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Abstract

The paper presents a general equilibrium model where agents have limited participa-

tion in financial markets and can use money to smooth consumption. This framework is

consistent with recent empirical finding on money demand. Moreover, new developments

in the heterogeneous agents literature are used to develop a tractable framework. It is

shown that the market allocation is not effi cient. Agents can either over or under invest,

depending of the persistence of the technology shocks. The optimal monetary policy is

characterized. it helps to restore the right incentive to save for participating agents.
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1 Introduction

Central banks have recently injected an important quantity of money injection in the economy

to buy a wide variety of assets. To understand the effect of money injection, one must use

realistic models of money demand. The recent empirical literature on money shows that limited

participation of households in financial markets is necessary to account for the empirical distri-

bution of money. One of the simplest limited participation model is the Baumol-Tobin model

where agents participate infrequently to financial markets. A recent literature, reviewed below,

shows that this model, augmented with a richer stochastic structure, accounts well for money

demand (with various definitions of money). Whereas a vast literature introduces constraints
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on the goods market to generate a money demand for transaction purpose, this recent literature

suggests that the main friction to understand money demand relies on the financial markets,

which is the diffi culty to exchange rapidly and at a low cost money against interest-bearing

financial assets.

These results on money demand are consistent with the literature on incomplete participa-

tion model of money. This literature has been first developed to account for the liquidity effect

of money injection: an increase in the money supply decreases the nominal interest rate and

increases economic activity in the short-run, what is diffi cult to obtain in a cash-in-advance

environment with flexible prices. This literature listed below has to deal with the agents het-

erogeneity resulting from limited participation to financial markets. For instance, Lucas (1990)

uses the assumption of a representative family, which splits within the period. Alvarez, Atkeson

and Edmond (2009) assume periodic participation in financial markets.

In this paper, we use both use both the recent empirical literature on money demand and

recent developments in heterogeneous agents models to derive new results on monetary policy

with incomplete participation to financial markets. For instance, optimal monetary policy has

not been analyzed in this framework. This paper presents a model where households do not

always participate to financial markets. When they do not participate, households can smooth

consumption by holding money. To identify all the effects, a simple model is first analyzed,

where a fraction of the population only uses money to smooth consumption, whereas the other

fraction uses financial assets. This framework generates some new results.

We first show that this model generates realistic effect of money injection, as identified by

Christiano, Eichenbaum and Evans (1996), after a money injection, the nominal interest rate

decreases, inflation increases, economic activity, profits and the real wage increases.

Second, the main contribution of this paper is to identify the distortion generated by lim-

ited participation. It is shown that the investment decision after a technology shock is not

optimal when participation to financial markets is limited. The economy can generate either

over-investment or under investment according to the persistence of the technology shock. In-

deed, two effects interact after a technology shock. First, agents who only use money to smooth

consumption have a low return on their savings, and they thus have the wrong incentive to

save in money. This first effect contributed to under-investment. Second, participating agents

experience an increase of the per capita wealth after a technology shock. Under realistic in-

tertemporal elasticity of substitution, they tend to save more than the central planner would
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have done to smooth consumption. This second effect tend to generate over-investment. It

is shown that when the persistence of the technology shock is low the first effect dominates

(under-investment), and when the persistence of the technology shock is high the second effect

dominates (over-investment).

Third, it shown that an active monetary policy is can be welfare improving when partic-

ipation to financial markets is limited. The first best monetary policy restores the optimal

incentives to save and allow thus an optimal capital accumulation. This identification of the

optimal monetary policy can be seen as the main contribution of the paper.

Finally, this framework provides also other results of independent interest. It is shown that

price can be determinate under an interest rate rule when the central bank does not target

inflation but the quantity of money.

2 Related Literature

Money demand. A recent literature has derived new results on money demand using the cross-

sectional information about money holdings. The work of Alvarez and Lippi (2009) show that

models with limited participation to financial markets can reproduce the distribution of money

if one enriches the model with a stochastic access to cash and some random participation to

the goods market. Ragot (2013) shows that the distribution of money, even defined in a narrow

sense, is much more similar to the distribution of financial asset than to the distribution of con-

sumption expenditures. In a quantitative model where households face both a cash-in-advance

constraints and participation cost to financial markets, he shows that limited participation ac-

counts for more than 80% of money demand. Recently Alvarez and Lippi (2013) show that in

addition to limited participation, lumpy expenditures is an important feature to reproduce a

realistic money demand. Agents face some indivisibilities in their expenditures on the goods

market, for which they have to hold sizable amount of money. Building on this results, the

model of this paper introduced both limited participation and lumpy expenditures.

Limited Participation. Limited participation models have been introduced to rationalize the

liquidity effect of money injections. (Grossman and Weiss (1983) and Rotemberg (1984)). This

literature has to deal with households heterogeneity. , Lucas (1990) and Fuerst (1992) use a

family structure. Agents within the family are separated at the beginning of the period and join

at the end of the period to pool risk. This outcome does not allow for persistent effects of money
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shocks, which are shown to be crucial in this paper. Some other tools have been introduced.

Alvarez, Atkeson, Edmond (2009) use an overlapping-generation structure. The work of Alvarez

and Lippi focus now on partial equilibrium to derive some new results on participation rules

(and thus equilibrium environment) when households face a rich stochastic structure. Compared

to these papers, my simplifies the stochastic structure to allow for general equilibrium analysis.

3 The Simple model

The model features a closed economy populated by a continuum of households indexed by i and

uniformly distributed along the unit interval, as well as a representative firm. Every household

i is endowed with one unit of labour, which is supplied inelastically to the representative firm if

the household is employed. When they consume households have a period utility function u (.)

and have a discount factor β. In the simple model, it is assumed that a fraction households

Ω do not participate to financial markets and only use money to smooth consumption. The

remaining fraction 1− Ω of households participate to financial markets.

3.1 Non-participating households

Non participating households are denoted by the upperscript n. They consume every other

period. It is assumed that a fraction Ω/2 consume in odd period and a fraction Ω/2 consume in

even period. These households work every period and earn a nominal wageWt and pay nominal

taxes Ptτt, where Pt is the price of one unit of final goods and τt is taxes in real terms. When

households do not consume, their money demand is their total income Mt = Wt − Ptτt.When
households consume, they spend the sum of their nominal and of all their money holdings:

Ptc
n
t = Wt +Mn

t−1 − Ptτt

Upper case letters denote the nominal letter, lower case letters denote real variables. We

denote as πt = Pt/Pt−1 − 1 as the net inflation rate. The choice of non-participating agents is

mn
t = wt − τt/2

cnt = wt +
mt−1

1 + πt
− τt

One can check that the condition for households not to hold money when they consume is

u′
(
cHt
)
> β2 1

1 + πt+1

1

1 + πt+2

u′
(
cHt+2

)
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The previous condition is always, when the economy is not at the Friedman Rule what will be

the case in the equilibrium under consideration.

