.740
SPF big m/v 0.766∗ 0.917∗ 0.947 0.980 1.103 0.624 0.741
BMF small m 0.861 1.025 0.999 1.019 1.141 0.725 0.805
BMF small m/v 0.861 1.026 1.000 1.020 1.143 0.726 0.806
BMF big m 0.861 1.005 1.011 1.021 1.149 0.718 0.801
BMF big m/v 0.859 1.008 0.994 1.004 1.127 0.713 0.792

CRPS

raw 0.504 0.571 0.548 0.585 0.661 0.400 0.453
SPF small m 0.445∗ 0.533∗∗ 0.540 0.579 0.650 0.373 0.438
SPF small m/v 0.436∗ 0.529∗∗ 0.537 0.577 0.648 0.366 0.434
SPF big m 0.446∗ 0.534∗ 0.545 0.578 0.652 0.373 0.438
SPF big m/v 0.435∗ 0.531∗ 0.537 0.565 0.643 0.361 0.430
BMF small m 0.490 0.580 0.559 0.589 0.664 0.410 0.463
BMF small m/v 0.494 0.583 0.560 0.588 0.665 0.412 0.463
BMF big m 0.493 0.576 0.570∗ 0.595 0.667 0.412 0.465
BMF big m/v 0.492 0.579 0.557 0.578 0.655 0.405 0.455

TBI

RMSE

raw 0.406 0.750 1.027 1.269 1.481
SPF small m 0.133∗∗ 0.523∗∗ 0.842∗∗ 1.120∗∗ 1.363∗∗

SPF small m/v 0.132∗∗ 0.505∗∗ 0.824∗∗ 1.099∗∗ 1.343∗∗

SPF big m 0.133∗∗ 0.518∗∗ 0.828∗∗ 1.098∗∗ 1.337∗

SPF big m/v 0.133∗∗ 0.507∗∗ 0.823∗∗ 1.092∗∗ 1.333∗

BMF small m 0.066∗∗ 0.478∗∗ 0.815∗∗ 1.101∗∗ 1.345∗∗

BMF small m/v 0.067∗∗ 0.458∗∗ 0.793∗∗ 1.076∗∗ 1.323∗∗

BMF big m 0.066∗∗ 0.486∗∗ 0.782∗∗ 1.041∗∗ 1.283∗∗

BMF big m/v 0.066∗∗ 0.449∗∗ 0.777∗∗ 1.045∗∗ 1.291∗∗

CRPS

raw 0.214 0.413 0.586 0.741 0.885
SPF small m 0.157∗∗ 0.337∗∗ 0.508∗∗ 0.669∗∗ 0.819∗∗

SPF small m/v 0.068∗∗ 0.268∗∗ 0.461∗∗ 0.637∗∗ 0.796∗∗

SPF big m 0.158∗∗ 0.332∗∗ 0.497∗∗ 0.653∗∗ 0.800∗∗

SPF big m/v 0.071∗∗ 0.270∗∗ 0.461∗∗ 0.634∗∗ 0.789∗∗

BMF small m 0.150∗∗ 0.325∗∗ 0.498∗∗ 0.660∗∗ 0.811∗∗

BMF small m/v 0.040∗∗ 0.241∗∗ 0.438∗∗ 0.617∗∗ 0.778∗∗

BMF big m 0.155∗∗ 0.324∗∗ 0.478∗∗ 0.626∗∗ 0.773∗∗

BMF big m/v 0.046∗∗ 0.238∗∗ 0.427∗∗ 0.594∗∗ 0.752∗∗

Table 2: continued.
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Forecast Horizon 1 2 3 4 5 4* 5*

GDP

Coverage

SPF m 0.846 0.705 0.731 0.718 0.718 0.667 0.641
SPF m/v 0.731 0.679 0.705 0.705 0.718 0.641 0.641
BMF m 0.795 0.731 0.718 0.705 0.705 0.667 0.641
BMF m/v 0.705 0.692 0.718 0.705 0.705 0.667 0.641

Length

SPF m 4.736 4.446 4.498 4.553 4.593 2.658 2.652
SPF m/v 3.372 4.302 4.377 4.439 4.491 2.421 2.584
BMF m 4.586 4.414 4.453 4.508 4.555 2.615 2.629
BMF m/v 3.790 4.313 4.378 4.436 4.483 2.473 2.585

