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Foreword

Velkommen til Oslo!

Dear colleagues and friends,

It is a real pleasure to welcome you in Oslo for the International Workshop on Lot-Sizing
2022. This is the first time IWLS takes place in Scandinavia. After this complicated period, we
hope that you will enjoy the workshop that includes 24 in-person presentations. The program
is rich and varied, with enough time for each presentation and between sessions to encourage
fruitful exchanges between participants.

We also have planned three social events: The classical get together party on Tuesday, as in
all the on-site editions of IWLS, a cruise tour in the Oslo fjord on Wednesday and, on Thursday,
the gala dinner in Ekeberg restaurant preceded by a guided tour of the Ekeberg sculpture park
for those who are interested. We believe you will appreciate these events, which are great
opportunities to make new friends and start new collaborations.

We hope you will leave Oslo with some great souvenirs of the workshop and the city, and
motivated to participate to the future editions of the International Workshop on Lot-Sizing.

Stéphane Dauzère-Pérès, Erna Engebrethsen, Mehdi Sharifyazdi, Karim Tamssaouet
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Single-machine multi-product lot-sizing with
on-site generation of renewable energy

Ruiwen LIAO
Université Paris-Saclay, LISN, 91190 Gif-sur-Yvette, France
ruiwen.liao@lisn.fr

Céline GICQUEL
Université Paris-Saclay, LISN, 91190 Gif-sur-Yvette, France
celine.gicquel@lri.fr

Abstract

Powering industrial processes (at least partially) with electricity generated
on-site from renewable sources might help reducing the environmental impact
of industrial production. The intermittence of such sources, together with the
time-of-use pricing scheme widely used by electricity providers, lead to the
need to solve an integrated energy supply and industrial production planning
problem. We thus investigate a single-machine multi-product lot-sizing problem
with on-site generation of renewable energy.

One modelling difficulty comes from the fact that the time discretization
needed to manage product demand satisfaction, production planning and en-
ergy supply may significantly differ. We propose to deal with this difficulty by
considering an extension of the Proportional Lot-Sizing Problem in which the
same time slicing is used to handle the industrial production and the energy
supply. We compare our model with the recently proposed extended General
Lot-Sizing Problem which uses three levels of time slicing [1]. Our numerical
results show that, in most cases, our model provides plans of the same quality,
but with a reduced computational effort.

1 Introduction

Industrial companies are increasingly under pressure to mitigate the CO2 and pol-
lution emissions linked to the manufacturing of industrial products. They are also
confronted with a sharp rise of the price of conventional energy sources (gas, grid
electricity...) so that the availability and affordability of energy is becoming a criti-
cal parameter in manufacturing. One way to deal with these two challenges consists
in powering industrial processes with electricity generated on-site from renewable
sources.
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However, the intermittence of renewable energy sources (wind, sun...) makes it
impossible to fully replace gas or grid electricity by on-site generated electricity to
power an industrial process: both types of energy should thus be used in combina-
tion. Moreover, the time-of-use pricing scheme widely used by electricity providers
means that it is necessary to accurately track the timing and quantity of grid elec-
tricity bought from these providers. Thus, an integrated energy supply and industrial
production planning problem needs to be solved. This work is an attempt at mod-
eling and solving such an integrated planning problem. We namely investigate a
single-machine multi-product lot-sizing problem with on-site generation of renewable
energy.

2 Problem description and modeling

We seek to plan production in an industrial plant producing several types of item
to satisfy a time-varying external market demand. Backlogging is not is allowed and
demand must be met on time. The plant comprises a single production resource.
This resource may produce only one type of item at a time. Changing the type of
item in production requires to carry out startup operations. These operations incur
a fixed startup cost but the startup time is assumed to be negligible.

Energy is consumed during both startup operations and manufacturing. The
amount of energy consumed during a startup depends on the product that the machine
will be setup for. The energy consumed during manufacturing is proportional to the
number of items produced. No energy is consumed when the machine is idle or when
it is setup for a given product but not producing.

The energy supply system comprises three main elements: the onsite power gen-
eration devices (photovoltaic panels, wind turbines) converting a renewable energy
source into electricity, the on-site energy storage system and the main electricity grid.
The amount of electricity produced by the onsite power generation devices depends
on the availability of the corresponding energy source and is given. The on-site energy
storage system consists of batteries which can store electricity (either generated on-
site or bought from the main grid). During peak-demand and/or peak-price periods,
energy can be supplied to the production system by discharging the battery. Finally,
electricity may be bought from the main grid at a given time-varying buying price.
Figure 1 provides an overview of the studied integrated energy supply and industrial
production system.

One modelling difficulty here comes from the fact that the time discretization
needed to manage product demand satisfaction, production planning and energy sup-
ply may significantly differ. Indeed, following the terminology introduced by [2], we
have to handle two exogenous time structures, i.e. two sets of points in time at which
externally given events, that are defined by the data of the model, are considered.

2
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Figure 1: Studied integrated energy supply and industrial production system

The first time structure is imposed by the timing of the external demand and usually
uses rather large time buckets (typically days or weeks). The second one is imposed
by the discrete time grid used to track the availability of the on-site generated elec-
tricity and the varying price of grid electricity. This time grid usually uses much
smaller time buckets (typically hours or 10-minutes intervals). In between these two
exogenous time structures, to plan production, we have to handle a third endogenous
time structure representing the points in time at which internal events are captured
by decision variables.

To tackle this difficulty, Wichmann et al. [1] recently proposed a model based
on an extension of the General Lot-Sizing Problem. This one is based on the use
of three distinct time structures. However, it leads to the formulation of a large-size
mixed-integer linear program involving many big-M type constraints, which results in
significant computational difficulties to solve medium-size instances. In order to solve
larger instances, we propose a new extension of the Proportional Lot-Sizing Problem
in which the same time slicing is used to handle the industrial production and the
energy supply. This amounts to considering that the endogenous time structure used
to make planning decisions is the same as the exogenous one used to track the energy
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supply. The resulting model thus uses a set of macro-periods to follow the demand
satisfaction and a set of micro-periods to track the energy supply and consumption.
These energy-related micro-periods define the discrete external time grid used to plan
production. As commonly done in PLSP models, we assume that at most two different
types of products may be produced during a given energy-related micro-period.

3 Preliminary computational results

We carried out some numerical experiments to compare the quality of the energy
supply and production plans obtained with both models. Numerical instances were
randomly generated using data available in [1], [3] and [4]. Each instance was solved
with CPLEX 12.8 using both the extended PLSP and the extended GLSP model. Our
preliminary computational results first show that for small-size instances involving 3
products and 32 micro-periods, the problem can be solved to optimality much faster
by using the PLSP model than by using the GLSP model. Moreover, in most cases,
the cost of the production plan obtained with the PLSP model is the same as the one
obtained in the the GLSP model. Moreover, for medium and large instances involving
up to 10 products and 256 micro-periods, the solver can hardly find a feasible solution
when applying the GLSP model, while it finds a relative good feasible solution when
using the PLSP model.

References
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A MILP heuristic for a production planning
problem with returns and substitution

Youcef, Boutarfa.
Laboratoire d’Automatique et de Productique Département de Génie Industriel
Université Batna 2 - Batna, Algeria
y boutarfa@yahoo.fr

Ahmed, Senoussi.
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Nadjib, Brahimi.
Department of Supply Chain Management, Rennes School of Business, Rennes,
France
nadjib.brahimi@rennes-sb.fr

Abstract

This work considers a production facility capable of making both new and
used products. Returned products can be refurbished and sold as second hand
items. If there is a shortage of such products, the company can satisfy their de-
mand using new products at their original low price (downward substitution).
If the returned products cannot be refurbished, they are dismantled and their
key parts are remanufactured and made as good as new parts which will be used
in the assembly of new finished products. The latter can also use new parts
purchased from external suppliers at a higher cost compared to remanufac-
tured parts. In this study, we solve a production planning problem associated
with this configuration. The problem is solved using a Relax-and-Fix heuris-
tic. Numerical experiments were carried out to assess the performance of the
heuristic. We also present a detailed analysis of the value of integrating these
processes (refurbishing, remanufacturing, and manufacturing) and the value of
substitution.
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1 Introduction

Reducing wastes is not just related to environmental issues. It can provide opportu-
nities for large savings for companies. This can be achieved through the recovery of
used items. Companies are moving from the traditional linear systems (take, make,
dispose) to circular economy system where products are reused, shared, repaired, re-
furbished, remanufactured and recycled [2]. This emerging area of research attracts
both academic and industry practitioners.

Management of electrical and electronic wastes has become a significant concern
among manufacturers, and is one of the fastest growing areas of research due to shorter
product life cycle and rapidly changing customer attitudes towards disposing used
products. For example, 80% of mobile phones have been upgraded every 18-24 months
[3]. Most of electrical and electronic products are also designed for recyclability, so
they can be easily disassembled and recycled.

One of the main goals for introducing electrical and electronic returns is to trans-
form the forward supply chain into the closed loop network (manufacturing and re-
manufacturing) and optimizing their cost and environmental impact simultaneously.
Most studies relate to manufacturing and remanufacturing do not consider the refur-
bishing activities. However most of electrical and electronic returns have been lightly
used or slightly damaged and quickly repairable for resale as second hand items. In
this study we propose a hybrid manufacturing/remanufacturing model consisting of
manufacturing, remanufacturing for making new products, and refurbishing for mak-
ing used products. the demand of used products can satisfy their demand using new
products at their original low price (downward substitution).

2 Problem Description

This work considers a production facility able to process new and returned products.
It integrates three processes (paths). The first process repairs and refurbishes returns
to satisfy demand of second hand products. Returns which cannot be refurbished are
dismantled (in the second process) to extract from them key components which can
be considered as good as new. The third process (path) uses the components disas-
sembled or new purchased components to assembly a new products. We authorize
downward substitution, where the new product may be used to meet the demand of
second hand product at the the same price as the latter. The objective is to mini-
mize the total cost combining fixed setup costs, and variable purchasing, processing
and inventory holding costs. All demands must be satisfied (directly or through sub-
stitution) and constraints related to capacity and availability of products must be
respected. The problem is formulated as a mixed integer linear programming model
(MILP).

2
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3 Solution approach: A Relax-and-Fix heuristic

It is easy to prove that this problem is NP-hard by showing that it is an exten-
sion of the One Warehouse multi retailer problem. Hence, to solve it, we propose a
Relax and Fix (RF) heuristic ([4]). There exist several successful implementations
of RF heuristics in production planning and scheduling (e.g. [1]). Computational
experiments were carried out in order to evaluate the performance of the proposed
heuristic, to analyse different integration levels between the three lines and to analyse
the economic viability of substitution.