3.2 Participating Households

We denote participating agents by the upperscript p. The fraction 1 − Ω of households who

participate in financial markets, where they buy interest bearing assets. It is assumed that these

households consume every period. It is direct to introduce period consumption of participating

households for them to have the same utility function as non-participating agents, at the cost

of more algebra. As a more general model is presented below, we focus here on the simplest

case for participating agents. It is assumed that participating households own the firms in the

economy. As a consequence, they receive all residual profits of the firms denoted. The total

residual profits are denoted χt.

The nominal budget constraint of participating agents is

Bp
t + Ptc

p
t = Rt (1 + πt)B

p
t−1 +

Ptχt
1− Ω

+Wt − Ptτt

where Bp
t is the per capital nominal amount of interest-rate bearing asset, c

p
t is real consumption,

Rt−1 is the real interest rate between period t− 1 and t. As a benchmark case, we assume that

markets are complete for the inflation risk and that contracts between period t− 1 and period

t are written in real term in period t − 1. The case of contracts written in nominal terms in

which inflation surprises affect ex post real interest rate is taken as a simple extension. Ptχt
1−Ω

is

the per capita net nominal profits received by participating households. Utility maximization

yields the Euler equation, and the budget constraint in real terms.

u′ (cp) = RtEtu
′ (cpt+1

)
(1)

bpt + cpt = Rt−1b
p
t−1 + wt +

χt
1− Ω

− τt

3.3 Firms

There is a unit mass of representative firms, which produce with capital and labor. Capital

must be installed one period before production and is assumed the depreciation rate is λ. The

production function is Cobb-Douglas

Yt = Atk
α
t−1L

1−α
t
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where kt, Lt and At are respectively the capital stock the labor hired and the technology shock

known at the beginning of period t. Profit maximization yields the real wage, wt, the real

interest rate Rt−1 and ex post profits χt.

wt = (1− α)Atk
α
t−1L

α
t

Rt−1 = αEt−1Atk
α−1
t−1 L

1−α
t + (1− λ) (2)

χt = αkαt−1εt

It is assumed that At = eat, where at follows a AR(1) process

at = ρat−1 + εat

and εat is N (0, σa) .

3.4 Open market and budget of the State

The State raises taxes, τt, issue some nominal debt Bt and receive the profits of the central

banks. The real value of this debt is denoted as bt = Bt/Pt. The real value of the debt is

denoted as Θt. This revenue is used to finance a public good gt and to repay its debt Rt−1bt−1

bt−1Rt−1 + gt = bt + τt + Θt

For the public debt to be stationary, it is assumed that the State follows a simple fiscal rule

and raises taxes when public debt increases. The time-varying tax rate is

τt = ϕRt−1

(
bpt−1 − b̄

)
+Rt−1b̄

where ϕ is the key fiscal coeffi cient, and b̄ is the steady state interest rate. When ϕ = 1, the

taxes adjust to exactly match the interest payment on debt. In this case, public debt is constant

and equal to b̄. When ϕ < 1, public debt can exhibit long lasting deviation from its steady state

value. We have to impose the following inequality for the public debt to be stationary.

Condition 1 : 1− β < ϕ
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The previous condition states that taxes should react enough to cover the interest payment

on public debt in steady state (as shown below). As β is close to 1, the value of ϕ can be quite

low.

In each period, the central bank creates a new quantity of money MCB
t . The real quantity

createdmCB
t = Mt/Pt is used to buy a nominal quantity BCB

t of asset by open market operation.

Denote as M tot the total nominal quantity of money. The law of motion of M tot is simply

M tot
t = M tot

t−1 +MCB
t , or in real terms

mtot
t =

mtot
t−1

1 + πt
+mCB

t (3)

As the asset market has been designed such that private and public assets are perfect sub-

stitute, to simplify the exposition. As a consequence, we do not differentiate between private

and public asset bought by the Central Bank. As the return on all assets between period t− 1

and period t is denoted Rt−1, the period t real profits are (with bCBt−1 = BCB
t−1/Pt−1)

Θt = Rt−1b
CB
t−1

It is useful to denote as the difference between the amount of public debt issued by the state

and the amount of financial assets bought by the Central Bank bot = bt − bCBt . As mCB
t = bCBt

the consolidated budget constraint of the state is

bot−1Rt−1 + gt = bot +mCB
t + τt

Denote as γt the ratio of increase in the money stock in each period compared to the real

money stock the previous period

γt =
mCB
t

mtot
t−1

We wile study the model under various type of monetary policies. In the Sections below,

we study a the effect of shocks to the money supply, interest rate rules, and optimal monetary

policy for given process for the technology shocks. As a consequence, we will specify the process

for monetary policy in each case.

3.5 Markets and equilibrium definition

There are four markets in this economy. First, the clearing of money market is M tot =
ΩMn

t

2
/2,

what is, in real terms

mtot =
Ωmn

t

2
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The previous equality stipulates that only half of the non participating agents (Ω/2) hold money

at the end of the period.

The financial market equilibrium is the equality of the asset demand by participating agents

and the asset supply by both the firms and the State, and the central bank. The financial

market budget constraint is (1− Ω)Bp
t + BCB

t = Bt + PtKt. Introducing, bot = bt − bCBt , this

can be written in real term as

(1− Ω) bpt = bot + kt

Finally the good market equilibrium is

(1− Ω) cft +
ΩcHt

2
− kt = Yt + (1− λ) kt−1

Given the process for the technology and for a given monetary policy, an equilibrium of this

economy is a sequence of individual choices and prices {cnt ,m
n
t , c

p
t , Rt,wt} a sequence of money

stock, outstanding public debt and taxes {mtot
t , b

o
t , τt} such that agents make optimal choices,

the budget of the State is balanced, taxes are set according to the fiscal rule and markets clear.

4 Steady State and the linear model

4.1 Steady State

The goal of this simple model is to study monetary policy in the business cycle, for this reason, we

study the dynamics around a simple steady state to obtain the simplest analytical expressions.

We define our steady state as an environment were the central bank does not create money

γ = 0 and were the level of public debt is 0. From equation (3), we find the net inflation rate

is simply π = 0. Moreover, we assume now that the depreciation rate is λ = 1.

