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Abstract

Can there be too much trading in financial markets? To address this question,

we construct a dynamic general equilibrium model, where agents face idiosyncratic

preference and technology shocks. A financial market allows agents to adjust their

portfolio of liquid and illiquid assets in response to these shocks. The opportunity to

do so reduces the demand for the liquid asset and, hence, its value. The optimal policy

response is to restrict (but not eliminate) access to the financial market. The reason for

this result is that the portfolio choice exhibits a pecuniary externality: An agent does

not take into account that by holding more of the liquid asset, he not only acquires

additional insurance but also marginally increases the value of the liquid asset which

improves insurance for other market participants.

1 Introduction

Policy makers sometimes propose and implement measures that prevent agents readjusting

their portfolios frequently. A case in point are holding periods or differential tax treatments,

where capital gains taxes depend on the holding period of an asset. Such policies raise a

basic question: Can it be optimal to increase frictions in financial markets in order to

reduce the frequency of trading? Or, to phrase this question differently: Can the frequency

at which agents trade in financial markets be too high from a societal point of view?

The main message of our paper is that restricting access to financial markets can be

welfare-improving. At first, this result seems to be counter-intuitive: How can it be possible

that agents are better-off in a less flexible environment? The reason for this result is that

in our environment the portfolio choices of agents exhibit a pecuniary externality. This

externality can be so strong that the optimal policy response is to reduce the frequency at
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which agents can trade in financial markets; i.e., we provide an example of an environment,

where degreasing the wheels of finance is optimal.

We derive this result in a dynamic general equilibrium model with two nominal assets:

a liquid asset and an illiquid asset.1 By liquid (illiquid), we mean that the asset can be

used (cannot be used) as a medium of exchange in goods market trades.2 Agents face

idiosyncratic liquidity shocks, which generate an ex-post inefficiency in that some agents

have "idle" liquidity holdings, while others are liquidity-constrained in the goods market.

This inefficiency generates an endogenous role for a financial market, where agents can

trade the liquid for the illiquid asset before trading in the goods market. We show that

restricting (but not eliminating) access to this market can be welfare-improving.

The basic mechanism generating this result is as follows. The financial market has two

effects. On the one hand, by reallocating the liquid asset to those agents who have an

immediate need for it, it provides insurance against the idiosyncratic liquidity shocks. On

the other hand, by insuring agents against the idiosyncratic liquidity shocks, it reduces the

demand for the liquid asset ex-ante and thus decreases its value. This effect can be so strong

that it dominates the benefits provided by the financial market in reallocating liquidity.

In a sense made precise in the paper, the financial market allows market participants to

free-ride on the liquidity holdings of other participants. An agent does not take into account

that by holding more of the liquid asset he not only acquires additional insurance against

his own idiosyncratic liquidity risks, but he also marginally increases the value of the liquid

asset which improves insurance for other market participants. This pecuniary externality

can be corrected by restricting, but not eliminating, access to this financial market.

Our framework is related to the literature that studies the societal benefits of illiquid

government bonds, which started with Kocherlakota’s (2003) observation that if government

money and government bonds are equally liquid, they should trade at par, since the latter

constitutes a risk-free nominal claim against future money. In practice, though, government

bonds trade at a discount, indicating that they are less liquid than money.3 Kocherlakota’s

surprising answer to this observation is that it is socially beneficial that bonds are illiquid.

1Our basic framework is the divisible money model developed in Lagos and Wright (2005). The main

departure from this framework is that we add government bonds and a secondary bond market, where agents

can trade bonds for money after experiencing an i.i.d. liquidity shock.
2We call an asset that can be exchanged for consumption goods liquid and one that cannot be exchanged

illiquid. In our model, the liquid asset is fiat money and the illiquid asset is a one-period government bond.

The fact that government bonds cannot be used as a medium of exchange to acquire consumption goods

is the consequence of certain assumptions that we impose on our environment as explained in the main

discourse of this paper.
3According to Andolfatto (2011, p.133), the illiquidity of bonds "is commonly explained by the fact that

bonds possess physical or legal characteristics that render them less liquid than money ... which raises

the question of what purpose it might serve to issue two nominally risk-free assets, with one intentionally

handicapped (hence discounted) relative to the other."
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The intuition for this result is that a bond that is as liquid as money is a perfect substitute

for money and hence redundant, or in the words of Kocherlakota (2003, p. 184): "If bonds

are as liquid as money, then people will only hold money if nominal interest rates are zero.

But then the bonds can just be replaced by money: there is no difference between the two

instruments at all."

Kocherlakota (2003) derives this result in a model, where agents receive a one-time i.i.d.

liquidity shock after they choose their initial portfolio of money and illiquid bonds. After

experiencing the shock, agents trade money for bonds in a secondary bond market. Many

aspects of our environment are similar to Kocherlakota (2003). However, our key result is

different and novel. We show that it is not only optimal to create illiquid nominal bonds,

but that one needs to go one step further: It can be efficient to restrict the ability of agents

to trade them for money in a secondary bond market. That is, it is optimal to reduce the

frequency at which agents trade money for illiquid bonds.

Some other papers that study the societal benefits of illiquid bonds are Shi (2008),

Andolfatto (2011), and Berentsen and Waller (2011). All these papers show, among other

things, that Kocherlakota’s result holds in a steady state equilibrium as well. In the Shi

(2008) framework there is no secondary bond market. Rather, he assumes that agents are

allowed to use bonds and money to pay for goods in some trade meetings, while they can

only use money to pay for goods in some other trade meetings. He shows that such a legal

restriction can be welfare-improving.4 We present more details of the Shi (2008) framework

and compare it to our model and Kocherlakota (2003) in Section 7.

Our paper is also related to the macroeconomic literature that studies the implications

of pecuniary externalities for welfare (e.g., Caballero and Krishnamurthy, 2003; Lorenzoni,

2008; Bianchi and Mendoza, 2011; Jeanne and Korinek, 2012; Korinek, 2012). In this lit-

erature, the fundamental friction is limited commitment; i.e., agents have a limited ability

to commit to future repayments. Due to this friction, borrowing requires collateral, and

a pecuniary externality arises, because agents do not take into account how their borrow-

ing decisions affect collateral prices, and through them the borrowing constraints of other

agents. As a consequence, the equilibrium is characterized by overborrowing, which is

defined as "the difference between the amount of credit that an agent obtains acting atom-

istically in an environment with a given set of credit frictions, and the amount obtained by

a social planner who faces the same frictions but internalizes the general-equilibrium effects

of its borrowing decisions" (see Bianchi and Mendoza, 2011, p.1).5

4Since in the Shi framework agents can use money and bonds to pay for goods in some matches, it is more

closely related to the literature that studies competing media of exchange (see, for example, Geromichalos,

Licari, and Lledó, 2007; Lagos and Rocheteau, 2007, 2008, 2009; Lester, Postlewaite, and Wright, 2012).
5Related to this literature are studies on financial accelerators (e.g., Bernanke and Gertler, 1989; Kiyotaki

and Moore, 1997) or endogenous borrowing constraints (e.g, Kehoe and Levine, 1993; Berentsen, Camera,
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This pecuniary externality effect has been used to study credit booms and busts. In a

model with competitive financial contracts and aggregate shocks, Lorenzoni (2008) identi-

fies excessive borrowing ex-ante and excessive volatility ex-post. In Bianchi and Mendoza

(2011), cyclical dynamics lead to a period of credit expansion up to the point where the

collateral constraint becomes binding, followed by sharp decreases in credit, asset prices and

macroeconomic aggregates (see also Mendoza and Smith, 2006; Mendoza, 2010). Jeanne

and Korinek (2012) study the optimal policy involved in credit booms and busts. They

find that it is optimal to impose cyclical taxes to prevent agents from excessive borrowing.

They emphasize that the level of the tax be adjusted for the vulnerability of each sector in

the economy.

In all of these papers, agents do not internalize the effect of fire-sales on the value of

other agents’ assets, and, therefore, they overborrow ex-ante. Our paper differs from this

literature, because it is not a model of crisis: there are neither aggregate shocks nor multiple

steady-state equilibria. The pecuniary externality is present in "normal" times; i.e., in the

unique steady state equilibrium.6 Furthermore, we propose a novel policy response to

internalize the pecuniary externality by showing that reducing the frequency of trading can

be optimal. In contrast, Jeanne and Korinek (2012) propose a Pigouvian tax on borrowing

and Bianchi (2011) proposes a tax on debt to internalize the pecuniary externality. Finally,

in our model since there is no borrowing the pecuniary externality emerges from trading

assets.