From a computational point of view, the RF heuristic is efficient and offers a good
trade-off between solution quality and CPU times. This was verified through several
experiments with different configurations obtained by adding or removing constraints
related to production capacity and joint setups.

Through numerical experiments we also show that substitution and integration of
of manufacturing, refurbishing and remanufacturing have considerable benefits from
an economical point of view. We analyze these benefits vary as a function of different
costs.

Figure 1 shows the relationship between quantities substituted, quantities col-
lected, and quantities disassembled in the process as a function of the new production
assembly (manufacturing) cost.

Figure 2 shows the value of substitution by comparing total costs of models with
and without substitution. It indicates the range of values of manufacturing costs
which make substitution economically interesting. If the manufacturing cost is too
high (here starting at 5 monetary units), the two models have the same total cost
and substitution is not a good option any more. This is confirmed by Figure 1 which
shows that no substitution takes place starting at 5 monetary units.
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Figure 1: Ratio to the total demands for new and used products
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Dynamic lot sizing using forecast information

Lotte van Hezewijk
Eindhoven University of Technology & ORTEC
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Eindhoven University of Technology
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Eindhoven University of Technology
w.l.v.jaarsveld@tue.nl

Abstract

We study the stochastic lot-sizing problem where the item has non-stationary
stochastic demand. Forecast information is updated as more demand realiza-
tions become available, and there exists a production lead time. The objective
is to minimize costs of production, inventory and unsatisfied demand. We em-
ploy a dynamic planning strategy [1], rather than optimizing for a long plan-
ning horizon and only implementing part of the solution, as is the case in rolling
horizon approaches that are commonly used to deal with new information and
uncertainty [2]. We model the problem as a Markov Decision Process (MDP),
and explicitly consider the forecast information in the state space to allow for
the consideration of non-stationary demand processes. We solve the MDP in
an approximate manner, using neural networks to represent policies, modify-
ing a Deep Reinforcement Learning algorithm [3] to make it suitable in this
highly stochastic and non-stationary environment. This method is compared
to rolling horizon approaches, generic DRL methods and heuristics, in terms of
costs, service level and planning stability.

1 Introduction & Literature

We consider a stochastic, single-item lot-sizing problem, where the item under con-
sideration has non-stationary stochastic demand. The forecast for demand changes as
more demand realizations become available, and there is a lead time after production.
The difficulty of optimizing this forecast-based activity lies in two parts. The first
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question is how to forecast accurately, given the often seasonal and non-stationary
demand patterns. The second challenge is how to optimize the lot-sizing problem,
knowing that the forecast input will likely not reflect reality perfectly. A common
approach is to take the forecast of the future as a given, and then solve the problem as
if it is deterministic for a certain planning horizon [2]. The first part of the planning
(the frozen interval) is executed. After the duration of the re-planning periodicity, a
new planning is made for the full planning horizon. With this rolling horizon planning
method, new or updated information can be considered at every re-planning moment.

Finding the best parameters for this rolling horizon method is not trivial. [2]
show that the choice of the length of planning horizon, re-planning periodicity and
frozen interval have a major impact on the effectiveness of the plan. Also the end-
effect mitigation strategies are crucial in this methodology. Furthermore, one can
imagine that only executing the first few steps of a plan, and then re-optimizing the
plan may be sub-optimal. Instead, a dynamic planning strategy, where we only make
decisions for the periods that are going to be executed could be advantageous. In cases
where this strategy is used, the problem is typically formulated as a Markov Decision
Process (MDP). Larger instances of MDP can be solved with Deep Reinforcement
Learning (DRL) techniques, but studies show that stochastic environments can make
the training process difficult and unstable. Additionally, the demand in these studies
is typically assumed to be stationary, while in reality the demand patterns might
change over time.

In several inventory control papers, the non-stationary demand process is studied,
but these papers typically neglect setup costs and/or lead times. While [5] have proven
that a state-dependent (r, S) policy is optimal in the case of fixed order cost and a
fluctuating demand environment, finding the parameters of this policy is difficult. The
parameters could be determined by solving an MDP, where DRL could be used in large
instances. This methodology is compared to heuristics from [6] and [7]. Additionally,
existing literature studies mainly the case of backlogging in case demand exceeds
available inventory, while in practice demand could be lost.

In this study, we have three research questions:

1. How does the performance of a dynamic planning strategy compare to alterna-
tive strategies (rolling horizon optimization, heuristics for (r, S) parameters)?

2. How can we effectively use the demand / forecast information in the state rep-
resentation of the MDP, considering this non-stationary and seasonal demand?

3. How can we learn in a stable and computationally efficient manner in this highly
stochastic environment?

2
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2 Problem formulation

In this section, we model the production system as an Integer Linear Program, which
is used for the rolling horizon solution method. The demand forecast is updated every
decision period. At the decision moment, we have a demand forecast ft for period
t (t = 1, 2, · · · , T + L, ft ∈ N). The production step has a deterministic lead time
(L). In this production system, costs are incurred for setting up production (K)1 and
holding an item on stock (h). At the same time, penalty costs (p) are incurred for
the lost sales (st).

Objective function The objective is to minimize the costs over the model horizon
(T + L). Since we can no longer impact decisions within the lead time of production
(t < L), we only optimize the costs over the horizon which we can impact (1).

minimize
T+L∑

t=1+L

Kδ(qt) + hIt + pst (1)

subject to st ≥ ft − It−1 − qt, t = 1 + L, 2 + L, · · · , T + L (2)

st ≥ ft − It−1 − q̂t, t = 1, · · · , L (3)

It = It−1 + qt − ft + st, t = 1 + L, 2 + L, · · · , T + L (4)

It = It−1 + q̂t − ft + st, t = 1, · · · , L (5)

It, qt, st ∈ N, t = 1, 2, · · · , T + L (6)

Since we consider lost sales, we determine the lost sales variable st in (2) as the
part of the forecasted demand that cannot be satisfied by available inventory or
incoming production. For the periods within the lead time, the incoming production
(q̂t) is already in the pipeline, and is no longer a decision variable (3). The inventory
transition function is given by (4) and (5). Note that in this sequential decision
making process, I0 is a result of previous production decisions and the actual demand
realizations. Constraint (6) indicates that the inventory, production quantity and
shortage are all non-negative integers.

2.1 Markov Decision Process

This lot-sizing problem can also be modeled as an MDP. In this MDP, we only consider
actions relevant for the planning period (qt+L) , rather than hypothetical actions for
the future planning horizon (qt+L, qt+1+L, ..., qt+T+L). At each time step in the MDP,
the system is in some state st (includes information about forecast, current inven-
tory, production in pipeline), and the decision maker chooses action at (a production

1δ(x) is the indicator function used to determine if setup costs are incurred.If x > 0, δ(x) = 1,
else δ(x) = 0
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quantity), that is feasible in that state. The set of feasible actions is denoted by
At. At the next time step, the system transitions randomly into the next state st+1,
giving a reward Rat(st, st+1) (the resulting costs of the action and observing demand).
The probability of moving into the new state is given by the state transition func-
tion Pat(st, st+1), and is independent of all previous states and actions, satisfying the
Markov property.

With the Bellman Optimality Equations [8] the optimal policy for the MDP could
be found, but for larger problems such as the problem in this paper, it becomes
very computationally expensive. We implement Deep Reinforcement Learning as an
approximate method of solving the Bellman Optimality Equations.
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Abstract

This paper formulates a stochastic model to assign a resource as buffer to
the periods of a dyanmic single-item production (lot sizing) plan to minimize
the expected total cost of deviation from the given plan and recovery actions.
It also determines the optimal recovery actions to recover deviation at differ-
ent periods of the plan. To find the optimal solution, a global optimization
algorithm is designed based on stochastic dynamic programming and branch-
and-bound. The algorithm has two phases. At the first phase, it generates a
proper initial feasible solution and improves it by a neighborhood search pro-
cedure. A stochastic dynamic programming procedure is developed to give a
lower bound for the optimal expected cost when the buffer resources for none or
a number of periods are known. The first phase also gives a confidence interval
for the optimal expected cost. The second phase finds the optimal solution by
employing a branch-and-bound algorithm which uses the same method as the
first phase to calculate lower bounds for the expected total cost.

Keywords: Mitigation plan, Buffer, Stochastic dynamic programming,
Branch-and-bound, Lot-sizing

1 Introduction

This paper presents an optimization model and an algorithm to prevent and mitigate
deviations from a given dynamic single-item production plan caused by uncertain
factors such as the availability of resources and demand. The given plan includes
production quantities and inventory values for each of the future periods in a se-
quence of periods. Any deviation from the given plan causes additional costs, such
as penalties, lost sales, and extra inventory holding expenses. Decision-makers may
cope with such deviations by actions either to prevent deviations before happening or
to mitigate them after happening. In order to prevent deviations, limited resources,
such as sub-contractors, can be assigned to future periods to act as a buffer. In case
the planned production cannot meet demand because of realized uncertainties, the
allocated resource can be used to produce more than planned. The allocation of some
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limited resources must be done at the beginning of the planning horizon. That is,
these resources cannot be allocated to a period after the deviation is realized. How-
ever, there are mitigation actions, such as outsourcing or utilizing other resources,
that may be used to recover from deviations. In contrast with the buffer resources,
the decision on whether and which mitigation action to be taken will be made af-
ter the realization of the deviations. Nevertheless, both prevention and mitigation
actions bear their own costs. Therefore, it is important to make a balance between
prevention and mitigation costs on one hand and deviation costs on the other hand.
The objective of the model presented in the paper is to minimize the expected total
cost of deviations from the plan, as well as prevention and mitigation actions. The
model defines a state for each period as the realized deviation from the planned inven-
tory at the beginning of the period. In addition, one limited resource is formulated,
which can be distributed among the periods beforehand in order to prevent potential
deviations. Moreover, the model defines some mitigation actions to be taken at the
beginning of each period, after the deviation is realized. The main decision variables
of the model are (i) the buffer resource values given to the periods, and (ii) the mitiga-
tion actions to be taken at the beginning of the periods in case of each possible state.
To take into account uncertainty, the model receives the probability distributions of
state transitions from one period to the next, given buffer amounts and mitigation
actions. These probability distributions depend on the probability distributions of
demand at the corresponding periods. To solve the model, the paper develops a two-
phase global optimization algorithm based on stochastic dynamic programming. The
first phase tries to find a good feasible initial solution for the model and the second
phase finds the optimal solution by a branch and bound algorithm.