The real variables are easy to find in this economy. First, the real interest rate is simply

R∗ = 1/β

One easily deduce the steady state capital stock and real wage.

k∗ = (αβ)
1

1−α

w∗ = (1− α) (k∗)α
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The steady state money stock m∗ and steady state taxes are

m∗ = (1− α) (k∗)α

τ ∗ = 0

Finally one finds the steady state consumption level of each type of agents

cn∗ = (1− α) (k∗)α +
m∗

1 + π
(4)

cp∗ = (R∗ − 1)
k∗

1− Ω
+ w∗ (5)

4.2 Linear model

We linearization of the model around the steady state is straightforward. The linearization of

the Euler equation and budget constraint equation for the participating-agents yields

Ecpt+1 − c
p
t =

α− 1

σ
kt +

1

σ
Eat+1 (6)

kt + (Ψ (Ω)− 1) cpt = Ψ (Ω) (αkt−1 +R∗at) +
1

k
mCB
t + Ωϕ

R∗

k∗
bpt−1 (7)

Where the variable Ψ is defined as

Ψ (Ω) ≡ (α + (1− Ω) (1− α))
R

α

The parameter Ψ plays an important role in the model. It captures the effect of limited

participation structure on the budget constraint of participating agents, who hold the capital

stock. First, it affects the right hand side of equation (7). Indeed, the term Ψ (αkt−1 +R∗at) is

the share of the wage bill which goes to participating agents. As non participating agents also

receive some wages, participating agents (who hold the capita stock) receive only a fraction of

total wage bill.

Second, as participating agents hold the capital stock Kt the per capita capital stock is

Kt/ (1− Ω). As a consequence, the when the number of participating agents decrease, (Ω

increases), each participating agents has a higher financial wealth, everything else been equal.

9



This may affect its savings decision. This second effect appear at the left hand side of the

linearized budget constraint, through the term (Ψ− 1) cpt .

The linearization of the other equations is straightforward.

cnt = at + αkt−1 −
1

w∗
ϕR∗bpt−1 −

1

Ωm∗
mBC
t (8)

πt = mn
t−1 −mn

t +
2

Ωm∗
mBC
t

mn
t = at + αkt−1 −

1

w∗
ϕRbpt−1

bpt = (1− ϕ)R∗bPt−1 −mCB
t (9)

at = ρaat−1 + εat

The condition (9) shows that we must have (1− ϕ)R∗ < 1 for the public not to diverge

because taxes are less that the interest payment on debt. As R∗ = 1/β. This is the same

condition as Condition 1.

5 Optimal allocation

The optimal allocation is defined as a benchmark, to study the distortions of the market econ-

omy. We consider the following Pareto weight. The central planner gives a weight λ to par-

ticipating agents and a weight 1 to non participating agents. We use the hat to indicate the

optimal allocation. For instance ĉnt is the optimal consumption of a non-participating worker in

period t. As a consequence, the social welfare function is

maxE0

∞∑
t=0

βt
(

Ω

2
u (ĉnt ) + λ (1− Ω)u (ĉpt )

)
The budget constraint of the central planner is

Ωĉnt
2

+ (1− Ω) ĉpt + K̂t = Aαt K̂t−1

subject to At = eat , where at follows the AR(1) process

at = ρat−1 + εat

The optimal allocation simply defines the dynamics of aggregate consumption ctot, which is
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determined by the two equations(
ĉtott
)−σ

= βEt

(
αAt+1K̂

α−1
t

) (
ĉtott+1

)−σ
(10)

ĉtott + K̂t = AtK̂
α
t−1 (11)

The optimal allocation of consumption across the two types of agents is simply

ĉpt = ĉtott /

(
Ω

2
λ−

1
σ + 1− Ω

)
(12)

ĉnt = λ−
1
σ ĉtott /

(
Ω

2
λ−

1
σ + 1− Ω

)
From this results, we can prove the following proposition.

Proposition 1 The market and optimal allocations are the same in steady state if

λ =

(
2 (1− α) (1− Ω)

α (Ω− β) + 1− Ω

)−σ
(13)

Proof. In steady state (At = 1), the equation (10) implies that the steady state marginal

productivity of capital is 1/β = αK̂α−1. As the steady state interest rate in the market economy

is 1/β, it implies that the steady state marginal productivity of capital in the market economy

is also 1/β. As a consequence, the level of output is always optimal in the market economy.

As a consequence, one finds that optimal total consumption in steady state ĉtot∗ is equal to the

market one: ĉtot∗ = cp∗ + cn∗. Equalizing, cp∗ and ĉp (and thus cn∗ and ĉn), given by equations

(5) and (12), one finds the relevant value for λ.

The previous proposition allows to study the distortions of the market economies in the

business cycle, without focusing on the steady state distortions. Indeed, as the paper is not on

the optimal long run quantity of money, I will simply assume that the preferences of the Central

Planner are such that the optimal steady state inflation rate is indeed 0. I will assume that the

value of λ is indeed given by (13).

6 The effect of technology shocks

We now study the effect of technology shock in the market economy, when there is no monetary

policy intervention

mCB
t = 0
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In this case, public debt is always equal to its steady state value. The program of partici-

pating agents is simply

Ecpt+1 − c
p
t =

α− 1

σ
kt +

1

σ
Eat+1 (14)

kt + (Ψ (Ω)− 1) cpt = Ψ (Ω) (αkt−1 + at) (15)

These to equations determine the dynamics of the two variables cpt and kt independently

as a function of the technology shock at , independently of other variables. To understand

the distortions generated by limited participation it is useful to compare this program to the

linearized program of the Central Planer (linearization of equations 10 and 11 using 12), which

is

Etĉ
p
t+1 − ĉ

p
t =

α− 1

σ
k̂t +

1

σ
Eat+1

k̂t +

(
R

α
− 1

)
ĉft =

R∗

α

(
αk̂t−1 + at

)
Comparing the equations above, one first observes that they are the same when Ψ (Ω) = R

α
.

This is the case when Ω = 0, that it when all agents participate in financial markets, as

Ψ (0) = R∗/α As a consequence, one finds that the market allocation is optimal when all agents

participate. This first shows that the assumptions about the structure of financial markets does

not introduce any distortion in the economy, but just simplify the algebra.

Second, this shows that all distortions of the market economy are captured by the difference

between Ψ (Ω) and R
α
. The previous equations show that these distortions will affect both the

consumption of participating agents and the dynamics of the capital stock. In other words,

both allocative and productive effi ciency will be affected by these distortions.

The solution of the market dynamics (14)-(15) is simple to derive. From the capital stock

dynamics one finds the consumption of the non-participating agents cnt = at + αkt−1 from

equation (8). This analysis is done in Appendix, the main results are summarized in the next

twos proposition. The first proposition considers productive effi ciency. The second one is about

allocative effi ciency.