CRPS

SPF m 0.934 1.131 1.120 1.155 1.152 0.725 0.830
SPF m/v 0.900 1.116 1.110 1.154 1.149 0.710 0.825
BMF m 0.980 1.128 1.126 1.150 1.147 0.735 0.827
BMF m/v 0.956 1.117 1.119 1.147 1.145 0.722 0.824

UNE

Coverage

SPF m 0.859 0.833 0.756 0.718 0.654
SPF m/v 0.833 0.756 0.744 0.654 0.615
BMF m 0.987 0.910 0.872 0.808 0.769
BMF m/v 0.833 0.821 0.744 0.705 0.679

Length

SPF m 0.392 0.626 0.815 0.977 1.088
SPF m/v 0.275 0.513 0.721 0.893 1.025
BMF m 0.450 0.693 0.870 1.036 1.141
BMF m/v 0.239 0.489 0.705 0.886 1.027

CRPS

SPF m 0.074 0.137 0.200 0.268 0.329
SPF m/v 0.070 0.133 0.197 0.268 0.329
BMF m 0.064 0.122 0.182 0.244 0.303
BMF m/v 0.054 0.110 0.169 0.233 0.293

INF

Coverage

SPF m 0.795 0.718 0.744 0.705 0.705 0.795 0.756
SPF m/v 0.718 0.692 0.731 0.692 0.705 0.795 0.744
BMF m 0.679 0.705 0.705 0.744 0.705 0.744 0.756
BMF m/v 0.628 0.705 0.705 0.718 0.679 0.731 0.744

Length

SPF m 1.893 2.074 2.243 2.408 2.574 1.685 1.898
SPF m/v 1.602 1.988 2.171 2.339 2.505 1.564 1.820
BMF m 1.869 2.062 2.240 2.398 2.566 1.680 1.897
BMF m/v 1.732 2.021 2.205 2.372 2.540 1.626 1.864

CRPS

SPF m 0.445 0.533 0.540 0.579 0.650 0.373 0.438
SPF m/v 0.436 0.529 0.537 0.577 0.648 0.366 0.434
BMF m 0.490 0.580 0.559 0.589 0.664 0.410 0.463
BMF m/v 0.494 0.583 0.560 0.588 0.665 0.412 0.463

TBI

Coverage

SPF m 0.962 0.782 0.641 0.564 0.462
SPF m/v 0.808 0.705 0.564 0.449 0.423
BMF m 0.987 0.782 0.667 0.590 0.513
BMF m/v 0.936 0.731 0.603 0.474 0.436

Length

SPF m 0.935 1.284 1.542 1.775 1.979
SPF m/v 0.263 0.812 1.168 1.450 1.684
BMF m 0.973 1.302 1.553 1.786 1.988
BMF m/v 0.238 0.805 1.165 1.449 1.683

CRPS

SPF m 0.157 0.337 0.508 0.669 0.819
SPF m/v 0.068 0.268 0.461 0.637 0.796
BMF m 0.150 0.325 0.498 0.660 0.811
BMF m/v 0.040 0.241 0.438 0.617 0.778

Table 3: Impact of accounting for nowcast uncertainty, pre-crisis sample (1988:Q3 – 2007:Q4).
Design of the table corresponds to the paper’s Table 4.

7



3 Prior robustness checks for nowcast models

In general, as documented in the paper, our broad results on tilting apply with nowcasts obtained

from both the Survey of Professional Forecasters and the nowcasting models detailed in the paper.

We have further verified the robustness of our results by comparing the accuracy of our model-

based nowcasts obtained under prior specifications that differ from those of the baseline.

Mixed frequency models for GDP growth and inflation

In the mixed frequency models for GDP growth and inflation, we set the hyperparameters con-

trolling shrinkage on the regression coefficients at values that may be considered very common

in Minnesota-type priors: λ1 = 0.2 and λ2 = 0.2. For the baseline prior on φ, the mean is 0.035

and the degrees of freedom equal 5. In the present appendix we also consider three alternative

specifications of the prior, as follows.