2 Model formulation

Let deviation at a period be defined as the difference between the cumulative re-
alized production and demand up to that period. Then, the paper formulates the
aforementioned problem as follows:

MinZ =
∑

i∈C

∑

d∈D
pid.(c

′
id + ci.kid) (1)

Subject to:

pid =
∑

d∈D
p(i−1)d.p(i−1)dd′

(
k(i−1)d, bi−1

)
∀ d′ ∈ D , i ∈ C , i > 1 (2)

p1,0 = 1 (3)

p1,d = 0 ∀ d ∈ D , d > 0 (4)
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∑

i∈C
bi ≤ β (5)

bi ∈ B ∀i ∈ C (6)

kid ∈ A ∀ i ∈ C , d ∈ D (7)

Where sets, parameters and decision variables are defined as follows:

� Sets:

– C: Set of periods, C = {1, 2, .., N}
– D: Set of possible values of deviation. D = {0, 1, 2, . . . , δ}
– A: Set of possible recovery actions. If α recovery actions are taken into

account, A = {0, 1, . . . , α− 1}. In the example problem, we assumed that
A = {0 (Do nothing) , 1 (Increase capacity to a higher level)}.

– B: Set of possible values of buffer resource to be assigned to a period.
B = {0, 1, 2, . . . , µ}

� Parameters:

– pidd′(k, b): The probability of transition from deviation d ∈ D in period
i ∈ C to delay d′ ∈ D in the next period, when recovery action k ∈ A is
chosen and buffer time b ∈ B is assigned to period i. These probabilities are
the conditional probabilities of deviation in a period, given the deviation,
recovery action and buffer resource of the previous period. Therefore,

∑

d′∈D
pidd′(k, b) = 1 , ∀i ∈ C, d ∈ D, k ∈ A, b ∈ B (8)

– ci(k): Cost of taking action k ∈ A at period i ∈ C

– c′id: Cost of having deviation d ∈ D at the beginning of period i ∈ C

� Decision variables:

– bi: Amount of buffer resource assigned to period i ∈ C such that bi ∈ B

– kid: The recovery action to be taken at period i ∈ C when deviation d ∈ D
is observed, such that kid ∈ A

– pid: The probability of observing deviation d ∈ D at the beginning of
period i ∈ C. This variable is a function of the delay, recovery action and
buffer resource in the previous period.
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3 Solution algorithm

This paper proposes a two-phase solution method for the model as follows:
Phase 1: Construction of a feasible solution and estimation of an upper bound for the
objective function
This phase consists of four steps. In step 1, a method is developed to give a lower
bound for expected total cost from any period until the end of the planning horizon,
when the deviation at the beginning of that period as well as the total buffer resource
assigned to all the previous periods are known. In order to do so, an altered version
of the problem is defined where the buffer resource is assigned to the periods at
the same time as the recovery actions. That is, when the deviation is known, not
beforehand. A stochastic dynamic programming model finds the optimal solution
of the altered problem. Based on this solution, in step 2, a heuristic generates a
feasible solution for the original model. For step 3, a method is developed based on
stochastic dynamic programming to determine the expected total cost and optimal
recovery actions associated with any given assignment of the buffer resource to the
periods. Then, by using this method, the objective value of the solution generated in
step 2 will be calculated. In step 4, by defining a neighborhood for each assignment
of buffer resource, a local search optimization heuristic will be employed to improve
the solution produced in step 2. Finally, the objective value of the final solution of
this improving heuristic will be set as an upper bound for the second phase. The
paper shows that this phase takes a polynomial time.
Phase 2: Finding the optimal solution by a branch-and-bound algorithmn
The branch-and-bound algorithm is represented by a tree graph. At each node of this
graph, the values of the buffer resource assigned to a number of periods are known.
The buffer resource value of a period can be known, only if the buffer resource values
of all the previous periods are specified. Each node can be branched into some lower-
level nodes if at least one period remains whose buffer resource value is not determined
yet. A parent node at level i, where the buffer resource values of the periods 1 to i
are determined, is branched into children at level i + 1 by assigning all possible and
feasible values to the buffer resource of period i+1. Hence, at each node, the minimum
expected costs calculated by the dynamic programming model used in step 1 of phase
1, can be used as a lower bound for the minimum expected cost in the real world (ZL).
When a node is at the last level (N), it will be fathomed and the exact expected total
cost will be compared to the upper bound of the objective function (ZU) If it is lower,
then ZU will be updated. Also, at any node before the last period, if ZL ≤ ZU , then
the node will be fathomed since it cannot generate better children. The algorithm
terminates when all the nodes are fathomed. The computational complexity of phase
2 is exponential. However, the algorithm can be terminated at the end of phase 1,
or any time during phase 2, with a feasible solution in hand and an estimate of its
proximity to the optimal solution (ZU − ZL).
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Abstract

Large plants and distribution centres often deliver products to various re-
tailers spread over a large territory, and can thus rely on multiple transporta-
tion modes such as air, road, rail or maritime. These different transportation
modes have different costs but also different delivery lead times. We consider
the problem faced by one plant or distribution centre and several retailers facing
an uncertain demand: the Stochastic One-Warehouse Multi-Retailer Problem
with Lead Times (SOWMRP-LT). The objective of the problem is to minimize
the expected production, transportation, and storage costs. The multi-stage
problem is solved approximately with a rolling horizon framework that relies
on a two-stage representation of the problem. Heuristic acceleration techniques
are developed to cope with the long width of the window considered in the
rolling horizon, which is required by the long lead times taken into account.

1 The Stochastic One-Warehouse Multi-Retailer

Problem with Lead Times

The present work considers an extension of the One-Warehouse Multi-Retailer Prob-
lem (OWMRP, [4]). The OWMRP consists of managing the inventory of a product
at a production plant and at multiple retailers facing demands from customers. To
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do so effectively, production and transport decisions must be made to minimize man-
ufacturing, holding, and shipping costs.

The advantages of a such system-wide approach were identified early on, includ-
ing: cost reduction, increased availability of goods, and prevention of administrative
duplication [6]. Nonetheless, the major disruptions of the supply chain that occurred
during the past couple of years highlight the need to explicitly take uncertainty into
account in order to reduce the costs and improve resilience [2].

Thus, we propose the Stochastic One-Warehouse Multi-Retailer Problem with
Lead Times (SOWMRP-LT). It extends the OWMRP by concurrently using the ser-
vices of multiples carriers, with different lead times and costs, and by considering
uncertain demand at the retailers. Indeed, in general, a plant forwards its production
to various retailers spread over a large territory, and can thus rely on multiple trans-
portation modes, such as air, road, rail or maritime. These different transportation
modes have different costs but also different delivery lead times. Consequently, many
transportation modes with various prices and delivery times could be combined. In an
uncertain context, a short delay allows for more flexibility to adjust production levels
and react quickly, while slow carriers can economically transport a large amount of
stock. In each period, the plant has to decide how much to produce, and how much
to send to each of the retailers for each of the transportation modes.

Figure 1 depicts an example of an SOWMRP-LT instance with (from left to right)
one plant, three carriers and two retailers. Figure 2 presents the time-expanded
network on which the goods flow from the virtual source to the sink node (s and t).
Four periods are represented, but for the sake of clarity, the transportation arcs are
drawn only for the first period. In addition, mind that, because of uncertain demand,
we are also considering lost sales with a penalty factor (represented by the top red
arc).

Figure 1: Production to sales setup

s t

Figure 2: Time-expanded network of Fig-
ure 1
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2 A tree search heuristic on a rolling horizon

The proposed SOWMRP-LT is a multi-stage problem. However, since it is intractable
for realistic size instances, we developed a rolling horizon method that relies on a
two-stage approximation. At each time period of the considered planning horizon,
a scenario tree is first built to sample the possible outcomes in the periods to come
with a Randomized Quasi Monte-Carlo procedure. Second, a restricted version of the
SOWMRP-LT is solved on this scenario tree by imposing that the production and the
transportation set-up must be the same for all scenarios at a given time period. The
decisions made for the first period considered are then applied for the current period,
before moving to the next once the demand is revealed, and repeating the process.

Despite the simplification, the restricted problem grows with the size of the sce-
nario tree as well as the number of retailers, carriers and simulated periods. Thus,
general-purpose solvers are impractical for this task. Instead, we chose to develop
a tree search-based heuristic to manage the binary variables, i.e., production and
transportation set-ups. Among the many existing methods [3], we decided to com-
bine Limited Discrepancy Search (LDS, [1]) with Anytime Column Search (ACS, [5]).

The idea of LDS is to take a reference solution and to search among the solutions
that lie within a restrained distance from it. In our case, it is desirable to start from
the solution obtained during the previous iteration of the rolling horizon, i.e., for the
previous time period. Indeed, the periods during which production will take place
are not likely to change drastically, likewise for the transportation choices. Figure 3
presents an example of an LDS binary tree search on four decisions, with the reference
solution on the left, allowing for Dlds = 2 differences.

ACS is a mechanism to prioritize the exploitation of promising branches of the tree
to guarantee the identification of a good feasible solution early in the search. Such
a strategy is essential, since, even with LDS, the number of possible combinations
of production and transportation choices is too large to be completely explored. To
achieve that, for each level of the tree search, only the best Dacs nodes are expanded.
But, to continue the search for the allowed time budget, the unexpanded nodes at
each level are kept to repeat this procedure and expand the tree search width. Figure
4 represents the tree of Figure 3 explored using ACS with a beam of width Dacs = 1.

To choose the most promising nodes during the search with ACS, we developed
a guide heuristic to evaluate solutions. An internal node of the search tree encodes
a partial solution, as the binary decisions for later periods are not made yet. But,
to evaluate these partial solutions, we complete them with the choices made in the
reference solution used for the considered tree search. By definition of LDS, the
remainder of the solution could not be significantly different, and, regardless, a guide
function does not need to be exact. Having said that, the quantity of goods produced
and sent needs to be adapted to the considered binary decisions. To do so, we solve a
minimum cost bounded flow problem on the time-expanded network of the considered
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solution, like the one presented in Figure 2. This sub-problem consists of searching
for the best improvement of the produced, stored, transported and missed quantity
of goods such that the modifications are the same for all the scenarios. Thus, we
use the simplex network algorithm to transport 0 units of flow from the sink to the
source such that the upper (resp. lower) capacity on each arc is the maximum possible
increase (resp. decrease) of the flow of goods on this arc among all the scenarios of
the considered scenario tree. That is to say, we improve the solution for each scenario
uniformly by solving a sub-problem whose size does not depend on the size of the
scenario tree. Considering this sub-problem to guide the tree search significantly
reduces the run-time, as the linear program necessary to tightly adjust the flow of
goods to the chosen binary decisions and to the considered scenario tree needs to be
solved only once at the end of the search, on the best solution found.