Proposition 2 Effect of a technology shock. Assume that mCB
t = 0, then

1) the dynamics of capital in the market economy is

kt = Bkt−1 +Daat with B,Da > 0.
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The optimal dynamics of the economy is

k̃t = B̃k̃t−1 + D̃aat with B,Da > 0

2) If σ = 1 then the market and the optimal allocation are the same kt = k̃t. Moreover, B = α

and Da = 1

3) σ > 1 and Ω > 0, then there exists a threshold ρs such that

• If ρa < ρs, Dopt > Da.the economy under react to a technology shock on impact

• If ρa > ρs, Dopt < Da the economy invest too much after a techno shock.

• The persistence of techno shock is lower than the optimal persistence.

The first part of the proposition shows that the dynamics of the capital stock is simple in

both the market economy and for the optimal allocation. Both processes are simple AR(1).

The second part compares the dynamics. The results consider two cases.

Either σ = 1, or σ > 1. The case σ = 1 is a special case, where market and optimal

allocations are the same, whatever the fraction of people participating to financial markets.

Moreover, the reaction of the economy to technology shock does not depend on its persistence,

ρ. It is known that the when σ = 1 both income and substitution effect balance each other such

that there is no wealth effect. As the income of participating agents is equal to its optimal level

in steady state, the equilibrium fluctuations of the capital stock are optimal. The case σ = 1

can be considered as a special case, where expected wealth does not affect the business cycle.

Following, the business cycle literature, we consider that the case σ = 1 is the most relevant.

The third item of the proposition shows that the direction of the distortion of market

economies depends on the persistence of the technology shock. For a low persistence, the

market economy does not invest enough after a technology shock. For a high persistence, the

market economy invest too much. This outcome is the result of the wealth effect generated by

the technology shock. For a low technology shock participating agents experience a low expected

increase in wealth. The opposite occur when the persistence of the technology shock. Indeed

too effects compete, as can be seen in equation (15). First participating agents receive only a

fraction of labor income (the Ψ (Ω)) at the right hand side. But they have a higher wealth per

capita (the Ψ (Ω)− 1) at the left hand side.

The next Proposition presents results for the allocation of consumption for the two agent

types.

13



Proposition 3 If ρ close to 0, cpt increases less than c̃
p
t on impact and c

n
t increases more than

c̃nt .

If ρ close to 1 cpt increases less than c̃
p
t on impact, c

n
t increases more than c̃

n
t .

If the persistence of the technology shock is low, the participating agent consume too much

on impact and non-participating agents consume too little (compared to first best). When per-

sistence is high the reverse occurs. To analyze how monetary policy can correct the misallocation

of market economies, we first independently study the effect of monetary shock.

Example 1 : As an illustrative example, the next graph presents the result of a numer-

ical simulation. We take β = 0.99, σ = 4, α = 0.36,Ω = 0.6 and ρa = 0.0 and σa = 0.01.

Technological shock are thus IID.

Fig. 1 : Effect of a transitory technology shock. The solid line is the market

economy. The dashed is the optimal allocation.

One observes that the economy underinvest and that the consumption of participating agent

is too low and the consumption of non-participating agent is too high.

Example 2: The economy as the same calibration as before except that, it is now assumed

that ρa = 0.95.
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Fig. 2 : Effect of a persistent technology shock. The solid line is the market

economy. The dashed is the optimal allocation.

Investment is now too high. The consumption of participating agents is too low and the

consumption of non-participating agents is too high on impact, although it becomes rapidly

lower that the first best value.

6.1 Effect of a monetary policy shock

In this Section, it is assume that the quantity of money follows the following process

mCB
t = ρCBmCB

t−1 + εmt

where ρCB is the autocorrelation of money creation and εmt is N (0, σm). One can easily find

the solution of the system (6) - (9). The next proposition summarizes the dynamics.

Proposition 4 If the economy is hit by monetary policy shocks then the dynamics of the econ-

omy is

kt = Bkt−1 + CmmCB
t + ΩDmbpt−1

bpt = (1− ϕ)R∗bPt−1 −mCB
t

B,Cm, Dm > 0.

The previous Proposition summarizes the dynamics of capital accumulation after a monetary

shock. First on impact, as money is created by open market operation, the Central Bank buys
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some asset on financial market what contributed to increase the demand for asset and favor

capital accumulation. This increases wages, what sustain a further capital accumulation at

a rate B. But the profit generated by the central banks re redistributed to the state, what

contributed to a decrease in taxes. But as participating agents hold all the stock of public debt

and only partially benefit from the decrease in taxes (because non-participating agents also

benefit), the decrease in taxes has an overall negative effect on capital accumulation. In other

words, Ricardian equivalence does not hold because some agents are not participating. This

effect disappears when Ω = 0 (all agents participate).

The next proposition presents the result for consumption.

Proposition 5 After a positive monetary shock, inflation increases, cnt decreases. If the utility

function is not too concave ε < εs, cpt increases.

Money creation is a tax on money holders because it increases inflation. As a consequence,

the non participating agents have a lower income and consume less. The effect on participating

agents is ambiguous and depends on the strength of the substitution and income effect. It can be

shown that if the utility function is not too concave, then the consumption of participating agents

increases. To summarize, money shock favors capital accumulation and increase wages, but it

favors mainly participating agents who do not pay the inflation tax. This result provides some

intuitions on how monetary policy could decrease the distortions of the market economy. The

optimal monetary policy is derived below. Before, I derive additional results about monetary

policy in this environment.

6.2 Liquidity effect

Participation models have first been developed to rationalize the short-run decline in nominal

interest rate after a money injection. At the first order the nominal interest rate denoted as it

is

it = rt + Etπt+1 (16)

In participation models, two effects are at stake. The first one is the decrease in the real inter-

est rate. The second one is the increase in the inflation rate. Indeed, open market operation

increases the demand for assets what decreases the real interest rate and favors capital accu-

mulation. Second, a money shock generates anticipation of higher money creation in the future
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what creates some inflation and increases the nominal interest rate after the monetary shock.

The gives the condition under which a liquidity effect occurs in our model.

Proposition 6 After a money shock, the real interest rate decreases, inflation expectations

increases. The nominal interest rate decreases if

2ρm < ΩϕR + ΩwF

where F is the positive constant

F =
1

k

1− ρm + ΩϕR Ψ−1
Ψ−(1−ϕ)R

Ψ− ρm > 0

First, if all agents participate to financial market (Ω = 0) then there can be any liquidity

effects. Second, if money shocks are uncorrelated ρm = 0 then there is always a liquidity

effects, as soon as there is limited participation Ω = 0. Third, in the general case, the existence

of liquidity effect depends on the parameter of the model. The reason is the following, as

money creation favors capital accumulation, it increases next period real wage and thus money

demand. This effect tends to mitigate the inflationary effect of money creation. The coeffi cient

F summarizes all these effects.