2 The Model

Time is discrete, and in each period there are three markets which open sequentially.7

In the first market, agents trade money for nominal bonds. We refer to this market as

the secondary bond market. In the second market, agents produce or consume market-2

goods. We refer to this market as the goods market. In the third market, agents consume

and produce market-3 goods, receive money for maturing bonds, and acquire newly issued

and Waller, 2007).
6Rojas-Breu (2013) also identifies a pecuniary externality that is present in the steady state equilibrium.

In her model, some agents use credit cards and some fiat money to acquire consumption goods. She shows

that restricting the use of credit cards can be welfare improving. The intuition for this result is that

marginally increasing the fraction of agents that use credit cards can have a general equilibrium effect on

the price level, which makes the agents that have no credit card worse off. This effect can be so strong that

overall welfare decreases. In contrast to our model, in her model restricting the use of credit cards is a local

optimum only, since it would be optimal to endow all agents with credit cards.
7Our basic framework is the divisible money model developed in Lagos and Wright (2005). This model

is useful, because it allows us to introduce heterogeneous preferences while still keeping the distribution of

asset holdings analytically tractable. The main departure from Lagos and Wright (2005) is that we add a

secondary bond market.
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bonds. We refer to this market as the primary bond market. All goods are nonstorable,

which means that they cannot be carried from one market to the next.

There is a [0 1] continuum of infinitely lived agents. At the beginning of each period,

agents receive two idiosyncratic i.i.d. shocks: a preference shock and an entry shock. The

preference shock determines whether an agent can produce or consume market-2 goods.

With probability 1 −  an agent can consume but not produce, and with probability 

he can produce but not consume. Consumers in the goods market are called buyers, and

producers are called sellers. The entry shock determines whether agents can participate

in the secondary bond market. With probability  they can, and with probability 1 − 

they cannot. Agents who participate in the secondary bond market are called active, while

agents who do not are called passive. For active agents, trading in the secondary bond

market is frictionless.

In the goods market, agents meet at random in bilateral meetings. We represent trading

frictions by using a reduced-form matching function, M ( 1− ), where M specifies

the number of trade matches in a period and the parameter  is a scaling variable, which

determines the efficiency of the matching process (see e.g., Rocheteau and Weill, 2011). We

assume that the matching function has constant returns to scale, and is continuous and

increasing with respect to each of its arguments. Let  () = M ( 1− ) (1 − )−1 be
the probability that a buyer meets a seller. The probability that a seller meets a buyer

is denoted by  () =  () (1− )−1. In what follows, to economize on notation, we
suppress the argument , and refer to these probabilities as  and , respectively.

In the goods market, buyers get utility  () from consuming  units of market-2 goods,

where 0 () −00 ()  0, 0 (0) =∞, and 0 (∞) = 0. Sellers incur the utility cost () = 

from producing  units of market-2 goods.8

As in Lagos and Wright (2005), we impose assumptions that yield a degenerate distri-

bution of portfolios at the beginning of the secondary bond market. That is, we assume

that trading in the primary bond market is frictionless, that all agents can produce and

consume market-3 goods, and that the production technology is linear such that  units of

time produce  units of market-3 goods. The utility of consuming  units of goods is (),

where  0 () − 00 ()  0  0 (0) =∞, and  0 (∞) = 0.
Finally, agents discount between, but not within, periods. The discount factor between

two consecutive periods is  = 1(1 + ) where   0 is the real interest rate.

8We assume a linear utility cost for ease of exposition. It is a simple generalization to allow for a more

general convex disutility cost.
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2.1 First-best allocation

For a benchmark, it is useful to derive the planner allocation. The planner treats all agents

symmetrically. His optimization problem is

W = max


[ (1− )()− ] + ()−  (1)

subject to the feasibility constraint  ≥ . The efficient allocation satisfies  0(∗) = 1,

0(∗) = 1, and ∗ = ∗. These are the quantities chosen by a social planner who dictates
consumption and production.9

2.2 Pricing mechanism

In what follows, we study the allocations that are attainable in a market economy. To

this end, we assume that the primary and secondary bond markets are characterized by

perfect competition. In contrast, we will investigate several pricing mechanism for the goods

market. The baseline case is random matching and generalized Nash bargaining. However,

we will also study random matching with Kalai bargaining and price-taking. We are in

particular interested in how the different pricing mechanisms affect the portfolio choices of

the agents in the primary and the secondary bond markets.

2.3 Money and bonds

The description of the environment in this subsection closely follows Berentsen and Waller

(2011).10 There are two perfectly divisible and storable financial assets: money and one-

period, nominal discount bonds. Both are intrinsically useless, since they are neither ar-

guments of any utility function nor are they arguments of any production function. Both

assets are issued by the central bank in the last market. Bonds are payable to the bearer

and default free. One bond pays off one unit of currency in the last market of the following

period.

At the beginning of a period, after the idiosyncratic shocks are revealed, agents can

trade bonds and money in the perfectly competitive secondary bond market. The central

bank acts as the intermediary for all bond trades by recording purchases and sales of bonds.

Bonds are book-keeping entries — no physical object exists. This implies that agents are not

9Since our planner can dictate quantities, there is no need for either money or bonds to achieve the

first-best allocation.
10Our framework is similar to Berentsen and Waller (2011). However, the questions investigated are

different. The starting point in Berentsen and Waller (2011) is the observation that in monetary economies,

when households face binding liquidity constraints, they can either acquire additional liquidity by selling

illiquid assets or by borrowing. They show that these different methods for relaxing liquidity constraints

lead to equivalent allocations under optimal policy.

6



anonymous to the central bank. Nevertheless, despite having a record-keeping technology

over bond trades, the central bank has no record-keeping technology over goods trades.

Since agents are anonymous and cannot commit, a buyer’s promise in the goods market to

deliver bonds to a seller in the primary bond market is not credible.

Since bonds are intangible objects, they cannot be used as a medium of exchange in

the goods market: hence they are illiquid. It has been shown in Kocherlakota (2003),

Andolfatto (2011), and Berentsen and Waller (2011) that in similar environments to the

one studied here, it is optimal that bonds are illiquid. All these papers assume unrestricted

access to bond markets. One of our contributions to this literature is to show that it is not

only optimal that bonds are illiquid, but that it can be optimal to reduce their liquidity

further by restricting access to bond markets.

To motivate a role for fiat money, search models of money typically impose three as-

sumptions on the exchange process (Shi 2008):11 a double coincidence problem, anonymity,

and costly communication. First, our preference structure creates a single-coincidence prob-

lem in the goods market, since buyers do not have a good desired by sellers. Second, agents

in the goods market are anonymous, which rules out trade credit between individual buyers

and sellers. Third, there is no public communication of individual trading outcomes (public

memory), which, in turn, eliminates the use of social punishments in support of gift-giving

equilibria. The combination of these frictions implies that sellers require immediate com-

pensation from buyers. In short, there must be immediate settlement with some durable

asset, and money is the only such durable asset. These are the micro-founded frictions that

make money essential for trade in the goods market. In contrast, in the last market all

agents can produce for their own consumption or use money balances acquired earlier. In

this market, money is not essential for trade.12

Denote as the per capita money stock and  as the per capita stock of newly issued

bonds at the end of period . Then −1 (−1) is the beginning-of-period money (bond)
stock in period . Let  denote the price of bonds in the primary bond market. Then, the

change in the money stock in period  is given by

 −−1 =  −1 +−1 −  (2)

The change in the money supply at time  is given by three components: a lump-sum money

transfer ( =  −1); the money created to redeem −1 units of bonds; and the money
withdrawal from selling  units of bonds at the price . We assume there are positive

11See also Araujo (2004), Kocherlakota (1998), Wallace (2001), and Aliprantis, Camera and Puzzello

(2007) for discussions of what makes money essential.
12One can think of agents as being able to barter perfectly in this market. Obviously in such an environ-

ment, money is not needed.
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initial stocks of money 0 and bonds 0, with
0
0

 
1− . For    0, the government

must be able to extract money via lump-sum taxes from the economy.

3 Agent’s Decisions

For notational simplicity, the time subscript  is omitted when understood. Next-period

variables are indexed by +1, and previous-period variables are indexed by −1. In what
follows, we look at a representative period  and work backwards, from the primary bond

market (the last market) to the secondary bond market (the first market).

3.1 Primary bond market

In the primary bond market, agents can consume and produce market-3 goods. Further-

more, they receive money for maturing bonds, buy newly issued bonds, adjust their money

balances by trading money for goods, and receive the lump-sum money transfer  . An

agent entering the primary bond market with  units of money and  units of bonds has

the indirect utility function 3( ). An agent’s decision problem in the primary bond

market is

3( ) = max
+1+1

[()− + 1(+1 +1)]  (3)

subject to

+ +1 + +1 = + + +  (4)

where  is the price of money in terms of market-3 goods. The first-order conditions with

respect to +1 +1 and  are  0() = 1, and

1

+1
= −1

1

+1
=  (5)

where the term 1+1 (1+1) is the marginal benefit of taking one additional

unit of money (bonds) into the next period, and  () is the marginal cost of doing so.

