Do Bond Covenants Prevent Asset Substitution?

Johann Reindl BI Norwegian Business School

joint with Alex Schandlbauer University of Southern Denmark

DO BOND COVENANTS PREVENT ASSET SUBSTITUTION?

The Asset Substitution Problem

- ► Levered equity is a *call option* on a firm's underlying assets.
- \Rightarrow Equityholders gain from increasing the riskiness of the firm at the expense of debtholders as first noted by Jensen and Meckling (1976).
- Underlying reason: Limited liability makes equity a *convex function* of the unlevered firm value.

DO BOND COVENANTS PREVENT ASSET SUBSTITUTION?

The Asset Substitution Problem

- ► Levered equity is a *call option* on a firm's underlying assets.
- \Rightarrow Equityholders gain from increasing the riskiness of the firm at the expense of debtholders as first noted by Jensen and Meckling (1976).
- Underlying reason: Limited liability makes equity a *convex function* of the unlevered firm value.

Potential Solutions:

- Special financial structure: Hybrid debt (convertibles), short-term debt,...
- Bond covenants prohibiting certain actions

DO BOND COVENANTS PREVENT ASSET SUBSTITUTION?

The Asset Substitution Problem

- Levered equity is a *call option* on a firm's underlying assets.
- \Rightarrow Equityholders gain from increasing the riskiness of the firm at the expense of debtholders as first noted by Jensen and Meckling (1976).
- Underlying reason: Limited liability makes equity a *convex function* of the unlevered firm value.

Potential Solutions:

- Special financial structure: Hybrid debt (convertibles), short-term debt,...
- Bond covenants prohibiting certain actions
- New Mechanism: Bond covenants changing the curvature of equity

HOW CAN WE MEASURE ASSET SUBSTITUTION?

Where to look?

- Asset substitution is most likely to have happened with firms that went bankrupt.
- We track firms that have defaulted for the last 84 months before their default.

Empirical Difficulties

- **Endogeneity** of covenant and risk-shifting decision:
 - 1. The riskiness we observe depends on whether covenants are in place or not.
 - 2. The decision to include covenants in bond contracts depends on the expected gains from risk-shifting.
- Identification problem because the standard *leverage effect* leads to an automatic increase in a firm's volatility as it approaches default.
- Standard econometric techniques do not work because of the conditional sample.

HOW CAN WE MEASURE ASSET SUBSTITUTION?

Our Approach

- Structural corporate finance model that links the leverage and the characteristics of the firm to observable equity prices (identification problem).
- Defaulted firms are grouped into two sub-samples
 - 1. firms having issued bonds with covenants attached
 - 2. firms having issued bonds without covenants attached.

and the structural model is estimated separately for each group (endogeneity problem).

 New estimation approach: conditional simulated methods of moments that is able to deal with our sample of defaulted firms (selection bias).

RESULTS: DO COVENANTS PREVENT ASSET SUBSTITUTION?

Firms with bond covenants...

- … have strong risk-shifting incentives (risk-shifting is not costly for equityholders),
- ... and seem to use bond covenants to commit to a more prudent conduct of business. The equity value function is less convex because of the covenant,
- ... engage in risk-shifting very early but not any further in periods of financial distress.

Firms without bond covenants...

- … have low risk-shifting incentives (risk-shifting is very costly),
 ⇒ agency costs imposed on debtholders are relatively small.
- ... exhibit risk-shifting and default strategies that are very close to the optimal behavior as predicted by theory,
- … have optimally chosen to not use covenants because the inefficiencies created through covenants exceed their benefits (agency cost savings).

Results

()()()()()

Related Literature

Theory on Risk Shifting

- Special financial structure, e.g., hybrid debt in the form of a convertible bond as in Green (1984): The concavity induced by the thread of conversion exactly offsets the convexity induced by limited liability.
 - Problem: works only in a one period model.
- Short-term debt (Djembissi, 2011): Risk-shifting increases the cost of future debt which affects future dividends.
 - Problem: Very costly due to suboptimal leverage and too early default.
 - Empirical evidence: few executives feel that short borrowing reduces risk-shifting incentives, Graham and Harvey (2007).

Empirics on Covenant Use

- Smith and Warner (1979): Costly contracting hypothesis.
- ► Bradley and Roberts (2003), Wei (2005): Covenants reduce the cost the debt.
- Chava et al. (2010), Billett et al (2007): Firms actively use covenants to reduce the agency costs of debt financing (focus on investment).