Example 3 : The effect of a monetary shock. We take the same calibration as in Example

1, assuming that there is no technology shock, εa = 0. We assume ρm = 0.2 and σm = 0.01.

Fig. 3 : Effect of a money supply shock ..

One can observe that the economy exhibit a persistent liquidity effect.

17



6.3 Interest rate rule and price determinacy

We now analyze interest rate rules to investigate the effects of monetary policy shocks as unex-

pected change in nominal interest rates. We assume that the nominal interest rate is

it = a1Etπt+1 + a2mt + εit (17)

The model is now composed of the previous equations (6) - (9) plus the definition of the

nominal interest rate (16) and the monetary policy rule (17). The focus of this Section is first on

price determinacy in a limited participation model. Indeed, it is know that in cashless economy

a necessary condition for price determinacy is a1 > 1. This results is obtained in flexible and

sticky-price models without heterogeneity in money holdings. We show here that his results

does not hold if the Central Bank consider the quantity of money:

The mode with an interest rate rule is not as direct to solve as the previous ones. After some

algebra, one finds that the dynamics of the economy can be summarized by the four following

equations in the four variables (kt, πt, b
p
t ,m

CB
t )

Etkt+1 −
1

σ
((1− α (1− σ)) Ψ + α + σ − 1) kt + Ψαkt−1 +

1− ρCB
k∗

mCB
t − Ωϕ

R∗

k∗
(
bpt − bpt−1

)
= 0

(a1 − 1)Etπt+1 + a2

(
αkt−1 −

1

w∗
ϕR∗bpt−1

)
− (α− 1) kt + εt = 0

Etπt+1 = αkt−1 −
1

w∗
ϕRbpt−1 −

(
αkt −

1

w∗
ϕRbpt

)
+

2

Ωm∗
Etm

BC
t+1

bpt = (1− ϕ)R∗bPt−1 −mCB
t

The condition for determinacy can be found analytically. It amounts to check that the Blanchard-

Kahn conditions are fulfilled. The expressions are not illuminating. Instead, we present a cal-

ibrated economy to study the values of a1 and a2 for which the price level is determinate. We

consider the same calibrated variables as in Example 1.
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Fig. 4 : Determinacy frontier ..

One can see from Figure 4 that if central bank reacts to the quantity of money, price can be

determinate even if ρπ < 1. At one extreme, if the Central Bank does not target inflation, but

the quantity of money, and reacts enough to the real monetary base, then prices are determinate.

7 Optimal Monetary Policy

We can now study optimal monetary policy in this environment. We consider that the central

bank has can create some money in each period observing to the state of the economy. The

central bank can commit to the optimal monetary policy and uses the quantity of money as

its instruments. Accordingly, many other exercises could be performed in this environment: we

could consider various simple rules using the quantity of money creation or the interest rate as

an instrument. As the goal of this simple model is to identify the effects, the most direct case

is here considered.

The next proposition is the main result.

Proposition 7 The optimal monetary policy is

mCB
t =

B̃ −B
Cm

kt−1 +

(
D̃a −Da

Cm

)
at −

ΩDm

Cm
bpt−1 (18)

bpt = (1− ϕ)R∗bPt−1 −mCB
t

in this case, the market allocation is the optimal allocation.

Proof. The proof is simple. As the model is linear, the behavior of the capital stock is

kt = Bkt−1 +Daat + CmmCB
t + ΩDmbpt−1

bpt = (1− ϕ)R∗bPt−1 −mCB
t
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The optimal dynamics of the economy is

k̃t = B̃k̃t−1 + D̃aat with B,Da > 0

As a consequence, if the condition (18) is fulfilled, then the level of the capital stock is optimal.

We can now show that in this case, consumption levels are optimal. This can be seen from the

linearization of (1), one finds

Ecpt+1 − c
p
t =

α− 1

σ
kt

As a consequence, if the capital stock is optimal the expected growth rate of consumption for

optimal (one can check that it is the same when Ω = 0). As a consequence, the dynamics of

consumption of participation agents is the optimal. Due to the goods market equilibrium, the

consumption level of non-participating agents is optimal.

One can derive the properties of the optimal monetary policy with Propositions (2) - (5).

When the persistence of technology shock is low, more precisely when it is below the threshold

defined in , the economy underinvest after a positive technology shock. A monetary injection

can restore the optimal level of investment. In other words, the optimal monetary policy is

procyclical.

When the persistence of technology is high, then the market economy accumulate too much

capital after a positive technology shock. Monetary policy decreases the quantity of money for

investment to decrease after a positive monetary shock. Optimal monetary policy is counter-

cyclical.

Fig. 5 plots the optimal monetary policy after a persistent technology shock, represented by

the dynamics of a. The capital stock k is plotted, it is equal to its optimal value. The inflation

rate is first negative before becoming positive. It implies that the return on money first increases

before decreasing. The quantity of money decreases on impact before increasing. The interest

rate increases but exhibits non-monotone dynamics. Finally, the public outstanding debt first

increases, and then increases because the quantity of money created increases.
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Fig. 5 : Optimal monetary policy after a persistent technology shock ..

8 The general model

A more general model is now presented, to consider more general money distribution. Indeed,

in the data, households who participate in financial markers also hold money. Moreover, it is

useful to introduce a more flexible framework to provide a simple calibration of the effects.

First, following the Bewley tradition, it is assumed that households face uninsurable sto-

chastic income shocks, which motivate a money demand. Second, following the Baumol-Tobin

tradition, it is assumed that households do not always participate in financial markets. More

precisely, two forms of limited participation is introduced to be consistent with the data. First,

a fraction of agents never participate in financial markets and only use money to smooth con-

sumption, as in the original Bewley model. Second, participating agents randomly participate in

financial markets an may demand money to consume when they do not participate in financial

markets as in the Baumol-Tobin literature.

Incomplete market and limited participation models are know to be diffi cult to analyze

with aggregate shocks. To capture the essence of limited participation and incomplete markets,

I elaborate on Lucas (1990) to introduce limited insurance within two types of families. To

investigate the effect of heterogeneity, I do not assumed that all agents meet within the family

at the end of each period, but it is assumed that some only agents stay outside the family, what

generates time-varying precautionary saving.

8.1 Households

There is a unit mass of households. A fraction Ω of households does not participate in financial

markets, and is denoted non-participating households. The remaining fraction 1−Ω participates,
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and is denoted participating households.