Due to the quasi-linearity of preferences, the choices of +1 and +1 are independent of 

and . It is straightforward to show that all agents exit the primary bond market with the

same portfolio of bonds and money. The envelope conditions are

3


=

3


=  (6)

According to (6), the marginal value of money and bonds at the beginning of the primary

bond market is equal to the price of money in terms of market-3 goods. Note that equations

(6) imply that the value function 3 is linear in  and .
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3.2 Goods market

For the goods market, we make various assumptions of how the terms of trade are deter-

mined. The baseline case is random matching and generalized Nash bargaining. In section

9.2, we also consider competitive pricing, competitive search, and Kalai bargaining.

Generalized Nash Bargaining A matched buyer and seller bargain over the terms of

trade ( ), where  is the quantity of goods and  is the amount of money exchanged in the

match. In what follows, we assume that the bargaining outcome satisfies the generalized

Nash bargaining solution.

The seller’s net payoff in a meeting in the goods market is given by − () + 3( +

 )−3( ) and the buyer’s net payoff is given by () + 3(−  )− 3( ). Using

the linearity of 3 with respect to  and , the bargaining problem can be formulated as

follows:

( ) = argmax [()− ] [− () + ]1−

s.t.  ≤  (7)

where  is the buyer’s bargaining weight, and  is the buyer’s money holding. The con-

straint states that the buyer cannot spend more money than the amount he brought into

the match. If the buyer’s constraint is nonbinding, the solution is given by    and

 = ∗, where ∗ satisfies 0(∗) = 1. If the buyer’s constraint is binding, the solution is

given by  =  and

0() [− () + ] = (1− ) 0 () [()− ]  (8)

This latter condition can be written as follows:

 =  () ≡  ()0() + (1− )()0 ()
0() + (1− ) 0 ()

 (9)

This is by now a routine derivation of the Nash bargaining solution in a Lagos and Wright-

type model. More details can be found in Lagos and Wright (2005) or Nosal and Rocheteau

(2011).

Value functions The value function of a buyer entering the goods market with  units

of money and  units of bonds is

 
2 ( ) =  [ () + 3 (−  )] + (1− )3( ) (10)
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With probability , the buyer has a match and the terms of trade are ( ). Under these

terms, he receives consumption utility  () and expected continuation utility 3 (−  ).

With probability 1−  he has no match and receives expected continuation utility 3( )

To derive the marginal indirect utility of money and bonds, we take the total derivatives

of (10) with respect to  and , respectively, and use (6) to replace 3


and 3

to get

 
2


= 

∙
0()




+ 

µ
1− 



¶¸
+ (1− ) and

 
2


=  (11)

If the buyer’s constraint (7) is nonbinding, then 


= 0 and 


= 0. In this case, the

buyer’s envelope conditions (11) satisfy
 

2


= 3


= . If the constraint is binding, then




= 
0() and




= 1. In this case, the buyer’s envelope conditions (11) can be rewritten

as follows:
 

2


= 

0()
0 ()

+ (1− ) and
 

2


=  (12)

The first equality simply states that a buyer’s marginal utility of money has two components:

With probability  he has a match, and by spending the marginal unit he receives utility

0()0 ()−1, and with probability 1−  he has no match, in which case by spending the

marginal unit of money in the last market he receives utility . The second equality states

that a buyer’s marginal utility of bonds at the beginning of the goods market is equal to

the price of money in the last market, since bonds are illiquid in the goods market.

The value function of a seller entering the goods market with  units of money and 

units of bonds is

 
2 ( ) =  [− () + 3 (+  )] + (1− )3( ) (13)

The interpretation of (13) is similar to the interpretation of (10) and is omitted. Taking

the total derivative of (13) with respect to  and , respectively, and using (6) to replace
3


and 3

, yields the seller’s envelope conditions:

 
2


=

 
2


=  (14)

These conditions simply state that a seller’s marginal utility of money and bonds at the

beginning of the goods market are equal to the price of money in the last market. The

reason is that a seller has no use for these two assets in the goods market.
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3.3 Secondary bond market

Let (̂ ̂) denote the portfolio of an active agent after trading in the secondary bond market,

and let  denote the price of bonds in terms of money in the secondary bond market. Then,

an active agent’s budget constraint satisfies

+  ≥ ̂+ ̂ (15)

The left-hand side of (15) is the sum of the real values of money and bonds with which the

agent enters the secondary bond market, and the right-hand side is the real value of the

portfolio with which the agent leaves the secondary bond market.

Trading is further constrained by two short-selling constraints: Active agents cannot

sell more bonds, and they cannot spend more money, than the amount they carry from the

previous period: that is

̂ ≥ 0 ̂ ≥ 0 (16)

Let 

1 ( ) denote the value functions of an active buyer ( = ) or an active seller ( = ).

Then, an active agent’s decision problem is



1 ( ) = max

̂̂



2 (̂ ̂) s.t. (15) and (16).

The secondary bond market’s first-order conditions for active agents are



2

̂
=  −  and



2

̂
=  − 


 (17)

where, for  =  ,  are the Lagrange multipliers on (15), and  and 

 are the Lagrange

multipliers on (16).

Finally, let 1( ) denote the expected value for an agent who enters the secondary

bond market with  units of money and  units of bonds before the idiosyncratic shocks

are realized. Then, 1( ) satisfies

1( ) =  (1− ) 
1 ( ) +  

1 ( ) + (1− ) (1− ) 
2 ( ) + (1− ) 

2 ( )

Note that passive buyers and passive sellers cannot change their portfolios and so their

value functions at the beginning of the secondary bond market are  
2 ( ) and  

2 ( ),

respectively.

11



The envelope conditions in the secondary bond market are

1


= 

h
(1− ) + 

i
+ (1− )

∙
(1− )

 
2


+ 

 
2



¸
 (18)

1


= 

h
(1− ) + 

i
+ (1− )

∙
(1− )

 
2


+ 

 
2



¸
 (19)

According to (18), the marginal value of money at the beginning of the period consists of

four components: With probability (1− ) an agent is an active buyer, in which case

he receives the shadow value of money ; with probability  he is an active seller, in

which case he receives the shadow value of money ; with probability (1− ) (1− ) he is

a passive buyer, in which case he receives the marginal value of money at the beginning of

the goods market; with probability  (1− ) he is a passive seller, in which case he receives

the marginal value of money at the beginning of the goods market.

4 Monetary Equilibrium

We focus on symmetric, stationary monetary equilibria, where all agents follow identical

strategies and where real variables are constant over time. Let  ≡ −1 denote the
gross growth rate of bonds, and let  ≡−1 denote the gross growth rate of the money
supply. These definitions allow us to write (2) as follows:

 − 1−  =
−1
−1

(1− )  (20)

In a stationary monetary equilibrium, the real stock of money must be constant; i.e.,  =

+1+1 implying that  = +1. Furthermore, the real amount of bonds must be

constant; i.e.,  = −1−1. This implies  = , which we can use to rewrite (20) as

 − 1−  =
0

0
(1− )  (21)

The model has three types of stationary monetary equilibria. In what follows, we charac-

terize these types of equilibria. To simplify notation, let

Ψ () ≡ 
0()
0 ()

+ 1−  (22)
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Furthermore, in what follows we assume that Ψ () is decreasing in . This assumption

guarantees that our stationary monetary equilibrium derived below is unique.13

4.1 Type I equilibrium

In a type I equilibrium, an active buyer’s bond constraint in the secondary bond market

does not bind, and a seller’s cash constraint in the secondary bond market does not bind. In

the Appendix, we show that a type I equilibrium can be characterized by the four equations

stated in Lemma 1.

Lemma 1 A type I equilibrium is a time-independent list { ̂  } satisfying

 = 1 (23)



=  + (1− ) [(1− )Ψ () + ]  (24)

 =



 (25)

0 (̂) = 0 (̂)  (26)

In a type I equilibrium, the seller’s cash constraint in the secondary bond market does

not bind. This can only be the case if he is indifferent between holding money or bonds,

which requires  = 1; i.e., that equation (23) holds. According to (25), the price of bonds

in the primary bond market is equal to its fundamental value . The reason for this

result is that bonds in the primary market attain no liquidity premium (see our discussion

below), since an active buyer’s constraint on bond holdings in the secondary bond market

does not bind.

According to (26), active buyers consume the quantity ̂ that satisfies 0 (̂) = 0 (̂).
If   1, then ̂  ∗ so they consume the inefficient quantity even as  → . If  = 1,

then ̂ = ∗ and they consume the efficient quantity. From (24), the consumed quantity

for passive buyers, , is inefficient for all .