✓

✓

×

✓

✓ ×

✓ × ✓ ×

× ✓ × ✓ × ✓ ×

✓ × ✓ × ✓ × ✓ × ✓ ✓ ✓

Figure 3: Example of an LDS with Dlds =
2

✓ ×

✓ × ✓ ×

×✓ ×✓ × ✓ ×

✓ ×✓× ✓×✓ × ✓ ✓ ✓

Figure 4: LDS from Figure 3 combined
with an ACS with Dacs = 1
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Abstract

We study an integrated multi-product production and distribution problem
considering a network of multiple plants and customers, who are geographically
dispersed, with direct shipment from the plants to the costumers. In addition
to the decisions on production and distribution, a decision needs to be taken
on the level of process flexibility in the network, i.e., which products can be
produced in which plants. On one hand, a network with total flexibility allows
for lower transportation costs, but requires large investments in flexibility and
frequent setups. On the other hand, a network with a limited amount of flexi-
bility, will increase the transportation costs, but requires a lower investment in
flexibility. We propose mathematical models and a heuristic approach to solve
the problem. Computational results are presented by varying key parameters
and analyzing their impact on the value of flexibility, as well as the performance
of the proposed approaches.
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1 Introduction

In this research, the focus is on problems that appear in the context of industrial pro-
duction and distribution planning. These problems involve the production of several
products in multiple plants, and the distribution of these products to customers via
direct shipments. These are complex tasks and need to be performed routinely. In
general, production and distribution planning deals with decisions about the neces-
sary production activities to transform the raw materials into finished products, and
the transportation of these products to customers.

The planning of the production activities relates to the decisions about the quan-
tity of products which must be produced. At the core, there is the lot sizing problem
with production, setup, inventory and backlog costs. In addition, since we suppose
that in the network the multiple plants and customers are geographically dispersed,
transportation costs must also be taken into account. When the transportation be-
tween the plants and the customers is done using direct shipments, the problem is
called the two-level production-transportation problem ([5]).

In addition to the decisions on production and distribution, we look at this prob-
lem in the context of a network of existing plants that can be flexible to make one or
more different products. Nowadays, with the advancement of information technolo-
gies, aiming to be more competitive, companies’ strategies give more importance to
the benefits of flexibility. In line with this, researchers have recognized that flexibil-
ity concepts are important for building sustainable supply chains since they enable
firms to be reactive, even in large-scale production, without sacrificing cost efficiency.
The seminal paper of [4] analyzed the value of manufacturing process flexibility in
a stochastic model with a single period. Since then, several authors have extended
and analyzed the concept of limited flexibility configurations considering different
stochastic environments. The main idea of the process flexibility studied by [4] is
that a limited amount of flexibility, applied in the right way, can provide benefits
close to the level offered by full flexibility. This is true even in a deterministic multi-
period production planning environment, as studied by [3]. This new work extends
the latter paper by considering the transportation decisions to the customers, thereby
capturing a more complex and more realistic trade-off.

In this paper, we propose a new optimization problem that considers a network
of customers and plants with specific transportation costs between each plant and
customer. The decision on which product to make in which plant also has to take
into account the trade-off with the transportation cost and hence the geographical
dispersion of the demand.

2

25



2 Problem formulations and solution approach

We model a production planning problem with multiple items, plants and clients
and transportation costs from plants to clients. The planning horizon is finite and
subdivided into several periods. The plants have a predetermined production capacity
and a limited amount of flexibility. In order to be able to produce a certain type of
product, the plant needs to make a specific investment. The level of flexibility in
each plant is a decision variable and a flexibility constraint is modeled by imposing
a budget limit on the total amount invested in flexibility over all plants. The use of
backlogging is allowed. In addition, to produce a given item in a specific period, a
setup must be performed. The goal of the problem is to find a production plan that
satisfies all constraints by minimizing the production, setup, inventory, backlog, and
transportation costs. Figure 1 illustrates the integrated production-transportation
problem considering 5 items, 3 production plants and 6 customers. Observe that
for this example, there is a limited amount of flexibility in which production plant
one can produce items one and four, production plant two can produce items three
and four and production plant three can produce items two and five. Moreover, it
is also important to note that all production plants can deliver their products to all
customers with respective transportation costs.

Figure 1: Graphical representation of the integrated production-transportation prob-
lem.

We propose two mathematical models for the analyzed problem, being one based
on a classical formulation and the other a reformulation as a facility location prob-
lem. After analyzing the quality of the lower bounds, a third mathematical model
is proposed which combines the first two formulations. To search for good feasible
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solutions, we propose a solution method denoted by KS, which consists in the hy-
bridization of a MIP-based approach and a kernel search (KS) heuristic. The strategy
is an adaption of solution methods proposed in [2]. While an MIP-based approach
provides an initial solution, an intensification phase based on a kernel search heuristic
[1] tries to improve the initial solution.

Our computational experiments show that, in terms of total costs, the proposed
hybrid solution method presents on average better solutions with significantly lower
computational times when compared with the results produced by a high-performance
MIP software. Moreover, for several levels of capacity, the optimality gaps found
by the proposed approach are significantly lower than those presented by the high-
performance MIP software.

We present additional computational results aiming to analyze how different pa-
rameters impact the value of flexibility. Our analysis indicate that some of the main
managerial insights derived for the case without transportation cost are no longer valid
when we introduce (high) transportation cost. More specifically, with transportation
costs, we find that flexibility adds benefits in the case of high capacity levels because
flexibility allows to lower the transportation costs. Furthermore, we found that with
high transportation cost and a high level of capacity, a limited amount of flexibility
does not provide similar benefits as the case with full flexibility.
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Abstract

In this talk, we discuss the one-dimensional multi-period cutting stock prob-
lem with setup costs on cutting patterns. This problem is essentially an inte-
gration of two classical problems, namely the one-dimensional cutting stock
problem and the lot-sizing problem. We present known and new formulations
for the problem. Moreover, three extended reformulations are proposed in or-
der to improve the lower bounds. An extensive theoretical analysis will be then
presented in order to assess the strength of different formulations. A compu-
tational analysis complementary to the theoretical analysis will be also briefly
presented, in order to provide further insights such computational challenges of
various formulations and how theoretical differences vary in practice.
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1 Introduction

In this talk, we discuss key results of the recent paper of [1], where we have carried
out a theoretical analysis of the one-dimensional multi-period cutting stock problem
with setups on cutting patterns (referred to as MPCPSs in the remainder of the
paper). The reader is referred to the paper for full technical details (including problem
characteristics and assumptions, mathematical formulations and theoretical results)
as well as extensive computational results and discussion, as this short paper only
aims to provide a brief exposure and summary.

In order to present the simplest possible formulation for the problem on-hand,
we adapt the classical cutting stock formulation of [2] to this setting, with setups on
cutting patterns. First, we define the variables of the formulation, as follows: xjt

denotes the number of objects cut accoting to cutting pattern j in period t, yjt is a
binary variable indicating whether cutting pattern j is used in period t or not, and
finally, sit indicates the amount of inventory of item i at the end of period t.Then, the
problem is as follows, to which we refer to as AGG (Adapted Gilmore and Gomory)
formulation (as presented in [1]):

AGG model

Minimize
∑

t∈T

∑

i∈P
hitsit +

∑

t∈T

∑

j∈J
(ctyjt + cxjt) (1)

subject to:

xjt ≤ |Mt|yjt ∀j, ∀t (2)

si,t−1 +
∑

j∈J
aijtxjt = dit + sit ∀i, ∀t (3)

xjt ∈ Z+, yjt ∈ {0, 1} ∀j, ∀t (4)

sit ≥ 0 ∀i, ∀t (5)

Here, the objective function (1) minimizes the sum of holding costs of items, setup
costs for the cutting patterns, and material costs of objects. Constraints (2) ensure
that yjt = 1 holds if objects are cut using the cutting pattern j in period t, i.e., xjt > 0.
Inventory balance constraints are given by (3), and nonnegativity and integrality of
variables are guaranteed by (4) and (5).

2 Formulations and Extended Formulations

In our work, we have considered and assessed numerous alternative formulations for
MPCPSs in order to explore which formulation(s) would be most useful to researchers
and practitioners. After an extensive theoretical analysis and computational experi-
mentation, we eliminated many of these due to their limited use. Hence, in this work,
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we propose and evaluate only two more adapted formulations (in addition to AGG),
which we refer to as Adapted Johnston and Sadinlija (AJS) and Adapted Reflect
(ARE) formulations. These formulations partly stem from the earlier works of [3]
and [4, 5], respectively.

Next, we have evaluated different strategies to improve lower bounds these basic
formulations can generate. After considering various extended reformulations and
valid inequalities, we have concluded to also include facility location extended refor-
mulations of the 3 formulations on hand. It is important to note that this task is
not as straightforward as is the case for classical lot-sizing problems, as the matching
between variables in the extended space and variables in the original space is not
direct in some cases. We will briefly discuss this in the talk.

3 Discussion and Future Perspectives

Following a thorough theoretical analysis, the main result we can establish is a ranking
regarding the strengths of different formulations and extended formulations. Facility
location reformulations of all 3 formulations are stronger than the 3 original formu-
lations in this regard, while ARE and AGG provide strongest formulations (whether
in case of original formulations or extended reformulations.)

Computational analysis focused on evaluating exact formulations and extended
reformulations, as well as combining heuristics with these formulations and reformu-
lations for more computationally efficient approaches, as exact approaches naturally
suffer in case of more challenging and larger problems. Various observations from
these computational experimentations will be discussed in the talk.

For future research, there are numerous avenues of interest. One rather obvious di-
rection is to investigate the use of local search or other metaheuristics in the practical
context. Another future direction is to expand the basic problem setting in this paper
with various other practicalities, such as capacities, multiple machines or sequence
dependent setups. Finally, integrating the decisions regarding process configuration
in the problem will be also an attractive future direction, as various industries suffer
from a large number of cut configurations.
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1 Introduction

Lot sizing problems have been studied widely in the literature over the last decades.
The expected output of lot sizing is to give a complete picture over a planning horizon
of how many parts to produce at each period and how many pieces to carry in
inventory. It takes its origin in the well-known Economic Order Quantity (EOQ)
model [1] under the assumption of single item, constant demand and infinite planning
horizon. Since then, numerous researchers have built more realistic models to tackle
real world problems ([5], [6], [7], [8], [11] and [12]). A review of the litterature allow
us to position our problem as a multi-item, single-level, multi-resource lot sizing
and scheduling problem with independent setups, backorder consideration, and client
prioritization (See Figure 1).
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Figure 1: Problem positioning

2 Problem description and Contribution

The tire manufacturing process is divided into five major sub-processes : raw ma-
terial mixing, semi-finite products manufacturing, tire assembling, tire curing, and
finally verification and quality control. We focus on the curing sub-process produc-
tion planning problem. It is the most important stage as it has been identified as the
bottleneck by the company, requires consequent setup times and is highly restricted
by tire - heater eligibility matrix. The plant management face a complex produc-
tion planning problem with a wide portfolio of tires to be produced on unrelated
parallel machines with numerous eligibility constraints. Furthermore market trends
tend to dilute demand signal on more and more different references of tire. Thus
the portfolio is getting wider and wider to match customer expectations and makes
even more difficult the planning problem of the company. The production is based
on a make-to-stock inventory policy, so that the inventory level stays between a mini-
mum and a maximum level calculated to prevent shortage and keep Working Capital
Requirement to a minimum.