All households face a uninsurable employment risk. When there are employed the probability

to stay employed is αa. When they are unemployed the probability to stay unemployed is ρ.

As a consequence, the number of employed agents in all periods is

ne =
1− ρ

2− α− ρ
In all period, there is thus a fraction ne of employed and a fraction 1 − ne of unemployed

households among both participating and non-participating agents.

8.1.1 Non-participating households

It is assumed that non-participating agents belong to a family. The family has two locations.

Employed agents live on an island, where there is full risk sharing among non-participating

employed agents. Unemployed agents leave on an island, where there is full risk sharing among

non-participating unemployed agents. Agents who loose their job (with a probability 1−α) travel
from the employed to the unemployed island at the end of the period, after the consumption

saving choice is made. Agents finding a job (with a probability 1−ρ) travel from the unemployed
to the employed island at the end of the period, after the consumption saving choice is made in

both island. All households traveling across island can take its money with him.

All agents in the non-participating employed island supply one unit of labor and earn a real

wage wt. All households on the non-participating unemployed island have a home production

δ. Finally, all nonparticipating households can travel to the money market and pay taxes τt to

the state.

The timing is the following. First, family head in pool the resources. Second the aggregate

shocks is revealed, which is technology and the money market shock. Third, the consumption-

saving choice is made. Fourth, agents idiosyncratic choice is revealed, and households travel

across islands carrying their money with them.

Denote as me
t the per capita real money holdings of non-participating employed households

at the beginning of the period. There is a fraction ne of such agents. Similarly, denote as mu
t

the beginning-of-period per capita money holdings of non-participating unemployed households.

There is a fraction 1 − ne of such households. Denote as V e (me
t ) the intertemporal welfare of

an employed households and V u (mu
t ) the intertemporal welfare of an unemployed households.

The program of the family head in the employed island is to maximize the utility of all

employed households taking into account the consequence of the choices for all family member.

22



The family head chooses per capita consumption cet and per capita money holdings m̃
e
t+1 to

solve.

max
cet ,m

e
t+1

neu (cet ) + βEt
[
neV e

(
me
t+1

)
+ (1− ne)V u

(
mu
t+1

)]
subject to per capita budget constraint

cet + m̃e
t+1 =

me
t

1 + πt
+ wt − τt

m̃e
t+1 ≥ 0

The quantity m̃e
t+1 is the quantity of money held by employed agents before some of them travel.

As a consequence, it is different from the next period quantity of money me
t+1 to be determined

below.

Following the same steps, the family head of the unemployed agents chooses per capita

consumption cut and per capita money holdings m̃
u
t+1 to solve.

max
cut ,m

u
t+1

(1− ne)u (cut ) + βEt
[
neV e

(
me
t+1

)
+ (1− ne)V u

(
mu
t+1

)]
under the per capita budget constraint

cut + m̃u
t+1 =

mu
t

1 + πt
+ δ − τt

m̃u
t+1 ≥ 0

Writing the value functions V e (me
t ) and V

u (mu
t ) one easily finds the envelop conditions

V e
1 (me

t ) = u′ (cet )

V u
1 (mu

t ) = u′ (cut )

We construct the equilibrium by a guess-and-verify strategy. Assume that employed agents hold

a positive quantity of money (m̃e
t+1 > 0) and that unemployed agents decide to hold no money

(m̃u
t+1 = 0). In this case, the quantity beginning-of-period quantity of money of households

is only the money of previously employed households. As a consequence, in per capita terms,

me
t+1 = (αne) m̃e

t+1/n
e and mu

t+1 = (1− αe)nem̃e
t+1/ (1− ne), or after some algebra

me
t+1 = αem̃e

t+1

mu
t+1 =

1− ρe
αe

me
t+1
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Solving for the first order condition for the head of employed agents and the two envelop

conditions, one finds the Euler equation

u′ (cet ) = βEt
[
αeu′

(
cet+1

)
+ (1− αe)u′

(
cut+1

)] 1

1 + πt+1

As unemployed agents do not save, we have the following two budget constraints

cet +
1

αe
m̃e
t+1 =

me
t

1 + πt
+ wt − τt

cut =
1

1 + πt

1− ρe
αe

me
t + δ − τt

Finally, the condition for unemployed agents to hold no money can be derived from the first

order condition of the family head on the unemployed island. One finds

u′ (cut ) > βEt
[
(1− ρe)u′

(
cet+1

)
+ ρeu′

(
cut+1

)] 1

1 + πt+1

8.1.2 Participating households

Participating agents who are employed are on the employed island where the representative of

the family head allocates consumption and money across employed agents. The representative

also participates in financial markets and choose how much to invest per capita b̃pt+1 in finan-

cial markets. The representative also chooses how much money each employed participating

households hold m̃p
t+1 before idiosyncratic shocks. As before, all employed participating agents

received the labor income wt. In addition the representative of the family head receives the

profits of the firms, which is χt and χt/((1− Ω)ne) in per capita terms.

It is assumed that participating employed agents falling into unemployment can only bring

their money when they leave the employed island. As a consequence, they can only use money

to bring resources in the unemployed island. As a consequence, the representative of the partic-

ipating family head manage financial assets knowing it only provides resources to the fraction

ne of participating agents.

Denote now as V p (bpt ,m
p
t ) as the intertemporal welfare of a participating employed house-

holds and V pu (mpu
t ) the one of a participating unemployed household. The representative of

the family head solves

max
b̃pt+1,m̃

p
t+1,c

p
t

neu (cpt ) + βEt
[
neV p

(
bpt+1,m

p
t+1

)
+ (1− ne)V pu

(
mpu
t+1

)]
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the per capita budget constraint is

cpt + b̃pt+1 + m̃p
t+1 = newt + (1− ne) δ − τt + bpt (1 + rt) +

mP
t

1 + πt
+

χt
(1− Ω)ne

m̃p
t+1, b̃

p
t+1 ≥ 0

The representative of the family head on the unemployed island solves

max
,m̃put+1,c

pu
t

(1− ne)u (cput ) + βEt
[
neV p

(
bpt+1,m

p
t+1

)
+ (1− ne)V pu

(
mpu
t+1

)]
m̃pu
t+1 + cput = δ − τt +

mpu
t

1 + πt

m̃pu
t+1 ≥ 0

Writing the value functions V e (me
t ) and V

u (mu
t ) one easily finds the envelop conditions

V p
1 (bpt ,m

p
t ) = (1 + rt)u

′ (cet )

V p
2 (bpt ,m

p
t ) =

u′ (cet )

1 + πt

V pu
1 (mpu

t ) =
u′ (cput )