MODEL - THE FIRM

Capital Structure

- Outstanding debt represented by consol bond with coupon *C*.
- *Bankruptcy costs*: a fraction α of the unlevered firm value.
- Default happens when X_t hits a predetermined threshold X_D. The threshold is either determined optimally by equityholders or through bond covenants.

Earnings and Assets

Operating income under the risk-neutral measure:

$$dX_t = \mu_i X_t dt + \sigma_i X_t dW_t$$

Value of the unlevered assets (if no risk-shifting occurs):

$$A(X_t) = E^{Q} \left[\int_t^\infty (1 - T_C) e^{-r(s-t)} X_s ds \right] = \frac{(1 - T_C) X_t}{r - \mu}$$

▲□▶▲□▶▲□▶▲□▶▲□▼ 少へ?

ASSET SUBSTITUTION

- Equityholders have the option to increase the riskiness of the firm's cashflow:
 σ_i ∈ {σ_L, σ_H} where 0 < σ_L < σ_H < ∞
- ► Increasing the risk of the cashflow can be **costly**:

 $\mu_i \in \{\mu_L, \mu_H\}$ where $\mu_H \leq \mu_L < \infty$

- expenses necessary for establishing and upholding the riskier use of the assets and/or
- increase in the discount rate
- ⇒ **Risk-shifting can destroy value**:

$$A_H(X_t) = \frac{(1 - T_C)X_t}{r - \mu_H} \le \frac{(1 - T_C)X_t}{r - \mu_L} = A_L(X_t)$$

► Equityholders choose an optimal **risk-shifting threshold** *X*_{*RS*}.

ASSET SUBSTITUTION: OPTIMAL STRATEGIES EQUITYHOLDERS CHOOSE AN OPTIMAL RISK-SHIFTING (X_{RS}) AND DEFAULT THRESHOLD (X_D) .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ASSET SUBSTITUTION

- Equityholders have the option to increase the riskiness of the firm's cashflow:
 σ_i ∈ {σ_L, σ_H} where 0 < σ_L < σ_H < ∞
- ► Increasing the risk of the cashflow can be **costly**:

 $\mu_i \in \{\mu_L, \mu_H\}$ where $\mu_H \leq \mu_L < \infty$

- expenses necessary for establishing and upholding the riskier use of the assets and/or
- increase in the discount rate
- ⇒ **Risk-shifting can destroy value**:

$$A_H(X_t) = \frac{(1 - T_C)X_t}{r - \mu_H} \le \frac{(1 - T_C)X_t}{r - \mu_L} = A_L(X_t)$$

- ► Equityholders choose an optimal **risk-shifting threshold** *X*_{*RS*}.
- ► The **convexity** of equity value function induces the risk-taking behavior.

ASSET SUBSTITUTION: CONVEXITY THE CONVEXITY OF THE EQUITY VALUE FUNCTION INCREASES THE MORE FINANCIALLY DISTRESSED THE FIRM BECOMES (LOW VALUES OF X_t)

ASSET SUBSTITUTION

- Equityholders have the option to increase the riskiness of the firm's cashflow:
 σ_i ∈ {σ_L, σ_H} where 0 < σ_L < σ_H < ∞
- ► Increasing the risk of the cashflow can be **costly**:

 $\mu_i \in \{\mu_L, \mu_H\}$ where $\mu_H \leq \mu_L < \infty$

- expenses necessary for establishing and upholding the riskier use of the assets and/or
- increase in the discount rate
- ⇒ **Risk-shifting can destroy value**:

$$A_H(X_t) = \frac{(1 - T_C)X_t}{r - \mu_H} \le \frac{(1 - T_C)X_t}{r - \mu_L} = A_L(X_t)$$

- ► Equityholders choose an optimal **risk-shifting threshold** *X*_{*RS*}.
- ► The **convexity** of equity value function induces the risk-taking behavior.
- ► The Dilemma:
 - Risk-shifting transfers value from debtholders to equityholders.

INTRODUCTION	Methodology	Results
00000	0000000	00000

ASSET SUBSTITUTION: VALUE TRANSFER Risk-shifting transfers value from the debtholders to equityholders.