4.2 Type II equilibrium

In a type II equilibrium, an active buyer’s bond constraint in the secondary bond market

does not bind, and a seller’s cash constraint in the secondary bond market binds. In the

Appendix, we show that a type II equilibrium can be characterized by the four equations

stated in Lemma 2.

13Lagos and Wright (2005, p. 472) investigate under which conditions
0()
0() is decreasing in . They argue

that
0()
0() "is monotone if  ≈ 1, or if  () is linear and 0 () log-concave." For a comprehensive study of

existence and uniqueness of equilibrium in the Lagos and Wright framework see Wright (2010).
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Lemma 2 A type II equilibrium is a time-independent list { ̂  } satisfying

1


= Ψ (̂)  (27)




=




+ (1− ) [(1− )Ψ () + ]  (28)

 =



 (29)

 () =  (̂) (1− )  (30)

The interpretations of the equilibrium equations in Lemma 2 are similar to their respec-

tive equations in Lemma 1. The key difference is that the price of bonds in the secondary

bond market satisfies   1. The reason is that now an active seller’s constraint on money

holdings is binding. Consequently, money is scarce and so buyers are willing to sell a frac-

tion of their bonds at a discount; i.e.,   1. Note that a buyer’s constraint on bond

holdings is still nonbinding, since he is only selling a fraction of his bonds. Accordingly,

the price of bonds in the primary bond market, , continues to be equal to its fundamental

value, , as in the type I equilibrium.

Finally, (30) reflects the fact that the cash constraints of the active and passive buyers in

the goods market are binding. Consequently, consumption of market-2 goods is inefficiently

low for both active and passive buyers.

4.3 Type III equilibrium

In a type III equilibrium, both the active buyer’s bond constraint and the active seller’s

cash constraint in the secondary bond market bind. In the Appendix, we show that a type

III equilibrium can be characterized by the four equations stated in Lemma 3.

Lemma 3 A type III equilibrium is a time-independent list { ̂  } satisfying

1


=

0

0

1− 


 (31)




=  [(1− )Ψ (̂) + ] + (1− ) [(1− )Ψ () + ]  (32)

 =



{1 +  (1− ) [Ψ (̂)− 1]}  (33)

 () =  (̂) (1− ) (34)

According to (33), the price of bonds in the primary bond market  includes two compo-

nents: the fundamental value of bonds, , and the liquidity premium, 

 (1− ) [Ψ (̂)− 1].

The liquidity premium is increasing in  and equal to zero at  = 0. In contrast, there is

14



no liquidity premium in the type I and type II equilibria, since an active buyer’s constraint

on bond holdings is not binding.

Furthermore, from (31), note that the price of bonds in the secondary bond market, ,

is constant (in contrast to the type II equilibrium). The reason is that in Lemma 3,  is

obtained from the secondary bond market budget constraint, (15). In contrast, in Lemmas

1 and 2 it is obtained from the secondary bond market first-order conditions (17). Finally,

(34) has the same interpretation as (30).

4.4 Regions of equilibria

In the following Proposition, we characterize three non-overlapping regions in which these

three types of equilibria exist. To this end, let  denote the value of  such that expressions

(24) and (28) hold simultaneously. Furthermore, let  denote the value of  such that

equations (28) and (32) hold simultaneously. In the proof of Proposition 1 we show that

such values exist and that they are unique. Furthermore, we show that  ≤  ≤  ∞

Proposition 1 If  ≤   , equilibrium prices and quantities are characterized by

Lemma 1; if  ≤    , they are characterized by Lemma 2; and if  ≤ , they are

characterized by Lemma 3.

Table 1 summarizes the bond prices  and  and the relevant multipliers in the three

equilibria:

Table 1: Bond prices, equilibrium regions and multipliers

Value of  Value of  Inflation range Multipliers

 = [Ψ (̂)]−1 = 1  =   ≤     =  = 0

 = [Ψ (̂)]−1  1  =   ≤       = 0

 = 0

0

1−  = 


{1 +  (1− ) [Ψ (̂)− 1]}  ≤   


  0

In the type I and II equilibria ( ≤   ), the constraint on bond holdings of active

buyers does not bind ( = 0) in the secondary bond market. This implies that the return

on bonds in the secondary bond market, 1, has to be equal to the expected return on

money, Ψ (̂). It also implies that the price of bonds in the primary bond market, ,

must equal the fundamental value of bonds, . The economics underlying this result are

straightforward. Since active buyers do not sell all their bonds for money in the secondary

bond market, bonds in the primary bond market have no liquidity premium, and so the

Fisher equation holds; i.e., 1 = .
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In contrast, in the type III equilibrium, the constraint on bond holdings of active buyers

binds in the secondary bond market. Consequently, bonds attain a liquidity premium, and

the Fisher equation does not hold; i.e., 1  .14
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Figure 1: Bond prices when  = 1 and   1 .

Figure 1 graphically characterizes the bond prices,  and , as a function of  in the

three types of equilibria. An interesting aspect of the model is that when  = 1, the two

bond prices are equal for any value of .15 Furthermore, the type I equilibrium only exists

at  = . In contrast, there is a strictly positive spread − , when   1 and   .

Why is there a positive spread − if   1? If   1, the price  reflects the fact that

bonds can only be traded with probability  in the secondary bond market. In contrast,

the price  reflects the fact that active agents can trade bonds with probability 1 in the

secondary bond market. Thus, the positive spread is because the bonds in the secondary

bond market have a higher liquidity premium than the bonds in the primary bond market.

As can be seen in Figure 1, when,   1, the price of bonds in the secondary bond

market, , is constant and equal to 1 in the type I equilibrium; it is decreasing in the type

II equilibrium; and it is constant in the type III equilibrium. The price of bonds in the

primary bond market, , follows a different pattern. In the type I and type II equilibrium,

it is equal to the fundamental value of bonds, , whereas in the type III equilibrium, it

contains a liquidity premium. The lower  in the type III equilibrium is, the larger is the

difference between  and .

14 In a similar environment, Geromichalos and Herrenbrueck (2012) also analyze under what conditions a

liquidity premium exists in the primary financial market.
15To see this, consider, first, equations (32) and (33). Setting  = 1 and rearranging yields  =  =

0
0


1− . Consider, next, equations (28) and (29). Again, setting  = 1 and rearranging yields  =  = 


.

Finally, at  = 1, the type I equilibrium only exists under the Friedman rule  = .
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5 Optimal Participation

In this section, we explain why restricting participation to the secondary bond market can

be welfare-improving. The reason is straightforward. The secondary bond market provides

insurance against the idiosyncratic liquidity shocks. At the end of a period in the primary

bond market, agents choose a portfolio of bonds and money. At this point, they do not

know yet whether they will be buyers or sellers in the following period. At the beginning

of the following period, this information is revealed, and they can use the secondary bond

market to readjust their portfolio of money and illiquid bonds.

From a welfare point of view, the benefit of the secondary bond market is that it allocates

liquidity to the buyers and allows sellers to earn interest on their idle money holdings. The

drawback of this opportunity is that the secondary bond market reduces the incentive to

self-insure against the liquidity shocks. This lowers the demand for money in the primary

bond market, which depresses its value. This effect can be so strong that it can be optimal

to restrict access to the secondary bond market. The basic mechanism can be seen from

the following welfare calculations.

The welfare function can be written as follows:

(1− )W = (1− )  { [(̂)− ̂] + (1− ) [()− ]}+ (∗)− ∗ (35)

where the term in the curly brackets is an agent’s expected period utility in the goods

market, and (∗)− ∗ is the agent’s period utility in the primary bond market.
Differentiating (35) with respect to  yields

1− 

(1− ) 

W


= [(̂)− ̂]− [()− ] (36)

+
£
0(̂)− 1¤ ̂


+ (1− )

£
0()− 1¤ 




The contribution of the first two terms to the change in welfare is always positive, since in

any equilibrium ̂ ≥  (with strict inequality for   ). However, the derivatives ̂

and



can be negative, reflecting the fact that increasing participation reduces the incentive

to self-insure against idiosyncratic liquidity risk.16 Reducing the incentive to self-insure

reduces the demand for money and hence its value, which then reduces the consumption

quantities  and ̂.

Whether restricting participation is welfare-improving depends on which of the two

effects dominates. One can show that in the type I and in the type II equilibria it is always

16Sufficient conditions for these derivatives to be strictly negative is that inflation is sufficiently large so

that the economy is in the type III equilibrium (with   ̂  ∗) and that Ψ () = 
0()
0() +1− is decreasing

in , which is an assumption throughout the paper.
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optimal to set  = 1. In contrast, restricting participation in the type III equilibrium

can be welfare-improving. Whether it is depends on preferences and technology. In the

following, we calibrate the model to investigate whether restricting access to the secondary

bond market is optimal under reasonable parameter values.17

6 Quantitative Analysis

We choose a model period as one quarter. The functions () and () have the forms

 () = 1−(1− ) and () = 

For the matching function, we follow Kiyotaki and Wright (1993) and choose

M() = ( + ),

where  = 1 −  is the measure of buyers and  =  the measure of sellers in the goods

market. Therefore, the matching probability of a buyer in the goods market is simply given

by  = M() = .