During the curing process the green tire is put into a mold that provides a specific
pattern for the tire. Each mold is tire-specific: it can be used for exactly one type of
tire. For some tire references several molds are available, though for most tires there
is only one mold. Every mold can be placed in several heaters, respecting the tire-
heater eligibility matrix. Still each heater can contain at most one mold at a time. The
curing time depends on the tire produced and the heater used. The heaters capacity
therefore links together different tire references that compete for the same resource -
available time of a given heater where the molds can be placed in. Except for the first
and the last period of the production campaign, tires are produced in a continuous
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run and production is always done at full capacity. This type of production is often
referred as “all-ornothing” production. Also, only one type of tire can be cured in a
heater within one period. Thus, our problem is classified as a small-bucket lot sizing
problem.

In [2] a MIP formulation of the different constraints of this problem is proposed.
To continue this work, a client prioritization modelling is presented in [3]. A more
in depth analysis of this problem is available in [4]. One particular set of constraints
specific to the case-study considered are the tonnage constraints. Indeed, to control
the costs and maximize throughput of the plant, the management team has set a
production volume target for each day and week of the planning horizon, which is
measured in tons of tires produced. The aim of this work is to propose a sensitivity
analysis of this set of constraints, based on the key performance indicators described
in [4].

3 Conclusion

The originality of the problem studied in this paper is the application of a simultane-
ous lot-sizing and scheduling problem in tire industry with specific constraints. This
work is a continuation of the previous studies presented in [2], [3] and [4]. It allows
the company to make a step further in his journey to industry 4.0 and an agile and
digital manufacturing system.
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Troyes, 12 rue Marie Curie, CS 42060 10004, yassine.ouazene@utt.fr

Prof. Farouk Yalaoui,
LIST3N laboratory and Chaire connected Innovation, Université de Technologie de
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Abstract

The presented work addresses a joint dynamic pricing and lot-sizing problem
for a firm that uses its finite production capacity to manufacture a set of items.
The demand for each item is nonlinear and integrates cross-price effect between
products. The firm has to make decisions on production planning and the
prices during several time periods to maximize the profit. Two variants of the
simulated annealing are proposed. The solution’s coding is based on setups
and prices matrix. A set of moves are used to explore the neighborhood of the
current solution. Numerical results show the efficiency of the proposed methods
on a set of generated instances.

1 Introduction

Dynamic pricing is a pricing strategy where firms change dynamically the prices of
products and services according to the demand at a different times Narahari et al.[5].
The first application of dynamic pricing are in service industries like airlines Smith et
al.[6]. Pricing was considered initially by companies as a separate element to improve
their profit. However, in the manufacturing industries the coordination of pricing
decisions with the supply chain’s decisions like production is critical (Chan et al.[2]).
Researches studied a variety of problems in this topic with different assumptions on
production systems, demand function, etc. Bajwa et al.[1] and Couzon et al.[4] are
example of literature papers that coordinate pricing and lot-sizing decisions. The
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objective of our work is to propose a general model for joint pricing and lot-sizing
decisions that incorporates the cross-price effects on demand between products. Two
variants of the simulated annealing are proposed to solve the problem. The proposed
methods are tested among some literature inspired instances. The obtained results
are promising.

2 Problem description

The problem studied considers a firm that produces and sells a set of J items over a
finite and discrete horizon divided into T periods. The firm has to set the production
plan and the prices for each item to maximize the revenues. Five variables are associ-
ated for each tuple (item j, period t). Xjt, Ijt and Yjt correspond to the production,
inventory quantities and setup variables. The variable Yjt ∈ {0, 1} and it’s equal to
1 only if Xjt > 0. pjt and djt correspond to prices and the demand for item j during
period t. For each period t, the firm has to fix Xjt such that the total production
doesn’t exceed the available capacity in the same period. The inventory for each item
at the beginning and at the end of the horizon is equal to 0. In addition, for each
j ∈ {1, 2, .., J} and t ∈ {2, 3, .., T − 1}, the inventory balance defined by the equality
Xjt + Ij,t−1 - djt = Ijt must be hold.

The market demand djt is assumed to be iso-elastic and it’s equal to djt =

aj
∏J

i=1 p
bji
it . Coefficient bji is cross elasticity between the demand of item j and the

price of item i. The objective function is equal to π =
∑T

t=1

∑J
j=1

(
pjtdjt − cjtXjt −

hjtIjt − ajtYjt

)
and corresponds to the total profit for all the horizon to maximize.

Parameters cjt, hjt and ajt are unit production cost, unit inventory cost and setup
cost for item j during period t, respectively.

3 Resolution approach

Two variants of the simulated annealing denoted SA1 and SA2 are proposed to solve
the problem. The simulated annealing is an iterative process inspired from the ther-
modynamics. At the beginning, an initial solution is generated and the temperature
T0 is initialized to a high value. At each iteration i, a new solution sv is generated
from the neighborhood of the current one si. Then, sv is accepted according to a
probability that depends on the objective values of si and sv and on the current tem-
perature Ti which decreases from an iteration to another one according to a specific
cold schemes. The process stops the search when the temperature reaches a value Tf

or when the iterations number reaches a predefined Itermax.
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The solution’s coding is based on setups variables and prices variables for the SA1

and SA2, respectively. For the SA1, the initial solution s0 is generated by setting
randomly the setups variables and then solving the generated non-linear program-
ming NLP . Then, at each iteration i, three types of moves are used to explore the
neighborhood of the current solution. The first and the second move swap the setup
values of a selected product and period, respectively. The last move swaps the setup
value of a randomly selected tuple (product,period). For the SA2, the initial solution
s0 is generated by setting randomly the prices for each product at each period and
then solving the generated multi-items lot-sizing problem. Then, at each iteration
of SA2, prices of a randomly selected product or period are changed to explore the
neighborhood of the current solution.

4 Numerical results

The current section presents a preliminary results obtained by the SA1 and SA2. The
conducted tests are based on a set of instances generated by considering (J=5, T=6),
(J=5, T=12). cjt, hjt, ajt and Ct are generated uniformly as in Chen et al. [3]. For ajt
and Ct, the parameter a is fixed to 100 and b to 250. Then ajt and Ct are distributed
uniformly from [0.5a, 1.5a] and [0.5b, 1.5b], respectively. The values of cjt and hjt are
generated uniformly from [4, 6] and [0.5, 1.5], respectively. The parameters bjj are
distributed uniformly from [−4,−2]. The cross-price elasticity parameters bji (i ̸= j)
follow the uniform distribution from [0, 1]. The parameter aj is generated uniformly
from the [0.5Ct, 1.5Ct]. Finally, for each tuple (J , T ), 10 instances are generated.

SA1 and SA2 are implemented on Python3. Theirs parameters are set to (T0 =
50, Tf = 1, cool = 0.96). To compare theirs results, the rpd metric is defined by

SAi rpd =
SAi obj−max(SA1 obj ,SA2 obj)

max(SA1 obj ,SA2 obj)
. The following Table shows the obtained results

on each instance.

Table 1 shows that SA1 reaches the best solution for all test instances. Analyzing
the values of rpd, one can notice that the results of SA1 and SA2 are closed for
(J = 5, T = 6) (all the rpd values are less than 2%, except the instance 4 for which
the rpd is equal to 10%). However, for (J = 5, T = 12) the rpd increases to reach an
average value of 8%.
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(J = 5, T = 6) SA1 obj SA2 obj SA1 rpd SA2 rpd (J = 5, T = 12) SA1 obj SA2 obj SA1 rpd SA2 rpd

Instance 1 2927843 2900413 0,00% -0,94% Instance 1 721432 613010 0,00% -15,03%
Instance 2 1273278 1253341 0,00% -1,57% Instance 2 1177205 1105920 0,00% -6,06%
Instance 3 11479157 11100336 0,00% -3,30% Instance 3 969491 878055 0,00% -9,43%
Instance 4 309189 277148 0,00% -10,36% Instance 4 362641 317141 0,00% -12,55%
Instance 5 453996 453747 0,00% -0,05% Instance 5 487180 465603 0,00% -4,43%
Instance 6 803892 780203 0,00% -2,95% Instance 6 978464 854801 0,00% -12,64%
Instance 7 283939 279510 0,00% -1,56% Instance 7 437694 409072 0,00% -6,54%
Instance 8 205925 204871 0,00% -0,51% Instance 8 646268 615004 0,00% -4,84%
Instance 9 1735405 1710547 0,00% -1,43% Instance 9 1554607 1451843 0,00% -6,61%
Instance 10 2045686 2019355 0,00% -1,29% Instance 10 330268 325902 0,00% -1,32%

avg - - 0,00% -2,40% avg - - 0,00% -7,94%

Table 1: SA1 and SA2 results

5 Conclusion

The presented work considers a joint-pricing and lot-sizing problem with a demand
that integrates cross-price effect. Two variants of the simulated annealing are pre-
sented. The preliminary results show the superiority of the SA1. For deeply analysis
of the two methods, the next step of our work is to test them on a large instances.
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Abstract
This work concerns a discrete-time dynamic lot size model with dynamic

pricing, where demand in a period is a function of prices in the same period, as
well as a number of preceding periods. Prices can be chosen from a discrete set,
and a single price must be chosen in each period. Having non-zero production
incurs a setup cost.

The problem consists of deciding, for each time period, whether one should
produce, how much to produce, and which price to set. The objective is to
maximize total profit, which is defined as total revenue minus total setup cost,
inventory holding cost and production cost.

A dynamic programming algorithm is presented, which solves the problem
to optimality. This solution method can also be used as a heuristic algorithm
for a version of the problem with continuous prices.

1 Introduction

We consider a decision maker selling a product, whose goal is to decide prices through-
out a discrete planning horizon in order to maximize his or her total profit. The profit
function is a general function of the prices in some number of preceding time periods.
Prices may be chosen from a predetermined list of options. These price options may
be different in each time period, and the number of options in each time period may
vary.