ASSET SUBSTITUTION

- Equityholders have the option to increase the riskiness of the firm's cashflow:
 σ_i ∈ {σ_L, σ_H} where 0 < σ_L < σ_H < ∞
- ► Increasing the risk of the cashflow can be **costly**:

 $\mu_i \in \{\mu_L, \mu_H\}$ where $\mu_H \leq \mu_L < \infty$

- expenses necessary for establishing and upholding the riskier use of the assets and/or
- increase in the discount rate
- ⇒ **Risk-shifting can destroy value**:

$$A_H(X_t) = \frac{(1 - T_C)X_t}{r - \mu_H} \le \frac{(1 - T_C)X_t}{r - \mu_L} = A_L(X_t)$$

- ► Equityholders choose an optimal **risk-shifting threshold** *X*_{*RS*}.
- ► The **convexity** of equity value function induces the risk-taking behavior.
- ► The Dilemma:
 - Risk-shifting transfers value from debtholders to equityholders.
 - When issuing debt, equityholders would like to commit to not engage in asset substitution but this is not time consistent.

INTRODUCTION	Methodology	Results
00000	0000000	00000

ASSET SUBSTITUTION: LOWER DEBT CAPACITY DEBT CAPACITY IS LOWER DUE TO RISK-SHIFTING.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.

CASHFLOW BASED COVENANTS: CONCAVE EQUITY

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.
 - No risk-shifting means no wealth transfer from debtholders to equityholders...

CASHFLOW BASED COVENANTS: NO TRANSFER

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.
 - No risk-shifting means no wealth transfer from debtholders to equityholders...
 - ... and higher debt capacity, i.e., gains from larger tax shield.

Cashflow Based Covenants: Higher Debt Capacity

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.
 - No risk-shifting means no wealth transfer from debtholders to equityholders...
 - ... and higher debt capacity, i.e., gains from larger tax shield.
- Cashflow covenants based on e.g., the debt-service ratio, are tighter than would be necessary and lead to inefficiently early default which destroys value.

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.
 - No risk-shifting means no wealth transfer from debtholders to equityholders...
 - ... and higher debt capacity, i.e., gains from larger tax shield.
- Cashflow covenants based on e.g., the debt-service ratio, are tighter than would be necessary and lead to inefficiently early default which destroys value.
 - There exists a lower technical default threshold just high enough to destroy equityholders risk-shifting incentives but is not contractible upon.

- As risk-shifting is not contractible upon, bond covenants cannot directly prohibit risk-shifting.
- A cashflow based covenant that specifies a threshold for technical default, e.g., X_D = C (debt-service ratio covenant), will make the equity value a concave function.
 - No risk-shifting means no wealth transfer from debtholders to equityholders...
 - ... and higher debt capacity, i.e., gains from larger tax shield.
- Cashflow covenants based on e.g., the debt-service ratio, are tighter than would be necessary and lead to inefficiently early default which destroys value.
 - There exists a lower technical default threshold just high enough to destroy equityholders risk-shifting incentives but is not contractible upon.
 - Real world solution: Renegotiate cashflow covenants such that default does not happen too early.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THE OPTIMAL DEBT CONTRACT

- A covenant is not costless (costly contracting hypothesis, Smith and Warner, 1979) but creates inefficiencies through limiting the choice set of management.
- A cashflow covenant creates **inefficiencies through too early default**.
- If the valuation consequences of asset substitution are high, equityholders will engage in risk-shifting only in very bad times which is a low probability event.
- Thus, the expected value of the agency costs that are priced into debt is relatively low.
- In that case, the value loss due to the inefficiencies created by the covenant might outweigh the agency costs induced by asset substitution.

INEXPENSIVE (1st row) AND **EXPENSIVE** RISK-SHIFTING (2nd row)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OUR ESTIMATION APPROACH

- The structural model links observable equity prices to leverage and unobservable firm characteristics which are estimated.
- No optimizing behavior is imposed:
 - The optimal risk-taking (and default) behavior is not hard-wired in our econometric model.
 - The data determines the risk-shifting threshold X_{RS} and the default threshold X_D .
- Parameters to be estimated: $b = [\sigma_L, \sigma_H, \mu_L, \mu_H, \alpha_L, \alpha_H, \zeta_{RS}, \zeta_D]$
 - cashflow volatilities $[\sigma_L, \sigma_H]$;
 - cashflow growth rate under the Q-measure $[\mu_L, \mu_H]$;
 - cashflow growth rate under the P-measure $[\alpha_L, \alpha_H]$;
 - ► risk-shifting and default threshold ($[X_{RS}, X_D]$), defined as a multiple ($[\zeta_{RS}, \zeta_D]$) of outstanding debt;

Problem: SAMPLING CONDITIONAL ON DEFAULT CREATES DEPENDENCE

INTRODUCTION	Methodology	Results
00000	000000000	00000

INTRODUCTION	Methodology	Results
00000	00000000	00000

Standard Simulated Methods of Moments

1. Simulate a large sample of companies.

Solution: CONDITIONAL SIMULATED METHODS OF MOMENTS

- 1. Simulate a large sample of companies.
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ○ ○

Solution: CONDITIONAL SIMULATED METHODS OF MOMENTS

- 1. Simulate a large sample of companies.
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.