• alternative prior 1: λ1 = 0.2, λ2 = 0.2; prior mean on φ = 0.01

• alternative prior 2: λ1 = 0.2, λ2 = 0.2; prior mean on φ = 0.0001

• alternative prior 3: λ1 and λ2 optimized in real time to maximize the marginal likelihood of

the corresponding constant volatility version of the mixed frequency model estimated with

data available up to each forecast origin; prior mean on φ = 0.035.

Whereas the baseline prior sets the mean for the variance of volatility innovations at the value

used in Carriero, Clark, and Marcellino (2014), alternative prior 1 covers the baseline prior mean

we use in the VARs (see below), and alternative prior 2 covers the much lower mean for variances

of volatility innovations considered in such studies as Cogley and Sargent (2005), Primiceri (2005),

and D’Agostino, Gambetti, and Giannone (2013). In contrast to the setting of λ1 and λ2 at typical

Minnesota prior-like values, alternative prior 3 sets the hyperparameters to maximize model fit as

measured by the marginal likelihood. Carriero, Clark, and Marcellino (2014) reported considering

the choice of hyperparameters to instead maximize model fit as measured by past forecast accuracy

(RMSE).
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Monthly VARs for unemployment and T-bill

In the baseline VAR models at the monthly frequency used to nowcast the unemployment rate

and T-bill rate, for the volatility portion of the model, the prior for A is uninformative, with a

mean and variance for each row vector of µ
a,i

= 0, Ωa,i = 10002 · Ii−1, i = 2, . . . , k, and the prior

for Φ is inverted Wishart, with mean of 0.01 × Ik and k + 1 degrees of freedom. In this appendix,

we consider three alternative specifications of the prior for the volatility portion of the model, as

follows.

• alternative prior 1: prior mean of Φ = 0.0001× Ik; prior on A same as in the baseline

• alternative prior 2: prior mean of Φ = 0.035× Ik; prior on A same as in the baseline

• alternative prior 3: prior mean of Φ = 0.01 × Ik; for each row i of A, i = 2, . . . , k, the prior

mean is set to estimates obtained from OLS regressions over the training sample preceding

the estimation sample, and the prior variance is set to 10 · Ii−1.

As noted in the paper, the baseline prior follows Cogley and Sargent (2005) and others in mak-

ing the prior on A uninformative and Clark (2011), among others, in setting the prior on Φ to

assume for a decent amount of time variation in volatility. Alternative priors 1 and 2 keep the

prior on A uninformative and cover the much lower mean for Φ considered in such studies as

Cogley and Sargent (2005) as well as the higher mean allowed in Clark (2011). Alternative prior 3

retains the baseline setting for the prior on Φ and makes the prior onAmodestly informative, with

a mean obtained from OLS estimates over a training sample.

Empirical results

Table 4 compares the point (RMSE) and density (CRPS) forecast accuracy of model-based nowcasts

under the baseline and alternative priors, for the full sample of 1988:Q3–2013:Q2. For the BVAR-SV

models at the monthly frequency used to nowcast unemployment and the T-bill rate, the results

are very clear: the alternative priors yield results that are pretty much exactly the same as the

baseline results, for both RMSE and CRPS accuracy. With these models, the estimation sample is

relatively large due to the monthly frequency, helping reduce sensitivity to prior. For the mixed

frequency models used to nowcast GDP growth and inflation, adjusting the prior can have some
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effect on the results, but the effects are not large, and they can differ across variables. Reducing

the prior mean of Φ from 0.035 (baseline) to 0.01 (alternative prior 1) has very little effect on the

RMSE and CRPS accuracy of growth and inflation forecasts. Further reducing the prior mean of Φ

to a very low level of 0.0001 (alternative prior 2) slightly reduces accuracy as measured by RMSE

and CRPS, for both growth and inflation. Setting the shrinkage hyperparameters to maximize the

marginal likelihood (alternative prior 3) has mixed effects, modestly reducing the accuracy of GDP

growth forecasts and modestly increasing the accuracy of inflation forecasts.