The parameters to be identified are as follows: (i) preference parameters: ( );

(ii) technology parameters: ( ); (iii) bargaining power: ; (iv) policy parameters: the

money growth rate  and the bonds-to-money ratio B. Finally, we set  = 1 for all but one
calibration, where as a robustness check we choose  = 05.

To identify these parameters, we use US-data from the first quarter of 1960 to the

fourth quarter of 2010. All data sources are provided in the Appendix. Table 2 lists the

identification restrictions and the identified values of the parameters.

17 In an earlier version of the paper, we provided an analytical proof that if inflation is sufficiently high, it

is optimal to restrict access to the secondary bond market for () = ln () and perfect competition in the

goods market.
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Table 2: Calibration targets

Parameter Target description Target value

 average real interest rate  0.991

 average change in the consumer price index 1.01

B average bonds-to-money ratio 3.52

 set equal to 1 1.00

 average price of gov. bonds with a maturity of 3 months 0.987

 average velocity of money (annual) 6.72

 average price of gov. bonds with a remaining maturity of 7 days 0.999

 retail sector markup .300

The gross growth rate of the money supply  = 101 matches the average quarterly

change in the consumer price index. We set  = 0991 so that the real interest rate in the

model matches the data, measured as the difference between the rate on AAA corporate

bonds and the change in the consumer price index. The bonds-to-money ratio B = 352

matches the average empirical bonds-to-money ratio which we calculate as the ratio of the

total public debt to the M1 money stock.18

The parameters , , , and  are obtained by matching the following targets simulta-

neously. First, we set  such that the markup in the goods market matches the retail data

summarized by Faig and Jerez (2005). They provide a target markup of  = 03 (30 per-

cent).19 Second, we set  to match the average price of government bonds with a maturity

of 3 months, which is  = 0987. Note, from Proposition 1, that  = 0987   = 0982

implies that we are in the type III equilibrium. Third, we interpret the price  as the price

of a government bond with a remaining maturity of 7 days; i.e.,  = 452 = 0999, and

we use it to calibrate .20 Fourth, we set  to match the average velocity of money. The

model’s velocity of money is21

 =


−1
=
1 + (1− ) ∗  ∗ [(̂) + (1− ) ()]

()


which depends on  via  and ̂, and on  and  via the function (). Although there are

18This definition is in line with Martin (2012).
19See Aruoba, Waller and Wright (2011) or Berentsen, Menzio and Wright (2011) on calibrating LW-type

models, including matching the markup data.
20We show in the robustness analysis that our results are not very sensitive to the choice of .
21The real output in the goods market is  = (1− ) ∗  ∗ [̂+ (1− )], where ̂ = (̂) and

−1 =  = (), and the real output in the primary bond market is  = 1. Accordingly, total

real output of the economy adds up to  =  +   and the model-implied velocity of money is

 = −1.
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alternative ways to fit this relationship, we set  to match the average −1, using 1
as our measure of money.

Our targets discussed above and summarized in Table 2 are sufficient to calibrate all but

one parameter, the elasticity of the utility function . Berentsen, Menzio and Wright (2011)

estimate that  ∈ (0105 0211), depending on the calibration method. We, therefore, first
present the calibration results for an average value of  = 015 and, then, show the effects

of different values of  later on.22

6.1 Baseline results and robustness checks under Nash bargaining

Table 3 presents the results for the baseline calibration and four robustness checks under

generalized Nash bargaining. The robustness checks are defined as follows: In the calibra-

tion labeled "markup", we target a markup in the goods market of 40 percent instead of 30

percent; in the calibration labeled "high B", we target B = 45 instead of B = 35; in the
calibration labeled "high ", we target a remaining maturity of government bonds of 1 day

instead of 7 days; and in the calibration labeled "low ", we set  = 05 instead of  = 1.

22Most monetary models that calibrate variants of the Lagos and Wright (2005) framework, set  to match

the elasticity of money demand with respect to the nominal interest rate. We cannot do this, because in our

framework the interest rate on  represents the yield on 3-month government bonds, while related studies

work with the AAA Moody’s corporate bond yield to calculate the elasticity of money demand. Using

United States data from 1960 to 2010, we obtain an empirical elasticity of money demand with respect to

the yield on 3-month government bonds of  = 005. The elasticity of money demand in our model is

negative by construction, which precludes the use of this target.
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Table 3: Nash bargaininga

Description baseline markup high B high  low 

 utility weight 1.42 1.47 1.48 1.41 1.51

 number of sellers .778 .778 .818 .779 .778

 buyer’s bargaining share .387 .309 .416 .390 .495

 calibrated  .588 .550 .594 .574 .514

∗ optimal b .589 .548 .568 .555 .532

W welfare at calibrated  18.551 19.381 18.934 18.192 9.258

W∗ welfare at  = ∗ 18.551 19.381 18.942 18.195 9.260

W1 welfare at  = 1 17.150 17.496 16.929 16.571 8.321

 goods market size .315 .301 .310 .310 .144

aTable 3 displays the calibrated values for the key parameters ,  and  for the value of  = 015.

It also displays the calibrated value of , the optimal value of  (∗) and the size of the goods

market ( ). Furthermore, the table also shows the numerical value of the welfare function

at the calibrated value of , at the optimal value of  = ∗, and at  = 1. b∗ is calculated

numerically by searching for the welfare maximizing value of , holding all other parameters at

their calibrated values.

Table 3 presents the key parameter values for the baseline calibration and the robustness

checks when  = 015. To address the question of whether there is too much trading in

the secondary bond market, we also calculate the optimal entry probability ∗ for each
case. It is calculated as follows. For each set of calibrated parameter values, we numerically

search for the value of  that maximizes ex-ante welfare, defined by (35). Furthermore, we

also provide the numerical value of the welfare function at the calibrated value of , at the

optimal value of  = ∗, and at  = 1.23

We find two key results. First, our calibrations always yield an entry probability ,

which is strictly below 1. Second, the optimal entry probability ∗ is below the calibrated
entry probability for a sufficiently high markup, a high bonds-to-money ratio, and a high

value of . In contrast, under the baseline calibration and the calibration with a low

matching probability , we find that ∗ is above .
In Table 3, we also provide the estimates of the model-implied goods market share,

 =  . Under Nash bargaining, is approximately 31% for  = 1 and for a lower

matching probability ( = 05) it is about 14%, which is in line with the estimates of

23For the provided value of the welfare function we choose () = .
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Berentsen, Menzio and Wright (2011) and related studies.

6.2 The effect of the elasticity of the utility function

How sensitive are our results to the choice of ? In order to answer this question, we

recalibrate each model presented in Table 4 for different values of  ∈ (0 1), and draw the
difference ∗ −  in Figure 2.
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Figure 2: ∗ −  for different values of 

For the baseline calibration under Nash bargaining, we find that   ∗ for any  ∈
(0 1). In contrast, for calibrations "markup", "high B", "high " and "low " there is a

strictly positive range for which there is too much entry; i.e.,   ∗. A higher markup

in the goods market appears to have the largest effect, since ∗ −   0 for any value of

  014.

Note also that increasing the bonds-to-money ratio from 35 to 45 results in ∗−  0

for 01    028 and 082    1. This is insofar interesting, since in the US data the

bonds-to-money ratio is steadily increasing over time in our sample, and since 1996 it is

above the value of 45. Furthermore, in 2010 it reached 77.

6.3 Other pricing mechanisms

Hereafter, we compare the calibration results for different trading protocols to our base-

line calibration under Nash bargaining. The calibration labeled "Kalai" refers to Kalai

bargaining, where we use  () instead of  (). The calibration labeled "CP" refers to

competitive pricing. By setting  = 1 the model equations reduce to the ones that one ob-

tains from assuming competitive pricing in the goods market. See the Appendix where we
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also derive the Kalai bargaining solution. Table 4 presents the parameter values obtained

for the different pricing mechanisms for  = 015.24

Table 4: Other pricing mechanismsa

Description baseline Kalai CP

 goods market utility weight 1.42 1.38 1.30

 number of sellers .778 .778 .778

 buyer’s bargaining power .387 .433 1

 calibrated  .588 .564 .772

∗ optimal b .589 .659 .949

W welfare at calibrated  18.551 16.530 17.356

W∗ welfare at  = ∗ 18.551 16.578 17.591

W1 welfare at  = 1 17.150 15.997 17.570

 goods market size .315 .306 .382

aTable 4 displays the calibrated values for the key parameters ,  and  for the value of  = 015.