- 1. Simulate a large sample of companies.
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

- 1. Simulate a large sample of **defaulted** companies
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

Standard Conditional Simulated Methods of Moments

- 1. Simulate a large sample of **defaulted** companies
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

Modification

▲□▶▲□▶▲□▶▲□▶ □□ のへ?

Standard Conditional Simulated Methods of Moments

- 1. Simulate a large sample of **defaulted** companies
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

Modification

Instead of simulating forward we simulate back in time.

Standard Conditional Simulated Methods of Moments

- 1. Simulate a large sample of **defaulted** companies
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

Modification

- ► Instead of simulating forward we **simulate back in time**.
- Instead of a starting point to begin with we have an end-point (default threshold, X_D) to end at.

Standard Conditional Simulated Methods of Moments

- 1. Simulate a large sample of **defaulted** companies
- 2. Choose different moments which describe the simulated sample, e.g. mean and variance of the equity and implied cash-flow returns.
- 3. Calculate the same moments for the real-world sample.
- 4. Minimize the weighted distance between the simulated and empirical moments by altering the parameters of the model.

Modification

- ► Instead of simulating forward we **simulate back in time**.
- Instead of a starting point to begin with we have an end-point (default threshold, X_D) to end at.
- Instead of iid draws we employ the appropriate conditional joint distribution for the observations prior to default.

INTRODUCTION	Methodology	Results

DATA

- Sample of 176 firms that have defaulted between 2000 and 2013 (from Capital IQ).
- Stock price and accounting data from 1993 to 2013 (from Capital IQ).
- Bond covenant information (from Mergent FISD).

We follow Chava et al. (2010) and classify covenants into four groups:

- 1. Investment restrictions (89% of bonds)
- 2. Subsequent financing restrictions (86%)
- 3. Event related restrictions (83%)
- 4. Dividend and other payment restrictions (66% vs 14% in the sample of non-defaulted firms in Chava et al. (2010))

Descriptive statistics for bonds outstanding

COVENANTS REDUCE THE CREDIT SPREAD

	mean	p25	median	p75
Bonds with covenants (59%)				
Offering amount (mil)	256.05	100	175	300
Treasury spread (b.p.)	137.84	0	81	222
Maturity (in months)	128.74	84	117	121
Issuance time before default (in months)	100.64	45	84	147
Security level	3.77	3	4	4
Bonds without covenants (41%)				
Offering amount (mil)	200.63	90	150	275
Treasury spread (b.p.)	345.55	0	388	556
Maturity (in months)	124.40	84	120	121
Issuance time before default (in months)	120.21	52	81	162
Security level	3.88	3	4	4

INTRODUCTION	Methodology	Results
00000	00000000	0000

FINDINGS: FIRMS WITH BOND COVENANTS...

- ... can considerably increase the cashflow risk and risk-shifting is not costly.
- \Rightarrow ... have a high risk-shifting incentive.

parameter		low risk	high risk	
cashflow volatili	ty	$\sigma_L = 0.20$	$\sigma_H = 0.51$	
cashflow growth	under Q	$\mu_L = -0.06$	$\mu_H = -0.0622$	
threshold	estimated	if no coven	ants were in plac	ce
default (X_D)	0.96		0.37	
risk shifting (X_{RS})	23.96		9.19	
			┥□▶╡┲╞╡╘╸	 € ► €।

Methodology	Results
00000000	0000
	Methodology 00000000

FINDINGS: FIRMS WITH BOND COVENANTS...

- ... can considerably increase the cashflow risk and risk-shifting is not costly.
- \Rightarrow ... have a high risk-shifting incentive.
 - … have a default threshold that is very close to the cashflow covenant X_D = C = 1, as expected which considerably reduces the convexity of the equity function.

parameter		low risk	high risk
cashflow volatility		$\sigma_L = 0.20$	$\sigma_H = 0.51$
cashflow growth under ${\mathbb Q}$		$\mu_L = -0.06$	$\mu_{H} = -0.0622$
threshold	estimated	if no coven	ants were in place
default (X _D)	0.96		0.37
risk shifting (X_{RS})	23.96		9.19

INTRODUCTION	Methodology	Results
00000	00000000	0000

FINDINGS: FIRMS WITH BOND COVENANTS...