In the following section, we will present some models, some of which include setup
decisions, while others do not. For the models that do not include setup decisions,
profit functions may be left general. However, for the models with setup decisions
included, profit functions are defined as the difference between total revenue, and the
sum of production costs, setup costs and inventory holding costs. In order to present
the models in an intuitive way, we will also define the revenue and cost functions,
even for the models that only require general profit functions.
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2 Problem variations

2.1 Model 1 - pure pricing, one lag period

We consider four versions of the above presented problem. Model 1 is the simplest
model, in which one must decide on a price in each period, in order to maximize total
profit, given as total revenue minus total production cost. Demand is a function of
the price in the current period and the price in the previous period, and production
is assumed to occur in every period.

Π = total profit

dt = demand in period t

pt = price in period t

ct = marginal production cost in period t

Pt = set of allowed prices in period t

maxΠ =
T∑

t=1

dt(pt − ct) (1)

subject to

d1 = f1(p1) (2)

dt = ft(pt−1, pt), t = 2 . . . T (3)

pt ∈ Pt, t = 1 . . . T (4)

The objective function (1) represents the sum of revenue minus production costs
for all time periods. Constraints (2)-(3) define demand in period 1 as a function of
its price, and demand in other periods as a function of prices in the same period
and the previous period. Constraint (4) enforces that prices are chosen from the
predetermined set of allowed prices.

We model this problem as a longest path problem on a layered network, see figure
1. Nodes are divided into T disjoint sets, not including the source and sink nodes.
Each node represents a pricing decision, and travelling along an arc from one node to
another rewards a nonnegative profit. Travelling to the sink node gives zero profit.
The objective is to find the longest path from the source node o to the sink node s.

Such a network problem has already been treated in the literature. See [1] for
a backwards dynamic programming algorithm that solves a similar shortest path
problem to optimality in O(|A|) time, where A is the set of arcs. We present a
similar, forwards algorithm which also finds the optimal solution in O(|A|) time.
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Figure 1: Graph representation of model 1.

2.2 Model 2 - pricing and setup, one lag period

In model 2, we add setup decisions to model 1. Production only occurs in periods
in which setup occurs, and having setup incurs a given cost, regardless of amount
produced. Product may be held in inventory between periods, also at a cost.

Under the assumption of Wagner-Whitin costs, we present a dynamic program-
ming algorithm to solve this problem to optimality in O(T 2K3) time, where K =
max(|Pt|), the highest number of prices in any period.

2.3 Model 3 - pure pricing, multiple lag periods

Model 3 is an extension of model 1 in that demand is a function of prices in any
number of preceding prices, not only one. The objective functions in the two models
are the same, see (1), as well as the constraint ensuring that prices are discrete, see
(4). Constraints (2)-(3) are replaced by, respectively,

dt = ft(p1, p2, . . . , pt−1, pt), t = 1 . . . q (5)

dt = ft(pt−q, pt−q+1, . . . , pt−1, pt), t = q + 1 . . . T (6)

where q is the number of preceding periods, the prices of which influence demand in
the current period.

Unfortunately, the number of combinations of preceding prices for the demand
function is bounded by Kq, and even calculating every possible value of a demand
function is exponential in complexity. This makes it difficult to avoid such complexity
in an exact solution algorithm. However, by making assumptions on the nature of the
demand function, it is possible to rule out some combinations that will not appear
in an optimal solution. Without assumptions on the demand function, we present an
algorithm that solves the problem to optimality in O(TKq) time.
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2.4 Model 4 - pricing and setup, multiple lag periods

Model 4 is the most complex of the four, in which setup variables are included,
and demand is a function of prices in multiple preceding periods. As this work is
still unfinished, model 4 has not yet been made, although we believe that it will be
possible to combine the algorithms for models 2 and 3 and to solve this problem.

3 Speed-up techniques

Some additional techniques may be employed, in order to speed up the execution of
the aforementioned solution algorithms. These are based on some assumptions on the
demand functions used, and assumptions of the available prices in the problem. For
instances where these conditions are satisfied, one may disregard every price set at or
below the unit production cost. Furthermore, as the solution algorithm progresses,
one may also disregard every price in period t that is smaller than the optimal price
in period t for the 1 . . . t sub-problem.

Additionally, if the horizon theorem (see [2] for details) turns out to be true for
the models with setup variables, then it may also be used to speed up the solution
algorithms for these problems, as not every potential final setup period needs to be
checked.

4 Computational experiments

Some computational experiments will be performed, measuring the performance of
the algorithm against that of commercial solvers.
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Abstract

In this talk, we study an integrated lot-sizing and maintenance planning
problem on a single machine. Maintenance is performed based on the age of
the machine that is related to production decisions. The goal is to decide,
on a planning horizon of several periods, when and how much to produce, and
when to maintain the machine. We study the complexity of the single-item and
the multi-item versions. We show that the multi-item version is strongly NP-
Hard and the single-item version is NP-Hard for some cases and polynomially
solvable for other cases. More precisely, we study the following versions: (1)
maintenance can be executed only when a minimum age of the machine is
reached and before a maximum age, (2) production setups generate fixed age
setups for the machines, and (3) maintenance can be performed at any point in
time. For each version, we characterize some structural properties of dominant
solutions to derive polynomial dynamic programming algorithms.
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1 Introduction

In this talk, we study an integrated lot-sizing and maintenance planning problem on
a single machine. Maintenance is performed based on the age of the machine that
is related to production decisions. The goal is to decide, on a planning horizon of
several periods, when and how much to produce, and when to maintain the machine.
We study the complexity of the single-item (that we coin ULS-M) and the multi-item
versions. We show that the multi-item version is strongly NP-Hard and the single-
item version is NP-Hard for some cases and polynomially solvable for other cases.
More precisely, we study the following versions: (1) maintenance can be executed
only when a minimum age of the machine is reached and before a maximum age,
(2) production setups generate fixed age setups for the machines, and (3) mainte-
nance can be performed at any point in time. For each version, we characterize some
structural properties of dominant solutions to derive polynomial dynamic program-
ming algorithms. The detailed description of the problem as well as a mathematical
modeling can be found in [1].

2 NP-Hard cases

Before proposing polynomial algorithms for various cases, we first showed that two
general cases of the single-item problem are NP-hard: (1) With no fixed age setups, no
fixed maintenance cost and time-varying maximum ages, and (2) With time variant
fixed age setups. We also showed that multi-item version of the problem is strongly
NP-Hard.

3 Polynomial cases

In this section we provide some obtained results where we show that some variants of
the studied problem can be solved in polynomial time. The structural properties as
well as the dynamic programming algorithms will be detailed during the presentation.

3.1 ULS-M without fixed age setups

We study the problem where a maintenance operation can occur only at the end of
a period and without considering the fixed age setup. We show that this problem
can be solved in polynomial time using a dynamic programming algorithm. In order
to construct this algorithm, we make a decomposition into subplans, based on some
structural properties. All these properties are based on the cycle free property of net-
work flow problems with concave costs where extreme solutions are cycle free. Using
these properties, we derive a polynomial time algorithm that runs in O(T 7 log T ).
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3.2 ULS-M with fixed age setups and stationary cost param-
eters

Here, we consider the problem where age setups induce a fixed deterioration. We
suppose that a maintenance operation can only take place at the end of a period.
In this section, we assume that costs are time-invariant. We show how to solve
the problem in polynomial time by dynamic programming. In order to construct
this algorithm, we make a decomposition into subplans, based on some structural
properties. Because of the minimum machine age required before a maintenance
operation, an ‘artificial setup’ might be required in an optimal solution to enforce a
jump in the machine age. Note that this situation does not occur if fixed age setups
are not considered. Because of these ‘artificial setups’ the cycle free property does not
apply. Based on the proposed structural properties, we derive a polynomial dynamic
programming that runs in O(T 10).

3.3 ULS-M with maintenance at any point in time and with-
out fixed age setups

In this part, in contrast to the case with maintenance at the end of a time period, in an
optimal solution, we can have a period where production first takes place, then there
is a maintenance operation, and then production occurs again. We show that this
problem can be solved in polynomial time using a dynamic programming algorithm.
This algorithm is based on several structural properties. All these properties are
based on the cycle free property of network flow problems with concave costs where
extreme solutions are cycle free. Using these properties, we derive a polynomial time
algorithm that runs in O(T 8 log T ).
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Abstract

In this study, we tackle the problem of the multi-item, capacitated multi-
resource lot sizing problem with start-up costs. The main motivation of this
theoretical study comes from the glass container industry. While planning
the production, one has to decide when and which quantity of different color
glass melts to schedule on several furnaces, with the aim of minimizing the
overall production and holding costs. In this setting, the customer’s determin-
istic demand for bottles of different colors has to be satisfied. We propose a
new variant of the multi-item lot sizing and scheduling problem to address the
afore mentioned challenge. As it requires a full capacitated and continuous
production process on each furnace over the whole planning horizon, we call
this new variant the Continuous Proportional Lot sizing and Scheduling prob-
lem (CPLSP). CPLSP is closely related to two small-bucket models from the
literature: the Discrete Lot sizing and Scheduling Problem (DLSP) and the
Proportional Lot sizing and Scheduling Problem (PLSP). It is also related to
the Changeover Scheduling Problems, where the aim is to minimize the number
of changeovers while respecting the deadlines of the tasks. We establish some
complexity results and we propose polynomial time algorithms for the case of
two items.
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1 Industrial motivation

We consider a production planning problem that appears in a glass container pro-
duction system of the biggest European manufacturer, with plants in 6 countries.
We focus on the problem of scheduling glass color campaigns in several capacitated
furnaces. The objective is to decide for each period (=month), one glass color to be
assigned to each furnace in order to satisfy the demand of the customers over several
months. This problem can be positioned within tactical decision making in the glass
container industry. See Figure 1 for a simple illustration of the system studied.

Figure 1: Parallel identical furnaces producing multi-color containers in the glass
container manufacturing system under study.

In the real production system, the furnaces melt glass 7/24 hours with a full
capacity, without any interruption, except for the color changes and maintenance
activities. This color change process is very time consuming (up to a few days) which
limits in practice the total number of colors assigned to a given furnace: typically,
only two different colors are assigned to the same furnace. Instead of fixed setup cost,
we consider start-up cost each time a color change takes place.