RMSE

prior specification GDP UNE INF TBI
baseline 1.899 0.095 0.985 0.072
alt. prior 1 1.898 0.095 0.988 0.072
alt. prior 2 1.909 0.095 1.026 0.072
alt. prior 3 2.025 0.096 0.897 0.072

CRPS

prior specification GDP UNE INF TBI
baseline 1.048 0.053 0.554 0.035
alt. prior 1 1.046 0.053 0.556 0.035
alt. prior 2 1.082 0.053 0.580 0.035
alt. prior 3 1.128 0.054 0.506 0.035

Table 4: RMSEs and CRPS scores (the smaller, the better) for model-based nowcasts obtained under
alternative prior specifications. The sample is the complete sample (1988:Q3 – 2013:Q2).

4 Applying tilting to alternative BVAR specifications

In our main analysis, we apply entropic tilting to predictive samples from a Bayesian VAR with

stochastic volatility and prior distributions as presented in the paper’s appendix. A natural ques-

tion is whether tilting is similarly beneficial when applied to MCMC output from other specifica-

tions. To answer this question, we consider the following alternatives:

• The Bayesian VAR used in the main text, but with three alternative prior specifications, as

follows:

– alternative prior 1: prior mean of Φ = 0.0001× Ik; prior on A same as in the baseline

– alternative prior 2: prior mean of Φ = 0.035× Ik; prior on A same as in the baseline
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– alternative prior 3: prior mean of Φ = 0.01 × Ik; for each row i of A, i = 2, . . . , k, the

prior mean is set to estimates obtained from OLS regressions over the training sample

preceding the estimation sample, and the prior variance is set to 10 · Ii−1.

• A time-varying parameter VAR(2), as detailed below

• The Wright (2013) model as described in Section 1.2 above

To ease computational burden, we use an MCMC sample size of 5, 000 forecast draws (rather than

5 × 5, 000 draws, as in the main results). As documented in Section 5 below, differences across

these two sample sizes tend to be very small.

Regarding the VAR with time-varying parameters and stochastic volatility, let Xt denote the

collection of right-hand side variables of each equation of the VAR and Bt denote the period t

value of the vector of all VAR coefficients (of dimension k(kp + 1) × 1). The VAR-TVP-SV model

takes the form given in Cogley and Sargent (2005):

yt = X
′
tBt + vt,

Bt = Bt−1 + nt, var(nt) = Q,

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt ≡ diag(λ1,t, . . . , λk,t), (1)

log(λi,t) = log(λi,t−1) + νi,t, i = 1, . . . , k,

νt ≡ (ν1,t, ν2,t, . . . , νk,t)
′ ∼ N(0,Φ),

whereA is a lower triangular matrix with ones on the diagonal and non-zero coefficients below the

diagonal. The VAR coefficients follow random walk processes, with innovations that are allowed

to be correlated across coefficients. The volatility portion of the VAR-TVP-SV model is the same

as that of the baseline VAR specification used in the paper. Priors are set as detailed in Clark and

Ravazzolo (2015).

For each of the specifications, Table 5 presents results on the impact of tilting. The table re-

ports the (RMSE or CRPS) difference between the raw BVAR output and the small m/v variant of

tilting. A positive difference means that tilting improves forecast performance. The table shows

that applying tilting to all of the specifications is generally beneficial, except for GDP at the longest

horizons, and for inflation using model nowcasts. Across all specifications, model nowcasts are

more effective in the case of unemployment and T-bill, whereas SPF nowcasts are more effective

for GDP and inflation. As regards the magnitude of the effects of tilting, there is no clear pattern
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regarding which specification benefits most, with each specification attaining the largest benefits

in a number of occasions (indicated by boldface printing in Table 5). In summary, the results from

our main analysis are robust across a range of BVAR specifications to which tilting can be applied.

5 Analysis of tilting weights

As illustrated in Section 4.5 of the paper, the tilting weights are fairly unequal in some instances.

This appendix provides some additional discussion of this issue and its potential consequences.

For concreteness, the analysis in this section focuses on model based nowcasts and tilting towards

the mean and variance (m/v).

Figure 1 visualizes the inequality of the tilting weights obtained at different forecast origin

dates. Denote by Π∗t = {π∗t,(i)}
I
i=1 the ordered set of tilting weights at date t, such that πt,(1) is the

smallest weight and πt,(I) is the largest weight. The figure plots the Gini index,

Gt =
2
∑I

i=1 i πt,(i)

I
∑I

i=1 πt,(i)
− I + 1

I
,

against time t. Note that Gt = 0 corresponds to perfect equality and Gt = 1 corresponds to perfect

inequality.