- ... can considerably increase the cashflow risk and risk-shifting is not costly.
- \Rightarrow ... have a high risk-shifting incentive.
- … have a default threshold that is very close to the cashflow covenant X_D = C = 1, as expected which considerably reduces the convexity of the equity function.
- … have a very high risk-shifting threshold. Many firms are already in the high risk-regime at the beginning of our sample period. Our interpretation: They don't increase riskiness of the firm any further in financial distress (close to X_D)

parameter	low risk	high risk
cashflow volatility	$\sigma_L = 0.20$	$\sigma_H = 0.51$
cashflow growth under ${\mathbb Q}$	$\mu_L = -0.06$	$\mu_H = -0.0622$

threshold	estimated	if no covenants were in place
default (X_D)	0.96	0.37
risk shifting (X_{RS})	23.96	9.19

INTRODUCTION	Methodology	Results
00000	00000000	00000

FINDINGS: FIRMS WITHOUT BOND COVENANTS...

- ... can considerably increase the cashflow risk but risk-shifting is very costly ($\mu_L \mu_H = 3\%$ vs 0.2% for firms with covenants).
- \Rightarrow ... have low risk-shifting incentives. Risk-shifting takes place just prior to default.

	without	covenants	with covenants	
parameter	low risk	high risk	low risk	high risk
cashflow volatility	$\sigma_L = 0.37$	$\sigma_H = 0.86$	0.20	0.51
cashflow growth under \mathbb{Q}	$\mu_L=0.02$	$\mu_H=-0.01$	-0.06	-0.0622

	without covenants		with cov	enants
threshold	estimated	optimal	estimated	optimal
default (X_D)	0.10	0.196	0.96	0.37
risk shifting (X_{RS})	0.35	0.204	23.96	9.19

FINDINGS: FIRMS WITHOUT BOND COVENANTS...

- ... can considerably increase the cashflow risk but risk-shifting is very costly ($\mu_L \mu_H = 3\%$ vs 0.2% for firms with covenants).
- ⇒ … have low risk-shifting incentives. Risk-shifting takes place just prior to default.
- ... shift the risk and declare default very closely to the optimal threshold.

	without covenants		with covenants	
parameter	low risk	high risk	low risk	high risk
cashflow volatility	$\sigma_L = 0.37$	$\sigma_H = 0.86$	0.20	0.51
cashflow growth under $\mathbb Q$	$\mu_L=0.02$	$\mu_H = -0.01$	-0.06	-0.0622

	without covenants		with cov	enants
threshold	estimated	optimal	estimated	optimal
default (X_D)	0.10	0.196	0.96	0.37
risk shifting (X_{RS})	0.35	0.204	23.96	9.19

FINDINGS: FIRMS WITHOUT BOND COVENANTS...

- ... can considerably increase the cashflow risk but risk-shifting is very costly ($\mu_L \mu_H = 3\%$ vs 0.2% for firms with covenants).
- ⇒ … have low risk-shifting incentives. Risk-shifting takes place just prior to default.
- ... shift the risk and declare default very closely to the optimal threshold.
- … have optimally chosen to not use bond covenants.

	without covenants		with covenants	
parameter	low risk	high risk	low risk	high risk
cashflow volatility	$\sigma_L = 0.37$	$\sigma_H = 0.86$	0.20	0.51
cashflow growth under $\mathbb Q$	$\mu_L=0.02$	$\mu_H = -0.01$	-0.06	-0.0622

	without covenants		with cov	enants
threshold	estimated	optimal	estimated	optimal
default (X_D)	0.10	0.196	0.96	0.37
risk shifting (X_{RS})	0.35	0.204	23.96	9.19

FIRMS WITHOUT BOND COVENANTS HAVE ISSUED THE OPTIMAL CONTRACT

INTRODUCTION	Methodology	Results
00000	00000000	00000

CONCLUSION

We use a structural corporate finance model and a new estimation technique to answer whether bond covenants prevent asset substitution.

We find that

- Firms with strong risk-shifting incentives employ covenants to reduce risk-shifting incentives.
- Covenants prevent that these firms engage in risk-shifting during periods of financial distress.
- The mechanism at work is that covenants decrease the convexity of the equity value function.
- Firms without covenants have low risk-shifting incentives
- and optimally chosen not to use covenants.