It also displays the calibrated value of , the optimal value of  (∗) and the size of the goods

market ( ). Furthermore, the table also shows the numerical value of the welfare function

at the calibrated value of , at the optimal value of  = ∗, and at  = 1. b∗ is calculated

numerically by searching for the welfare maximizing value of , holding all other parameters at

their calibrated values.

In contrast to Nash bargaining for Kalai bargaining and competitive pricing the dif-

ference of ∗ −  is clearly positive. This indicates that the access to the secondary bond

market is too low. Note though, that the result that ∗  1 continues to hold. That is, it

is not optimal to grant unrestricted access to the secondary bond market. Our reading of

these results is that our calibration measures the frictions in these markets, and that under

certain calibrations the optimal frictions ∗ are too high and in others they are too low.
However, we always find that eliminating all frictions by setting  = 1 is suboptimal.

7 Discussion

In the discussion we first relate our framework to Kocherlakota (2003) and Shi (2008). We

then show that if agents have a choice to participate in the secondary bond market, they

strictly prefer to do so.

24Notice that the markup-target is only used for the baseline calibration and Kalai bargaining.
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7.1 Relation to Kocherlakota (2003) and Shi (2008)

As mentioned in the introduction, in the Shi (2008) framework there is no secondary bond

market. Rather, he assumes that agents are allowed to use bonds and money to pay for

goods in some trade meetings, while they can only use money to pay for goods in some

other trade meetings. He shows that such a legal restriction can be welfare-improving. In

his model, there are two types of goods: red and green. The costs of production are the

same for the two colors, but the marginal utilities differ. Formally, consumption utility

is represented by the utility function 
¡

¢
, where  is consumption of good  and 

denotes the good type:  (green) and  (red). It is assumed that  = 1 and  =   0.

Once agents are matched, they receive a matching shock : with a 50 percent probability

the red good is produced and with a 50 percent probability the green good is produced. In

each match, buyers make a take-it-or-leave-it offer. The legal restriction imposed by Shi

(2008) is that while money can be used in both matches, bonds as a means of payment

cannot be used in red trades. This legal restriction is welfare-improving if the relative

marginal utility of red goods is less than one, but not too small. The intuition is that in

the economy without this legal restriction agents consume the same amount of goods in all

matches, because money and bonds are perfect substitutes (see Table 5, where 1 = 1 ).

This allocation is inefficient, because efficiency requires that consumption of green goods

is higher than consumption of red goods (see Table 5, where the efficient quantities satisfy

∗  ∗ ). The legal restriction, thus, shifts consumption from the red good to the more

highly valued green good. This smoothes marginal utilities across green and red matches,

which is welfare increasing.

In Shi, the welfare improvement arises because the legal restriction shifts consumption

towards the more desired green good. In Kocherlakota and in our model, this mechanism

is absent, since there is only one good and, hence, only one efficient quantity (see Table

5, where the efficient quantity is denoted ∗). The welfare benefits of creating illiquid

bonds and letting agents trade them in a secondary bond market arises because it increases

consumption as explained below.
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Table 5: Consumed quantity in Shi, Kocherlakota and our Modela

Caseb Description Shi (IS)c Kocherlakota Our modeld

1) Liquid bonds 1 = 1  ∗  ∗ 1 ∗ 1 ∗
2) Illiquid. bonds with SBM - 1 2 ∗ 1 2 ∗
3) Partially illiquid bonds 3  1 = 1  3 - -

4) Illiquid bonds with restricted SBM - - 
4  4  ∗

aVariables labeled with a * indicate efficient quantities. In Shi, the efficient quantities differ in green matches,

∗ , and red matches, ∗ , while in our model there is only one efficient quantity, ∗. bThe lower-case index

of the variables refers to the equilibrium quantities in the following cases: 1) An economy with liquid bonds;

2) An economy with illiquid bonds and with unrestricted access to the secondary bond market (SBM); 3) An

economy with partially liquid bonds without a secondary bond market; 4) An economy with illiquid bonds and

with restricted access to the secondary bond market. c IS refers to the "Imperfect Substitutability" equilibrium

in Shi. d 4 and 
4 are the consumption quantities for agents that have access and no access to the SBM in

our model.

When bonds are liquid as money, all agents consume the same quantity 1  ∗ in
Kocherlakota and also in our model (see Table 5). In fact, 1 is the same quantity that

would be consumed in a model without liquid bonds or in a model with liquid bonds

since liquid bonds do not affect the allocation. When bonds are illiquid and when there

is a secondary bonds market, where all agents can trade ( = 1), all agents consume

the same quantity as indicated by the quantity 2  ∗ in Table 5. Note, though, that
1  2 implying that creating illiquid bonds and allowing agents to trade them for money

in response to liquidity shocks improves the allocation. We next consider our key result,

which is that it can be welfare-improving to set   1. There are two effects of such a

policy. First, it introduces variance in the marginal utilities across matches, since agents

who have access to the secondary bonds market trade different quantities than agents who

have no access. In Table 5, the former trade the quantity 4 , and the latter trade the

quantity 
4  with 

4  4 . Introducing consumption variability is clearly inefficient.

Nevertheless, we show that it can be welfare-improving because such a policy can increase

the value of money and, hence, consumption quantities. Since our mechanism adds a wedge

between marginal utilities across matches, while Shi’s mechanism reduces such a wedge, it

should be clear that our mechanism is very different from Shi’s legal restriction model.

7.2 Endogenous participation

So far, we have assumed that participation in the secondary bond market is determined by

the exogenous idiosyncratic participation shock . Suppose instead that each agent has a

choice. Recall that  
1 ( ) is the expected lifetime utility of a buyer at the beginning of
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the secondary bond market, and  
2 ( ) is the expected lifetime utility of a buyer at the

beginning of the goods market who had no access to the secondary bond market. Then, for

a buyer, it is optimal to participate if

 
1 ( ) ≥  

2 ( )

Note that the exact experiment here is to keep all prices at their equilibrium values for a

given participation rate , and, then, to ask the question, whether a single buyer would

prefer to enter the secondary bond market. The move of a single buyer from passive to

active does not change equilibrium prices.

Lemma 4 In any equilibrium,  
1 ( )−  

2 ( ) ≥ 0.

According to Lemma 4, a buyer is always better off when participating in the secondary

bond market. To develop an intuition for this result, note that, as shown in the proof of

Lemma 4,

 
1 ( )−  

2 ( ) =  (̂)− ̂ − [ ()− ]−  (̂ − )  (37)

where  = (1− )  is the nominal interest rate. A passive buyer’s period surplus is

 () − , while an active buyer’s surplus is  (̂) − ̂ −  (̂ − ), where the term  (̂ − )

measures the utility cost of selling bonds to finance the difference ̂−  ≥ 0. The difference
 (̂)− ̂ − [ ()− ] is strictly positive, while the term − (̂ − ) is negative. The reason

is that in any equilibrium  ≤ ̂ ≤ ∗. Thus, the equilibrium interest rate cannot be too

large in order for (37) to be positive. In the proof of Lemma 4, we replace  in (37) for all

three types of equilibria and find that  
1 ( )−  

2 ( )  0.

We now turn to the sellers. For them, we also find that they are better off when

participating in the secondary bond market.

Lemma 5 In any equilibrium,  
1 ( )−  

2 ( ) ≥ 0.

In the type I equilibrium, the nominal interest rate is  = 0. In this case,  
1 ( ) =

 
2 ( ). In the type II and type III equilibria, the nominal interest rate is   0 In this

case, the seller strictly prefers to enter, since  
1 ( )   

2 ( ).

8 Conclusion

We construct a general equilibrium model with a liquid asset and an illiquid asset. Agents

experience idiosyncratic liquidity shocks after which they can trade these assets in a sec-

ondary bond market. We find that an agent’s portfolio choice of liquid and illiquid assets
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involves a pecuniary externality. An agent does not take into account that by holding more

of the liquid asset he not only acquires additional insurance against his own idiosyncratic

liquidity risks, but he also marginally increases the value of the liquid asset which improves

insurance for other market participants. This pecuniary externality can be corrected by

restricting, but not eliminating, access to the secondary bond market.

Our results provide justifications for policies that make financial trading difficult. That

is, policies that decrease the wheels of finance can be welfare improving. This should come

as no shock to anyone who knows the theory of the second best. Our model is an incomplete

market model. It is well known that in such environments, adding frictions and/or taxes

can improve the allocation.

9 Appendix

9.1 Proofs

Proof of Lemma 1. We first note that in any equilibrium (i.e., type I, II, and III), a

buyer will never spend all his money for bonds in the secondary bond market, implying that

 = 0. Furthermore, a seller will never spend all his bonds for money in the secondary

bond market, implying that  = 0.