The figure shows that the big tilting variant (jointly targeting the nowcasts of all variables)

produces the most unequal weight distributions (Gini coefficients exceed 0.5 for most dates). This

is as expected from the example in Section 4.5. Among the small variants, we find that the tilting

weights are most unequal for the T-bill rate and fairly equal for inflation. This suggests that the

nowcast-implied moment conditions are “further away” from the BVAR for the T-bill rate than for

inflation. Furthermore, the figure shows that the Gini coefficients are positively correlated over

time.

A natural question is whether highly unequal tilting weights degrade the numerical perfor-

mance of tilting, due to the reduced effective size of the tilted sample. To investigate this issue, we

analyze forecast performance under two different sizes of the simulated sample to which tilting

is applied: The setup from the main analysis (25, 000 draws, composed of 5, 000 parameter draws

times five forecast draws per parameter draw), and a reduced sample (5, 000 parameter draws,

composed of a single forecast draw per parameter draw). Figure 2 provides a graphical illustra-

tion of the differences in RMSE and CRPS (averaged over the complete sample period). The figure
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SPF Nowcasts BMF Nowcasts

Horizon 1 2 3 4 5 1 2 3 4 5

GDP

∆ RMSE

Basic BVAR-SV 0.799 0.199 0.145 0.002 -0.014 0.490 0.126 0.092 -0.003 -0.010
Alt. Prior 1 0.847 0.216 0.148 -0.004 -0.029 0.539 0.143 0.100 -0.003 -0.015
Alt. Prior 2 0.796 0.202 0.144 -0.022 -0.011 0.488 0.119 0.094 -0.015 -0.012
Alt. Prior 3 0.794 0.190 0.139 -0.007 -0.014 0.485 0.122 0.094 -0.008 -0.013
TVPSV 0.706 0.120 0.136 0.015 0.010 0.398 0.050 0.065 0.005 -0.001
Wright 0.732 0.261 0.173 0.030 0.020 0.423 0.166 0.115 0.021 0.013

∆ CRPS

Basic BVAR-SV 0.368 0.100 0.078 -0.003 -0.008 0.232 0.063 0.048 -0.004 -0.007
Alt. Prior 1 0.391 0.103 0.076 -0.007 -0.016 0.251 0.070 0.052 -0.003 -0.010
Alt. Prior 2 0.368 0.097 0.079 -0.013 -0.011 0.229 0.061 0.049 -0.009 -0.009
Alt. Prior 3 0.363 0.091 0.076 -0.007 -0.013 0.227 0.060 0.049 -0.006 -0.010
TVPSV 0.300 0.060 0.074 0.007 -0.002 0.165 0.024 0.037 0.001 -0.007
Wright 0.329 0.123 0.093 0.011 0.006 0.192 0.083 0.061 0.010 0.003

UNE

∆ RMSE

Basic BVAR-SV 0.084 0.114 0.132 0.131 0.123 0.139 0.213 0.236 0.232 0.202
Alt. Prior 1 0.083 0.114 0.135 0.135 0.126 0.141 0.197 0.240 0.231 0.182
Alt. Prior 2 0.085 0.115 0.134 0.134 0.125 0.141 0.212 0.244 0.260 0.230
Alt. Prior 3 0.083 0.113 0.131 0.130 0.119 0.140 0.181 0.166 0.130 0.033
TVPSV 0.067 0.074 0.085 0.080 0.074 0.122 0.172 0.201 0.213 0.207
Wright 0.078 0.109 0.133 0.136 0.129 0.134 0.224 0.270 0.277 0.254

∆ CRPS

Basic BVAR-SV 0.034 0.042 0.057 0.062 0.064 0.063 0.082 0.099 0.107 0.107
Alt. Prior 1 0.033 0.042 0.057 0.062 0.065 0.064 0.077 0.097 0.103 0.095
Alt. Prior 2 0.034 0.043 0.059 0.063 0.066 0.063 0.083 0.101 0.117 0.118
Alt. Prior 3 0.033 0.041 0.056 0.061 0.062 0.062 0.077 0.086 0.087 0.074
TVPSV 0.029 0.022 0.028 0.029 0.033 0.058 0.063 0.072 0.085 0.089
Wright 0.033 0.041 0.056 0.063 0.067 0.062 0.089 0.106 0.117 0.120