1 + πt

As before, adopting a guess-and-verify strategy, it is assumed that m̃pu
t+1 = 0. One can

deduce (1− ne)mpu
t+1 = (1− αe)nem̃p

t+1 and n
emp

t+1 = αenem̃p
t+1 and b

p
t+1 = b̃pt+1, what can be

written

mp
t+1 = αem̃p

t+1

mpu
t+1 = (1− αe) ne

1− ne m̃
p
t+1

Solving for the first order condition, one finds the two Euler conditions and the two budget

constraints

u′ (cpt ) = βEt (1 + rt+1)u′
(
cpt+1

)
u′ (cpt ) = βEt

[
αeu′

(
cpt+1

)
+ (1− αe)u′

(
cput+1

)] 1

1 + πt+1

cpt + bpt+1 +
1

αe
mp
t+1 = newt + (1− ne) δ − τt + bpt (1 + rt) +

mP
t

1 + πt

cput = δ − τt +
1

1 + πt

1− ρe
αe

mp
t

Finally, for the participating unemployed agents to choose a zero quantity of money, we must

have the condition

u (cput ) > βEt [u′ (cpt ) (1− ρe) + u′ (cput ) ρe]
1

1 + πt

25



8.1.3 Distributional consequences

It may be useful to now summarize the distributional implication of the model. The next table

presents the share of households of each type, their portfolio and consumption level:

Qtty Money Qtty Asset Conso Number

0 0 cut Ω (1− ne)
0 0 cput (1− Ω) (1− ne)

1
αe
me
t+1 0 cet Ωne

1
αe
mp
t+1 bpt+1 cpt (1− Ω)ne

(19)

8.2 Production side and market equilibria

The production side and the budget of the state are as before, described in Section 3.3 and 3.4.

As a consequence, the firm issues a quantity of capital kt and the state bot . As a consequence,

the financial market equilibrium is

(1− Ω)nebpt+1 = bot + kt

The money market equilibrium is

mtot
t+1 = Ωneme

t+1/α
e + (1− Ω)nemp

t+1/α
e

with the law of motion

mtot
t+1 =

mtot
t

1 + πt
+mCB

t

The goods market equilibrium is

(1− Ω) (necpt + (1− ne) cput ) + Ω (necet + (1− ne) cut ) + kt = Yt + (1− λ) kt−1 + (1− ne)δ

8.3 Full Model

We can write the full model

u′ (cet ) = βEt
[
αeu′

(
cet+1

)
+ (1− αe)u′

(
cut+1

)] 1

1 + πt+1

(20)

cut =
1

1 + πt

1− ρe
αe

me
t + δ − τt

cet +
1

αe
me
t+1 =

me
t

1 + πt
+ wt − τt
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u′ (cpt ) = βEt (1 + rt+1)u′
(
cpt+1

)
u′ (cpt ) = βEt

[
αeu′

(
cpt+1

)
+ (1− αe)u′

(
cput+1

)] 1

1 + πt+1

cpt + bpt+1 +
1

αe
mp
t+1 = newt + (1− ne) δ − τt + bpt (1 + rt) +

mP
t

1 + πt
+

χt
(1− Ω)ne

cput = δ − τt +
1

1 + πt

1− ρp
αe

mp
t

wt = (1− α)Atk
α
t−1 (21)

(1 + rt) = αkα−1
t EtAt+1 + (1− λ)

χt = αkαt−1εt

τt = ϕ (1 + rt−1)
(
bot−1 − b̄+mCB

t

)
+ (1 + rt−1)

(
b̄−mCB

t

)
−mCB

t

bot = bot−1 (1 + rt−1)−mCB
t − τt

mtot
t+1 = Ωneme

t+1/α
e + (1− Ω)nemp

t+1/α
e

mtot
t+1 =

mtot
t

1 + πt
+mCB

t

(1− Ω) bpt+1 = bot + kt

(1− Ω) (necpt + (1− ne) cput ) + Ω (necet + (1− ne) cut ) + kt = Yt + (1− λ) kt−1 + (1− ne)δ

with the shock structure

At = ρAAt−1 + εAt (22)

8.4 Steady state

The properties of the steady state can be easily derives. First, as before, the real interest rate

is pinned down by the Euler equation of the participating agents

1 + r =
1

β

It determines the capital stock and the real wage.

The steady ratio of consumption across agents cis

cu

ce
=
cpu

cp
=

(
1+π
β
− αe

1− αe

)− 1
σ
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One observe that the level of inflation π > β generates a partial insurance against consumption

risk. cu < ce and cpu < cp. In the special case where π = β (the Friedman Rule). all agents are

perfectly insured .Using these expressions and the budgets constraints one can find all steady

state values.

8.5 First Best

As in the previous Section, it is assumed that the Social planner has the following social welfare

function
∞∑
t=0

βt [Ω (neωeu (cet ) + nuωuu (cut )) + (1− Ω) (neωpu (cpt ) + nuωpuu (cput ))]

The social planner gives a specific weight to the consumption of each specific group.

The first best allocation is

max

∞∑
t=0

βt [Ω (neωeu (cet ) + nuωuu (cut )) + (1− Ω) (neωpu (cpt ) + nuωpuu (cput ))]

kt + Ct = Atk
α
t−1 (ne)1−α + (1− η) kt−1

Ct = Ω (necet + nucut ) + (1− Ω) (necpt + nucput )

Proposition 8 Denote as cp, ce, cu, cpu the steady state consumption of the market economy

with an equilibrium inflation rate π. If

ωe

ωp
=

1− Ω

Ω

(
cp

ce

)σ
,
ωu

ωp
=

(1− Ω)ne

Ωnu

(
cp

cu

)σ
,
ωpu

ωp
=
ne

nu

(
cp

cpu

)σ
and ωe + ωu + ωp + ωpu = 1, the steady state market equilibrium and the steady state optimal

allocation are the same.

The previous proposition exhibits a condition under which the market and optimal allocation

are the same in the steady state. We will assume that the conditions of this proposition are

fulfilled to only consider deviation in the business-cycle.

8.6 Calibration and simulation

We now derive the optimal monetary policy in this model, with the following calibration. The

period is a quarter β = 0.99, σ = 3. The production function is such that α = .3.and λ = 0.025.

it is assumed that the idiosyncratic risk is the labor market risk, what yields αe = 0.95 and
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ρe = 0.22. The annual steady state inflation rate is 2% and the persistence of the technology

shock is ρA = 0.95.

The last parameter is home production. We calibrate it such that the total quantity of

money over households income is 8%, which is the value found in the SCF survey. It gives

δ = 1.14 and a replacement ratio of 65%, what is consistent with the data.