2 Continuous Proportional Lot-sizing and Schedul-

ing Problem (CPLSP)

The problem considered is thus a multi-item (=colors), capacitated multi-resource
(=furnaces) lot sizing problem with start-up costs. In the literature, Proportional
Lot sizing and Scheduling Problem (PLSP) is found to be the closest one to our
study. PLSP allows at most one color change per period, occuring at any time in this
time period. Note that PLSP is a small-bucket model. In small bucket models, the
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time horizon is divided into small time intervals in which the machine can produce
only a small number of different items (zero, one or two, depending on the models).
Two classical constraints can be encounted in small bucket models: (a) Setup at the
beginning of the time period; (b) All-or-nothing assumption: In each period, either
the resource is idle or at full capacity. In the literature, we can identify three main
small bucket models. The following figure compares them to our problem CPLSP.

Figure 2: Illustration of small-bucket problems for multi-item LSP. (a) setup at the
beginning (b) all-or-nothing policy. DLSP (Discrete Lot-sizing and Scheduling Prob-
lem), CSLP (Continuous Setup Lot-sizing Problem), PLSP (Proportional Lot-sizing
and Scheduling Problem).

Note that the main difference of our model CPLSP and the classical PLSP is that,
in our model we do not authorize to produce nothing due to the high energy costs
that would be triggered. In a given period the capacity is always saturated. For a
literature survey on the integrated lot sizing and scheduling problems, see [3]. For
complexity results on the small-bucket multi-item LSP with start-up times, see [4].

3 Link to the Changeover Scheduling Problem

Our problem can be formulated as a Changeover Scheduling Problem (CSP). See
Bruno and Downey [1] for the polynomial and NP-hard cases of CSP. In CSP, a task
j corresponds to an order with a deadline (=order date), a processing time (=the
quantity requested) and a family (=color). With n tasks to schedule on several
machines (=furnaces), the objective is to minimize the total cost of start-up and
inventory holding to find the optimal scheduling. Cheng et Kovalyov [2] propose a
dynamic programming algorithm in O(nF/F F−2) time for CSP, for a fixed number of
family F . They also propose an algorithm called TWO, solving CSP in linear time
with 2 families and unitary start-up costs. Notice that there is no holding cost in the
CSP model, which differentiates it from the CPLSP model.
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4 Mathematical formulation and results

We introduce the Continuous Proportional Lot-sizing and Scheduling Problem (CPLSP)
where the furnaces produce glass at full capacity C. N different items (colors of glass
melt) have to be scheduled on parallel and identical furnaces. Each item i has a
demand dit to satisfy in period t (=month) over T periods. We consider an inventory
holding cost hi for each unit stored and a start-up cost gi each time a color change
takes place for the item i. The decision variables are: xm

it the quantity to produce of
item i in period t on furnace m, ymit the binary variable indicating if the furnace m is
configured for item i in period t, zmit the change-over binary variable and sit the stock
level of item i in t. Here the MILP formulation of CPLSP:

min
∑T

t=1

∑N
i=1 hisit +

∑T
t=1

∑N
i=1

∑M
m=1 giz

m
it

s.t. sit−1 +
∑M

m=1 x
m
it = sit + dit ∀i ∈ {1..N}, t ∈ {1..T}

C =
∑N

i=1 x
m
it ∀m ∈ {1..M}, t ∈ {1..T}

xm
it ≤ C(ymit + ymit−1) ∀m ∈ {1..M}, i ∈ {1..N},∀t ∈ {1..T}

zmit ≥ ymit − ymit−1 ∀m ∈ {1..M}, i ∈ {1..N},∀t ∈ {1..T}∑N
i=1 y

m
it = 1 ∀m ∈ {1..M}, t ∈ {1..T}

xm
it , sit ≥ 0, zmit , y

m
it ∈ {0, 1} ∀m ∈ {1..M}, i ∈ {1..N}, t ∈ {1..T}

We propose a dynamic programming algorithm in O(T 2) time to solve 2-item-
CPLSP to the optimality. We generalize this result to solve 2-item-CPLSP with
additional start-up times. We also propose an O(M3T 3) algorithm for 2-item-CPLSP
on M parallel machines.
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Abstract
We consider the problem to solve the multi-level capacitated lot sizing prob-

lem (MLCLSP) via a branch-and-price algorithm based on a Dantzig-Wolfe
decomposition by product types. A convex combination of Wagner-Within so-
lutions [6] as in Manne’s model [3] is known not to be sufficient to reproduce
the entire solution space of the MLCLSP. In this paper, we therefore decou-
ple the decisions on the setup patterns, to be made in the pricing problems,
from those on the production quantities, to be made in the LP master prob-
lem. The resulting branch-and-price algorithm has been implemented using
the SCIP framework. We present the underlying problem decomposition, the
implementation and some first numerical results.

1 Introduction

The multi-level capacitated lot sizing problem (MLCLSP) deals with the problem to
determine time-phased production quantities as well as inventory levels for multiple
final and intermediate products such that the independent demand for those final
as well as the dependent demand for intermediate products is met, capacity restric-
tions of the required production resources are respected and the resulting setup and
holding costs are minimized. Direct compact formulations of that problem in terms
for production quantities, inventory levels and binary setup decisions require a set
of so-called “Big-M-constraints” to couple binary setup decisions to continuous pro-
duction quantity decisions. If a branch&bound method is used to solve the problem,
long computation times result from the weak lower bounds induced by those Big-M-
constraints. Stronger bounds can be found using alternative formulations, e.g., the
so-called “simple plant location formulation” or the “shortest-route formulation”, see,
e.g., [5]. However, this comes at the price of more complex models and additional
variables and constraints.
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2 Dantzig-Wolfe-Decomposition

A Dantzig-Wolfe-Decomposition can be used to obtain tighter bounds within the
linear programming (LP) relaxation required within a branch&bound framework to
solve the MLCLSP or its single-level counterpart, the CLSP. A direct application
of this approach operating with a set of production schedules of the Wagner-Whitin
type [6] embedded in a master problem as in Manne’s formulation [3] leads to the
problem that some possible solutions of the MLCLSP cannot be produced. For this
reason, Degraeve and Jans [2] proposed a model variant overcoming this problem by
operating with an extended set of setup schedules such that so-called non-dominant
schedules can be considered in which there is a setup, but no production. While this
may seem counter-intuitive at the first glance, it allows to build convex combinations
of those schedules such that optimal solutions of the underlying MLCLSP can be
created within a branch&price process. Unfortunately, the set of the non-dominant
schedules required in this approach can be large.

It is for this reason that we propose an alternative approach. The idea is to let the
branch&price approach to decide about certain time-phased limits of the production
quantities. Those limits can be obtained relatively easily from the Wagner-Within
solutions stemming from the pricing problems. This approach allows us to partially
decouple production quantity decisions from setup decisions and to still use Wagner-
Whitin solutions to determine tight lower bounds in the branch&bound process.

3 Implementation in SCIP and first numerical re-

sults

Implementing a branch&price algorithm is a complex task as the column genera-
tion process has to be aligned with a cleverly designed branching methodology. We
used the SCIP framework [1] to implement the branch&price approach. This turned
out to be both technically challenging but also fruitful in the sense that we could
concentrate our work on the development of the pricer (to solve the sub-problems
in the Dantzig-Wolfe decomposition resulting from our special model) and special
branching schemes (to avoid unbalanced search trees as they are typically the re-
sult of branching on fractional binary variables of the compact model underlying the
Dantzig-Wolfe decomposition). As this is currently work in process, we report some
first and preliminary numerical results.
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1 Introduction

Production planning under uncertainty has always been a challenging task for prac-
titioners and a frequently visited research avenue for researchers. In order to draw
attention to the growing trend on this subject and to indicate possible research di-
rections, two surveys on stochastic lot sizing problems can be found in [1] and [4].
These reviews show that the uncertainty in demand quantity is the main focus of
researchers. We believe that a major drawback of previous studies is that uncertain
demands in different periods are uncorrelated and treated as independent random
variables, which is often unrealistic in practical settings. To answer this criticism,
[2] have recently proposed a novel way of modelling the uncertainty on demand in
the single-item dynamic lot sizing problem. In their approach, the quantities of de-
mands are deterministic but their timing might be stochastic, i.e. they might fully
occur in a given window of multiple periods, with a given probability for each period.
Since demand quantities are known but their occurrences are stochastic, demands are
naturally correlated.

In our paper, we consider the multi-item capacitated case, to consider more practi-
cal settings than in [2], by relying on some of the contributions of [2] for the single-item
uncapacitated case.
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2 Problem statement and mathematical model

In this study, the multi-item capacitated lot sizing problem with stochastic demand
timing is addressed. On a production horizon discretized in T periods, the determin-
istic demands Dkt of item k in period t are known, for which no backlog or lost sale
is allowed. Moreover, stochastic demands di of item k(i) are also given, for which the
timing is stochastic with probability pit ≥ 0 for period t within a given time interval
[li, ui] ⊆ [1, T ]. The demand quantity di is not stochastic, and backlog is allowed until
period ui. The objective of the problem is to determine a production plan that mini-
mizes the total expected cost and that for which both the deterministic and randomly
occurring stochastic demands must be satisfied.

Let [li, ui] ⊂ [1, T ] be an interval indexed by i, where the stochastic demand di of
item k(i) fully occurs in a single period, with a probability of pit ≥ 0 for each period

t ∈ [li, ui] and such that
∑ui

t=li(p
i
t) = 1.

The expected cost is calculated as follows:

ECi(t) =
ui∑

l=t

hk(i)l

ui∑

m=l+1

pim +
t−1∑

l=li

bk(i)l

l∑

m=li

pim (1)

where hk(i)l is the holding cost of item k(i) in period l, and bk(i)l is the backlog cost
of item k in period l.

Since demand di is stochastic, the inventory variable is also stochastic, which
makes the modelling our problem challenging. To deal with it, [2] propose to model
the problem with binary variables zlt, which is the fraction of the deterministic de-
mand Dt produced in period l ≤ t, and zil , the fraction of the stochastic demand
quantity di produced in period l ≤ ui. Continuous variables xk,t, resp. binary yk,t,
model the production quantity, resp. the setup state, of item k in period t. The
mathematical model is formalized below:

min z =
K∑

k=1

T∑

t=1

fktykt +
K∑

k=1

T∑

t=1

T∑

l=t

(ckt +
l−1∑

m=t

hkm)zktlDkl

+
∑

i∈I

ui∑

t=1

(ck(i)t + ECi(t))zitd
i (2)

t∑

l=1

zklt = 1 ∀t = 1, ..., T, k = 1, ..., K (3)

ui∑

l=1

zil = 1 ∀i ∈ I (4)
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K∑

k=1

akt(
T∑

l=t

zktlDkl) +
∑

i∈I;t≤ui

ak(i)tz
i
td

i +
K∑

k=1

suktykt ≤ capt ∀t = 1, ..., T (5)

T∑

l=t

zktlDkl +
∑

i∈I;t≤ui

zitd
i ≤ (

T∑

l=t

Dkl +
∑

i∈I;t≤ui,k=k(i)

di)yk,t

∀t = 1, ..., T,∀k = 1, ..., K (6)

ykt ∈ {0, 1} ∀t = 1, ..., T,∀k = 1, ..., K (7)

0 ≤ zktl, zit ≤ 1 ∀i ∈ I,∀t = 1, ..., T,∀l = t, ..., T,∀k = 1, ..., K (8)

The objective function (2) minimizes the total expected cost including set up,
production, holding and backlog costs. Constraints (3) and (4) ensure that both de-
terministic and stochastic demands are satisfied, respectively. The limited production
capacity is ensured in Constraints (5), where akt is the capacity consumed by one unit
of item k in period t, sukt is the set up time of item k in period t and capt is the
capacity available in period t. Constraints (6) link the setup and production quantity
variables, where (

∑T
l=t Dkl +

∑
i∈I;t≤ui,k=k(i) d

i) is the upper bound of xk,t.