INF

∆ RMSE

Basic BVAR-SV 0.128 0.081 0.039 0.022 0.027 -0.047 -0.031 -0.038 -0.024 -0.025
Alt. Prior 1 0.129 0.081 0.038 0.022 0.023 -0.046 -0.035 -0.044 -0.026 -0.027
Alt. Prior 2 0.130 0.080 0.042 0.020 0.026 -0.045 -0.029 -0.037 -0.021 -0.024
Alt. Prior 3 0.129 0.080 0.040 0.018 0.024 -0.047 -0.031 -0.039 -0.024 -0.026
TVPSV 0.079 0.055 0.017 -0.003 0.002 -0.096 -0.022 -0.015 -0.001 -0.002
Wright 0.126 0.085 0.034 0.000 0.009 -0.049 -0.034 -0.045 -0.040 -0.042

∆ CRPS

Basic BVAR-SV 0.076 0.045 0.017 0.013 0.015 -0.014 -0.012 -0.015 -0.008 -0.010
Alt. Prior 1 0.081 0.044 0.016 0.014 0.014 -0.011 -0.016 -0.017 -0.008 -0.011
Alt. Prior 2 0.078 0.044 0.018 0.012 0.015 -0.012 -0.012 -0.014 -0.008 -0.009
Alt. Prior 3 0.077 0.044 0.017 0.011 0.014 -0.014 -0.013 -0.015 -0.009 -0.010
TVPSV 0.050 0.030 0.008 -0.002 0.002 -0.039 -0.007 -0.001 0.001 -0.001
Wright 0.072 0.047 0.013 0.000 0.005 -0.018 -0.013 -0.018 -0.017 -0.017

TBI

∆ RMSE

Basic BVAR-SV 0.273 0.242 0.203 0.174 0.141 0.333 0.299 0.256 0.225 0.190
Alt. Prior 1 0.271 0.244 0.210 0.181 0.141 0.330 0.302 0.264 0.236 0.193
Alt. Prior 2 0.274 0.242 0.203 0.173 0.140 0.334 0.298 0.257 0.227 0.191
Alt. Prior 3 0.274 0.243 0.206 0.178 0.142 0.334 0.299 0.259 0.227 0.190
TVPSV 0.216 0.198 0.181 0.172 0.136 0.276 0.268 0.253 0.240 0.201
Wright 0.249 0.234 0.207 0.180 0.145 0.309 0.292 0.263 0.234 0.198

∆ CRPS

Basic BVAR-SV 0.144 0.147 0.132 0.114 0.098 0.173 0.180 0.166 0.149 0.132
Alt. Prior 1 0.144 0.148 0.134 0.117 0.100 0.174 0.180 0.166 0.153 0.135
Alt. Prior 2 0.144 0.148 0.132 0.115 0.099 0.173 0.180 0.167 0.153 0.134
Alt. Prior 3 0.144 0.148 0.132 0.115 0.099 0.173 0.179 0.166 0.149 0.132
TVPSV 0.113 0.120 0.116 0.108 0.092 0.142 0.160 0.159 0.152 0.135
Wright 0.133 0.143 0.133 0.118 0.104 0.162 0.176 0.167 0.153 0.139

Table 5: Performance improvements through tilting, for various baseline specifications. For each specifica-
tion, the table reports the (RMSE or CRPS) difference between the raw and tilted BVAR. Positive numbers
indicate that tilting improves forecast performance. Results refer to the “small m/v” variant of tilting and
the complete sample period (1988:Q3 to 2013:Q2). The specification for which tilting yields the largest im-
provement is printed in bold.
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Figure 1: Gini coefficients plotted against time (forecast origin date), for tilting based on model
nowcast means and variances (small m/v).

shows that the differences are very small, and mostly (but not always) in favor of the larger sample

size.
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Figure 2: Average RMSE and CRPS for the small sample (5,000 draws, represented by crosses, ”x”)
and the large sample (5× 5,000 draws, represented by plus signs, ”+”), for the complete evaluation
period (1988:Q3 to 2013:Q2). Tilting is based on model nowcasts and the small m/v variant.
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