One can check that the existence conditions are fulfilled.

The following problem is now solved

max
mcbt

∞∑
t=0

βt [Ω (neωeu (cet ) + nuωuu (cut )) + (1− Ω) (neωpu (cpt ) + nuωpuu (cput ))]

subject to equations from (20) to (22). A linear-quadratic approach is used. The next graph

shows that a active monetary policy maximize intertemporal welfare.

9 Conclusion

This paper presents a simple theory of money demand based on recent empirical work on

money demand. Some agents do not participate in financial markets and smooth consumption

expenditures with money. Other agents participate to financial markets, hold both public debt

and the capital stock. Money creation is modeled by open market operations. Compared to

other limited participation models, the model of this paper analyses capital accumulation and

allows for an identification of optimal monetary policy. The market allocation has two types
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of distortions. First, capital investment is not optimal after a technology shock, due to limited

participation. Second, consumption inequalities are not optimal due to the difference in the

return of the two assets (money and financial assets). It is found that monetary policy can

restore the first best allocation for both investment and consumption.
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A Summary of the Simple Model

This Appendix presents the full model before linearization.

mt = wt − τt

cnt + wt +
mt−1

1 + πt
− τt

u′ (cp) = βRtEtu
′ (cpt+1

)
bpt + cpt = Rt−1b

p
t−1 + wt +

χt
1− Ω

− τt

wt = (1− α)Atk
α
t−1

Rt = αkα−1
t EtAt+1

χt = αkαt−1εt

τt = ϕRt−1

(
bot−1 − b̄

)
+Rt−1b̄

bot = bot−1Rt−1 −mCB
t − τt

mt =
mt−1

1 + πt
+

2

Ω
mBC
t

(1− Ω) bpt = bot + kt

(1− Ω) cpt +
Ω

2
cnt = Yt − kt + (1− δ) kt−1

At = eat ,where aat = ρaat−1 + εat

B Proof of Propositions 2 and 3

B.1 Market allocation

The solution of the system (14) - (15) can be found using the method of undetermined coeffi -

cients. Assume that the market capital stock has the following form kt = Bkt−1 +Daat. Using
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the two equations one finds the following coeffi cients. I write them as explicit function of σ,Ψ, ρ

to simplify the analysis below.

B (σ,Ψ) =
1

2σ
((1− α (1− σ)) Ψ + α + σ − 1)

− 1

2

√
1

σ2
((1− α (1− σ)) Ψ + α + σ − 1)2 − 4Ψα

Da (σ,Ψ, ρ) =
Ψ + ρ

σ
(Ψ (1− σ)− 1)

1
σ

((1− α (1− σ)) Ψ + α + σ − 1)−B (σ,Ψ)− ρ

One can check that when σ = 1, one finds B (1,Ψ) = α and D (1,Ψ) = 1. B (σ,Ψ) is increasing

in σ.

Studying the variations of D (σ,Ψ, ρ) one finds that for σ > 1, there exists a threshold ρs

such that DΨ (σ,Ψ, ρ) > 0 if ρ < ρs and DΨ (σ,Ψ, ρ) < 0 if ρ > ρs.

The consumption of the two types of agents after a technology shock is

cpt =

[
1 +

1

Ψ− ρ

(
ρ− (1− α)

Ψ

Ψ− α

)
ε

]
at

+

[
α + (1− α)

1

2

(
1− 1

(Ψ + α) (Ψ− α)

)
ε

]
kt−1

cnt = at + αkt−1

B.2 Optimal allocation

The solution of the system (10) - (11) can be found following the same steps. One finds

kt = B̂kt−1 + D̂aat

with

B̂ =
1

2σ

(
(1− α (1− σ))

R∗

α
+ α + σ − 1

)
− 1

2

√
1

σ2

(
(1− α (1− σ))

R∗

α
+ α + σ − 1

)2

− 4
R∗

α
α

D̂a =
R∗

α
+ ρ

σ

(
R∗

α
(1− σ)− 1

)
1
σ

(
(1− α (1− σ)) R∗

α
+ α + σ − 1

)
− B̂ − ρ

One can check that the expression of B̂, B and D̂a, Da are the same when Ψ = R∗

α
, what is the

case when Ω = 0. In other words the market and optimal capital dynamics are the same when

all agents participate to financial markets.
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The optimal consumption dynamics is

ĉpt =
R∗

α
− D̂a

R∗

α
− 1

at +
α

R∗ − α

(
R∗ − B̂

)
kt−1

ĉnt = λ−
1
σ ĉpt

B.3 Comparison of market and optimal allocation

Comparing B̂ and B, one finds B < B̂. Comparing D̂a and Da one finds that Da < D̂a when ρ

is close to 0 and Da > D̂a when ρ close to 1. Looking at the of derivative Da
ρ (σ,Ψ, ρ) one finds

that there is a unique threshold. Moreover comparing the consumption dynamics, one easily

finds the result of Proposition (3).

C Proof of Propositions 4 and 5

The solution of the linear model is derived by guessing that

kt = Bmkt−1 + CmmCB
t +Dmbpt−1

Solving the model with this expression, one finds that Bm = B. Define

Λ ≡ 1

σ
((1− α (1− σ)) Ψ + α + σ − 1)

Then one finds

Dm = Ωϕ
R∗

k∗
(1− ϕ)R∗ − 1

B + (1− ϕ)R∗ − Λ

Cm =
1−ρCB

k
+ ΩϕR∗

k∗ −D
m

Λ−B − ρm

One can check that Dm, Cm > 0. Consumption of non-participating agents is cHt = αkt−1 −
1
w
ϕRbpt−1 − 1

Ωm
mBC
t . The consumption of participating agents is

cpt =
Ψ

Ψ− 1
αkt−1 +

1

Ψ− 1

(
1

k
− Cm

)
mCB
t +

Ωϕ

Ψ− 1

R

k
bpt−1 −

1

Ψ− 1

(
Bkt−1 +Dmbpt−1

)
The effect of a monetary shock on impact depends on 1

k
−Cm. Studying the variations one finds

the results of Proposition 5.
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D Proof of Proposition 6

Inflation can be written as

πt = mt−1 −mt +
2

Ωm
mBC
t

The nominal Interest rate is

it = rt + Etπt+1

Substituting rt and Etπt+1 by their expressions, one finds

it = (α−B) kt−1 +

(
1

w
ϕR2 (1− ϕ)− 1

w
ϕR−D

)
bpt−1 +

(
2

Ωw
ρm − 1

w
ϕR− C

)
mCB
t

As a consequence, the interest rate decreases on impact if

2

Ωw
ρm − 1

w
ϕR− C < 0
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