Furthermore, in a type I equilibrium, an active buyer’s bond constraint in the secondary

bond market does not bind ( = 0), and a seller’s cash constraint in the secondary bond

market does not bind ( = 0). Using these values for the multipliers, we can rewrite the

secondary bond market first-order conditions (17) as follows:

 
2

̂
=  and

 
2

̂
= , (38)

 
2

̂
=  and

 
2

̂
= . (39)

Furthermore, combining the previous expressions with (12) and (14), we have

 = 
0(̂)
0 (̂)

+ 1−  and  = 1, (40)

 = 1 and  = 1. (41)

Then, (41) implies that  = 1; i.e., that (23) holds.

Then, from (40), the fact that  = 1 immediately implies that  = 1, which then

implies that 0(̂) = 0 (̂); i.e., that (26) holds.
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Use (12) and (14) to write (18) and (19) as follows:

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (42)

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )+ ]  (43)

Use the primary bond market first order conditions (5) to write the previous equations as

follows




= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (44)




= 

h
(1− ) + 

i
+ 1−  (45)

We have already established that in the type I equilibrium  =  =  = 1. This implies,

from (45), that  = ; i.e., that equation (25) holds. Finally, (24) immediately follows

from (44).

Note that if   1, active buyers consume the inefficient quantity, since ̂  ∗ even as
 → . If  = 1, 0(̂) = 1 so they consume the efficient quantity ̂ = ∗.
Proof of Lemma 2. We first show that equation (30) holds. In the type II equilibrium, all

buyers spend all their money in the goods market. Consequently, () =  and (̂) = ̂

hold. The last two equations imply

() = (̂)̂ (46)

Each active buyer exits the secondary bond market with ̂ units of money, while an active

seller exits with zero units of money. A passive agent (a seller or a buyer) exits the secondary

bond market with  units of money, therefore −1 = (1 − )̂ +  ∗ 0 + (1− ).

Replacing  = −1, we get ̂ = −1(1 − ). Use ̂ = −1(1 − ) and  = −1 to
replace ̂ and  in (46), respectively, to get () = (̂)(1− ); i.e., equation (30) holds.

We now show that (27)-(29) hold. As argued in the proof of Lemma 1,  = 0 and

 = 0 in any equilibrium. In a type II equilibrium, an active buyer’s bond constraint in

the secondary bond market does not bind; i.e.,  = 0, and a seller’s cash constraint in

the secondary bond market binds; i.e.,   0. Using these values for the multipliers, the

secondary bond market first-order conditions (17) can be rewritten as follows:

 
2

̂
=  and

 
2

̂
= , (47)

 
2

̂
=  −  and

 
2

̂
= . (48)
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Using the previous expressions in (12) and (14), we obtain

 = 
0(̂)
0 (̂)

+ 1−  and  = 1, (49)

 =  ( − 1) and  = 1. (50)

From (50),  =  ( − 1) = 
³
1

− 1
´
. Note that   0 implies   1.

Expression (27) follows directly from (49). As in Lemma 1, use (12) and (14) to write

(18) and (19) as follows:

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (51)

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )+ ]  (52)

Use the primary bond market first order conditions (5) to write the previous equations as

follows




= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (53)




= 

h
(1− ) + 

i
+ 1−  (54)

Substituting  and  in (54) yields  = ; i.e., equation (29) holds. Finally, (28)

immediately follows from (53).

Proof of Lemma 3. The proof that equation (34) holds in a type III equilibrium follows

the proof that equation (30) holds in Lemma 2, and is not repeated here.

We next show that equation (31) holds. An active agent enters the secondary bond

market with a real portfolio  +  of money and bonds. As a buyer, he sells all his

bonds in a the type III equilibrium, and thus he exits the secondary bond market with a

portfolio ̂. As a seller, he sells all his money and thus exits this market with a portfolio

̂. Therefore +  = ̂ holds for an active buyer, and +  = ̂ holds for

an active seller. Combining the two equations yields

̂ = ̂ (55)

Immediately after the secondary bond market closes, but before the goods market opens,

the stock of money in circulation is in the hands of active buyers and passive agents (sellers

and buyers). Active sellers hold no money at the end of the secondary bond market.

Consequently, −1 = (1− )̂+  ∗ 0 + (1− ) Eliminate , using  = −1, and
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rearrange to get

̂ =
−1
1− 

 (56)

The stock of bonds in circulation is in the hands of active sellers and passive agents (sellers

and buyers), while active buyers hold no bonds at the end of the secondary bond market.

Thus, the stock of bonds is equal to −1 =  (1− ) ∗ 0 + ̂ + (1 − ). Since passive

agents do not trade in the secondary bond market, they enter the goods market with the

same amount of bonds they had at the beginning of the period,  = −1. Use this equation
to eliminate  in the bond stock expression above and get

̂ =
−1


 (57)

Replace ̂ and ̂ in (55) by using (56) and (57), respectively. Since the bonds-to-money

ratio is constant over time, we can replace the time  − 1 stock of money and bonds with
their respective initial values. Equation (31) then follows.

Finally, we show that (32) and (33) hold. In any equilibrium,  = 0 and  = 0. In

a type III equilibrium, a seller’s cash constraint in the secondary bond market binds; i.e.,

  0, and a buyer’s bond constraint in the secondary bond market binds; i.e.,   0.

Using these multipliers, the secondary bond market first-order conditions (17) become

 
2

̂
=  and

 
2

̂
=  − , (58)

 
2

̂
=  −  and

 
2

̂
= . (59)

Using the previous expressions in (12) and (14), we obtain

 = 
0(̂)
0 (̂)

+ (1− ) and  = 
³
 − 1

´
, (60)

 =  ( − 1) and  = 1. (61)

Like in a type II equilibrium,  =  ( − 1) = 
³
1

− 1
´
, and since   0 then   1.

Unlike in a type II equilibrium, from (58), we find  = 
¡
 − 1¢ =  [Ψ (̂)− 1]. Since

  0, Ψ (̂)  1 and so (27) does not hold in a type III equilibrium.

Use (12) and (14) to write (18) and (19) as follows:

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (62)

1


= 

h
(1− ) + 

i
+ (1− ) [(1− )+ ]  (63)
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Using the primary bond market first-order conditions (5), the previous equations can be

rewritten as follows:




= 

h
(1− ) + 

i
+ (1− ) [(1− )Ψ () + ]  (64)




= 

h
(1− ) + 

i
+ 1−  (65)

Substituting  and  in (64) and (65) yields (32) and (33), respectively.

Proof of Proposition 1. Derivation of . The critical value  is the value of  such

that expressions (24) and (28) hold simultaneously; i.e., such that Ψ (̂) = 1. Such a value

exists and is unique, since we assume that Ψ () is decreasing in .

Derivation of . The critical value  is the value of  such that equations (28)

and (32) hold simultaneously; i.e., such that Ψ (̂) = 0
0

1−


 1. Again, such a value exists

and is unique, since we assume that Ψ () is decreasing in .

Proof of Lemma 4. From the buyer’s problem in the secondary bond market,  
1 ( ) =

 
2 (̂ ̂), where ̂ and ̂ are the quantities of money and bonds that maximize  

2 . In any

equilibrium, the buyer’s budget constraint (15) holds with equality. Thus, we can use (15)

to eliminate ̂ from  
2 (̂ ̂) and get

 
1 ( ) =  

2

µ
̂

+ − ̂



¶
 (66)

Next, use (4), (10), and (3), to get

 
1 ( ) =  { [ (̂)]−  (̂)}+ (∗)− ∗ + ̂+  − +1

+
+ − ̂


− +1 + 1(+1 +1) (67)

Note that the buyer’s cash constraint in the goods market binds; i.e.,  (̂) = ̂. From

(2),  =  −−1 +  − −1, and the budget constraint in the goods market satisfies
̂ =  (̂) and  =  (). Furthermore, all agents exit the period with the same amount

of money and bonds, hence +1 = and +1 = . Using these equalities we can rewrite

(67) as follows:

 
1 ( ) =  [ (̂)−  (̂)] + (∗)− ∗

−
µ
1


− 1
¶
[ (̂)−  ()] + 1(+1 +1)
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where we have used  = −1 and  =−1 Another way to write this is

 
1 ( ) =  [ (̂)−  (̂)] + (∗)− ∗ −  [ (̂)−  ()] + 1(+1 +1) (68)

The active buyer’s period surplus is  [ (̂)−  (̂)], but he has to pay interest  = 1

− 1

on the difference  (̂)−  () 

Along the same lines, for a passive agent one can show that

 
2 ( ) =  [ ()−  ()] + (∗)− ∗ + 1(+1 +1) (69)

The difference between (68) and (69) is

 
1 ( )−  

2 ( ) =  [ (̂)−  (̂)]−  [ ()−  ()]−  [ (̂)−  ()]  (70)

We now need to study (70) for the different types of equilibria. For the type I equilibrium,

 comes from (23), thus

 
1 ( )−  

2 ( ) = Ψ1 ≡  [ (̂)−  (̂)]−  [ ()−  ()]  0

which is clearly strictly positive, since   ̂. For the type II equilibrium,  comes from

(27), thus

Ψ2 ≡  [ (̂)−  (̂)]−  [ ()−  ()]− 

∙
0(̂)
0 (̂)

− 1
¸
[ (̂)−  ()]  (71)

For the type III equilibrium,  comes from (31), thus

Ψ3 ≡  [ (̂)−  (̂)]−  [ ()−  ()]−
µ
0

0

1− 


− 1
¶
[ (̂)−  ()] 

Note that in the type III equilibrium we have 
0(̂)
0(̂) + 1 −  ≥ 1


= 0

0

1−

. Accordingly,

Ψ3 ≥ Ψ2. Hence, it is sufficient to show that Ψ2  0. To do so, rewrite (71) as follows:

 (̂)−  ()−  (̂) +  () 

∙
0(̂)
0 (̂)

− 1
¸
[ (̂)−  ()] 

Divide both sides of the above inequality by ̂ −  and rearrange it to get

(̂)−()
̂−

(̂)−()
̂−


0(̂)
0 (̂)

.
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The left-hand side is larger than the right-hand side, since we have assumed that
0()
0() is a

strictly decreasing function of . Hence, Ψ3 ≥ Ψ2  0.
Proof of Lemma 5. From an active seller’s decision problem in the secondary bond

market,  
1 ( ) =  

2 (̂ ̂). In any equilibrium, the seller’s budget constraint (15) holds

with equality. Thus, we can use (15) to eliminate ̂ from  
2 (̂ ̂) and get

 
1 ( ) =  

2

µ
̂

+ − ̂



¶
 (72)

Using (13), the following holds

 
1 ( ) =  [− () + ] + 3

µ
̂

+ − ̂



¶


which can be rewritten as follows:

 
1 ( ) =  [− () + ] + (∗)− ∗ + ̂+

+ − ̂



+ − +1 − +1 + 1(+1 +1)

by virtue of (3) and (4).

For a passive seller, one can show that

 
2 ( ) =  [− () + ] + (∗)− ∗ + + 

+ − +1 − +1 + 1(+1 +1)

Hence the difference  
1 ( )−  

2 ( ) is equal to

 
1 ( )−  

2 ( ) = ̂− +
− ̂


=  (− ̂) 

Note that active sellers do not carry any money into the goods market, thus ̂ = 0. Also

note that  =  ()  0. It turns out that the above difference is positive if   0.

9.2 Other pricing mechanisms

Here we discuss how the key equations change when we assume one of the other pric-

ing mechanisms mentioned above. Using the Kalai bargaining solution is straightforward.

Competitive pricing is a bit more involved.

Kalai bargaining The Nash bargaining solution is non-monotonic (see Aruoba, Ro-

cheteau, and Waller; 2007). In contrast, the Kalai bargaining solution, also referred to

33



as proportional bargaining (Kalai; 1977), is monotonic and because of this property it is

increasingly used in monetary economics.25 It can be formalized as follows:

( ) = argmax()− 

s.t. ()−  =  [()−  ()] and  ≤ 

When the buyer’s cash constraint is binding, the solution is  =  and

 =  () ≡  () + (1− )() (73)

where the superscript  refers to Kalai bargaining. When the buyer’s constraint (7) is

binding, the Kalai bargaining solution differs from the Nash bargaining solution unless

 = 0 or  = 1. When the constraint is nonbinding, Nash bargaining and Kalai bargaining

yield the same solution.

It is straightforward to study the model under Kalai bargaining. One only needs to

replace  () with  () in Lemmas 1-3.

Competitive pricing Competitive pricing differs from random matching and bargaining

along two dimensions. Obviously, there is no random matching, meaning that agents trade

with certainty, since in competitive equilibrium buyers and sellers trade against the market.

To make the results comparable, however, we assume that buyers and sellers can enter the

goods market only probabilistically with probability  and , respectively. The benefit of

this assumption is that all differences in results are due to the pricing mechanism since the

number of trades is equal under all pricing protocols.

The second difference is that there is no bargaining; instead, the competitive price

adjusts to equate aggregate demand and aggregate supply. The market clearing condition

for the goods market is

(1− ) [̂ + (1− )] =  (74)

where ̂ () is the quantity consumed by a buyer who has (no) access to the secondary bond

market.

Below we show that competitive pricing yields the same allocation as random matching

and bargaining if the buyers have all the bargaining power; i.e.,  = 1. In particular, the

25The Kalai bargaining solution is discussed in Aruoba, Rocheteau, and Waller (2007) and is used, for

example, in Rocheteau and Wright (2010), Lester, Postlewaite, and Wright (2012), He, Wright, and Zhu

(2012), and Trejos and Wright (2012). For a textbook treatment of the Kalai bargaining solution see Nosal

and Rocheteau (2011).
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terms of trade satisfy26

 () ≡  (75)

It is then straightforward to study the model under competitive pricing. One only needs to

replace  () with  () in Lemmas 1-3.

Under competitive pricing, it is natural to interpret  and  as participation probabil-

ities in the goods market. In particular, let  () be the probability that a buyer (seller)

participates in the goods market. Then the buyer’s value function in the goods market is

 
2 ( ) = max



"
 () + 3 (−  )

s.t.  ≥ 

#
+ (1− )3( ) (76)

where  is the price, and  the quantity of market-2 goods consumed by the buyer. The

first-order condition to this problem is

0() =  (+ )  (77)

where  is the Lagrange multiplier on  ≥ .

The seller’s value function in the goods market is

 
2 ( ) = max


[− () + 3 (+  )] + (1− )3( ) (78)

The first-order condition to this problem is

 = 0 ()  (79)

If the buyer’s cash constraint is not binding, the buyer consumes the efficient quantity ∗,
where ∗ solves 0() = 0 (). If the cash constraint is binding, then he spends all his
money in goods purchases, and consumption is inefficiently low. Note that, in equilibrium,

an active buyer will hold more money than a passive buyer. This means that   ̂. It

then follows that ̂  .

The buyer’s envelope conditions are

 
2


= 

0 ()
0 ()

+ (1− ) and
 

2


=  (80)

where we have used the envelope conditions in the primary bond market, and the first-

order conditions in the goods market. Notice the similarity between (80) and (12). The

26 In general, the condition is  ( ) ≡ 0 () , where  is a seller’s production. With a linear cost
function,  () = , the condition reduces to 

 () ≡ .
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two expressions are the same if  = 1. As a consequence of this, active buyers consume

the efficient quantity in a type I equilibrium under competitive pricing, while they do not

under bilateral matching unless  = 1.

The seller’s envelope conditions are exactly the same as (14); i.e.,
 

2


=

 
2


= .

Finally, by using the budget constraint of the buyer at equality  =  and (79) we get

 =  () ≡ 0 () 

which is equal to (75) for a linear cost function.

9.3 Data Sources

The data we use for the calibration is provided by the U.S. Department of Commerce:

Bureau of Economic Analysis (BEA), the Board of Governors of the Federal Reserve System

(BGFRS), the Federal Reserve Bank of St. Louis (FRBSL), the U.S. Department of the

Treasury: Financial Management Service (FMS), the U.S. Department of Labor: Bureau

of Labor Statistics (BLS) and Bloomberg.

Table A.1: Data source

Description Identifier Source Period Frequency

AAA Moody’s corporate bond AAA BGFRS 60:Q1-10:Q4 quarterly

Consumer price index CPIAUCSL BLS 60:Q1-10:Q4 quarterly

Government bond - 3 months USGG3M27 Bloomberg 60:Q1-10:Q4 quarterly

US total public debt GFDEBTN FMS 66:Q1-10:Q4 quarterly

M1 money stock M1NS BGFRS 60:Q1-10:Q4 quarterly

Nominal GDP GDP BEA 60:Q1-10:Q4 quarterly

Velocity of money M1V FRBSL 60:Q1-10:Q4 quarterly

As the total public debt series from the U.S. Department of the Treasury: Financial

Management Service is only available from 1966:Q1, we construct the quarterly data in the

period from 1960:Q1 to 1965:Q4 with the data provided by http://www.treasurydirect.gov/

govt/reports/pd/mspd/mspd.htm. The definition of quarterly data that we apply is in line

with the Federal Reserve Bank of St. Louis FRED R° database and defined as the average

of the monthly data.

27The yields of this index are annualized yields to maturity and pre-tax. The rates are comprised of

Generic United States on-the-run government bill/note/bond indices with a maturity of 3 months.
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