3 Numerical results

To validate and analyze the mathematical model, a set of instances defined from
the instances generated by [3] are tailored according to the settings of our problem.
In particular, the probability of occurrence of a stochastic demand in any period
t ⊂ [li, ui] is normally distributed. The instances include 100 products and 24 periods,
and each product has 10 stochastic demands. The standard solver IBM ILOG CPLEX
12.9 is used.

The preliminary results (Table 1) show that a feasible solution cannot be reached,
displayed by “Nf” for “No feasible”, for most instances after 60 seconds. When
limiting the computational time to 120 and 300 seconds, a feasible solution can be
reached but the optimality gap is significant. These results motivate us to develop
heuristic approaches to solve the problem for large instances.

4 Conclusions and perspectives

In this work, inspired from the work of [2], a mixed integer linear model is proposed for
the multi-item capacitated lot sizing problem when the demand timing is stochastic.
The model has been tested on various instances to show its limitations.

A Lagrangian relaxation heuristic is being developed that relies on the dynamic
programs proposed in [2]. Constraint (5) in the model is relaxed to solve uncapaci-

3

59



Table 1: Numerical results obtained after 60, 120 and 300 seconds
Gap (%) Gap (%)

Ins 60 120 300 Ins 60 120 300
1 Nf Nf 0.85 12 Nf 2.29 1.45
2 Nf 5.44 4.59 13 Nf Nf 4.37
3 Nf Nf 1.09 14 Nf 2.37 0.84
4 Nf 2.51 1.28 15 Nf 37.87 37.87
5 Nf 8.24 3.72 16 Nf 1.18 0.83
6 54 54 54 17 Nf Nf 2.26
7 Nf 2.01 1.87 18 38.75 2.41 2.16
8 Nf 3.37 1.19 19 7.12 3.07 0.66
9 Nf 3.63 1.23 20 Nf 2.40 1.80
10 Nf 4.26 0.69 21 9.86 2.55 2.55
11 Nf 3.71 3.66 22 8.54 1.86 1.25

tated single-item problems. In the workshop, we plan to present this approach and
the corresponding numerical results.
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Abstract

Inspired by sustainability goals, we consider the problem of coordinating
shipments in a stochastic lot-sizing setting. There are multiple items, which
are shipped periodically from a single supplier to satisfy customer demands.
This demand is dynamic and stochastic, but we assume that demand distribu-
tions are known or can be estimated. Costs are associated with the amount
of inventory of each item and with each order of an item. There is an oppor-
tunity to achieve environmental savings by combining orders implying fewer
shipments. This leads to a bi-objective lot-sizing problem with coordinated
shipments where both the amount of shipments as well as costs need to min-
imized, such that a service level constraint is satisfied. We study a static-
dynamic version, where first the ordering periods are determined, and given
these ordering periods the ordering plan per item should be obtained. The
complexity of the problem lies in the fact that not each item may be ordered
in a potential ordering period, as fixed ordering costs are incurred for each or-
der placed. We propose several heuristic approaches for this problem based on
dynamic programming and test the performance in a computational study.

1 Introduction

We consider the problem of determining when and how much to ship from suppliers
to a warehouse. In our problem, there are multiple items (and one supplier for each
of them), which are shipped periodically to a warehouse to satisfy the demand of
customers. Demand of customers is dynamic and stochastic, but we assume that de-
mand distributions are known for each item and each period. The cost are associated
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with the amount on inventory of each item and with each order of an item. However,
based on a company case, there is also a second objective of minimizing the number
of periods in which deliveries take place to achieve environmental savings.

In our version of the problem, the order periods for each item have to be set
beforehand, but the quantity to be ordered can be determined when demand is known.
So at the start of the planning period, we have to select the periods in which orders
are placed. In the selected periods, we can then order the quantities necessary to
bring our inventory levels to predetermined order-up-to amounts. This approach is
known as the so-called static-dynamic one in the literature (see e.g. [1]). To ensure
that a sufficient share of demand is fulfilled, a fill rate is set. We assume that a
delivery can be made instantaneously and the order quantity is unlimited.

In fact, the problem under consideration is a stochastic bi-objective version of the
economic lot-sizing problem, as demand is stochastic and there are the objectives of
cost and the number of deliveries. In summary, the input of the problem is as follows:

T : number of periods,

K: number of items (product categories),

dkt: stochastic demand for item k in period t,

skt: set-up cost for item k in period t,

hkt: inventory holding cost per unit for item k in period t.

2 The model

In order to model the problem, define ckij as the cost of having a set-up at time i to
cover demand of item k for periods i, . . . , j with the next set-up at time j + 1. These
are the cost ski of ordering item k at time i plus the expected costs of the ending
inventories in the periods i, i + 1, . . . , j, given that an order quantity Q is sufficient
to satisfy FR% of demand between i and j, that is

ckij = ski +

j−1∑

t=i

hktE(Ikt)

with

E(Ikt) =

∫ ∞

0

(Q− x)+fk
it(x)dx =

∫ Q

0

(Q− x)fk
it(x)dx,

and Q such that ∫ Q

0

xfk
ij(x)dx = FR ·

j∑

t=i

E(Dt), (1)

2

62



where FR is the specified fill rate in each order cycle and fij(x) is the distribution
function of having a total demand of x in [i, j].

Since we are taken a static-dynamic approach and the cost parameters ckij can be
computed (analytically or numerically) upfront, we can model the problem as a MIP
problem. In order to do that, we define the following decision variables:

xijk: binary variable equal to 1 iff the schedule for item k contains order cycle [i, j]

zt: binary variable equal to 1 iff there is a delivery in period t.

We use an ε-constraint approach, meaning that we set a bound ε on the number
of deliveries (i.e.,

∑
i=1,...,T zt ≤ ε) and solve a cost minimization problem for each

ε ∈ {1, . . . , T} to get the Pareto frontier. For a given ε, the MIP model is as follows:

min
T∑

i=1

T∑

j=i

cijkxijk (2)

s.t.
T∑

j=1

x1jk = 1 ∀k (3)

j∑

i=1

xijk =
T∑

i=j+1

xj+1,i,k ∀j, k (4)

∑

j=i,...,T

xijk ≤ zi ∀i, k (5)

∑

i=1,...,T

zi ≤ ε (6)

xijk, zi ∈ {0, 1} ∀i, j, k (7)

Similar models can be found in [1], except that we have an additional constraint to
bound the number of shipments.

3 Heuristic solution approach

As larger instances cannot be solved in a reasonable amount of time by the MIP
model, we propose a heuristic approach based on dynamic programming (DP). Note
that there are two related problems that need to be solved. The overarching problem
is to find a set of m delivery periods V in {1, . . . , T} which minimizes total cost.
Given the ordering periods in V , for each item k we need to solve a subproblem in
which the objective is to find the shortest path (note that not each ordering period
has to be used for each item, as this will incur set-up cost).

In the DP approach we compute the optimal order schedule per item k during
the course of the algorithm. To formally describe this approach, we introduce the
following notation:
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• vmj : minimum cost up till period j with at most m shipments,

• V m
j : set of ‘optimal’ order periods in interval [1, j] when having at most m order

periods,

• SPk(V ; j) optimal cost for item k in [1, j] when only orders in periods of V are
allowed.

Note that SPk(V ; j) can be determined efficiently by a shortest path approach. The
DP approach is summarized in Steps 1 and 2 below. When computing the cost vmj
in (8) of Step 2, we take the ‘optimal’ order schedules V m−1

i−1 (i.e., a schedule with
m− 1 order periods for [1, i− 1]), we add an order period in i, and compute for each
item what the ‘optimal’ cost are in [1, j] when using only order periods in V m−1

i−1 ∪{i}.

Step 1: Initialization for j = 1, . . . , T
v1j =

∑
k c1jk

V 1
j = {1}

Step 2: DP recursion
for j = 2, . . . , T and m = 2, . . . , j we have the recursion

vmj = min

{
vm−1j , min

i=2,...,j

∑

k

SPk(V m−1
i−1 ∪ {i}); j)

}
(8)

set i∗ = arg mini=2,...,j

∑
k SPk(V m−1

i−1 ∪ {i}); j)
if vmj < vm−1j , then V m

j = V m−1
i∗−1 ∪ {i∗}, otherwise V m

j = V m−1
j

The total complexity of the heuristic is O(qKT 3), as all shortest paths from node
i to all j ≥ i can be determined jointly. The DP approach can be further refined
by not only keeping track of the best, but to keep track of the q best solutions.
Preliminary computational tests show that the heuristic approach performs well with
optimality gaps of not more than 1% when q = 10, and with further improvements
being attained when we increase q to 20.
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Abstract

This study addresses the problem of planning the supply operations of an
assembly line when the later are subcontracted to an external service provider.
This problem is motivated by a case study of the aircraft industry in which un-
certainties in the delivery of raw material leads to inefficiency on the assembly
line. We develop two classic and data-driven robust optimization models based
on existing uncertainty set and we propose an approximation of the data-driven
uncertainty set in order to improve the tractability of the resulting robust mod-
els. Experimental results show that robust optimization models can improve
the efficiency of the assembly line by avoiding raw material unavailability. The
data driven method provide the best solutions by taking into account correla-
tions and asymmetries in the uncertainties but results in untractable models
on large instances. We show that our approximation results in comparable
solutions with a significant reduction of the computation time.
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1 Introduction

In the last decades, Robust optimization (RO) has become on of the most popular
approach to deal with uncertainties in optimization problems. The idea of robust
optimization is to restrict the possible values of uncertain parameters to an uncer-
tainty set U , then to optimize against the worst realisation within this set to obtain
solutions that are robust to all scenarios in U [1]. The work of [2], [3], [4] and [5] have
opened the way for RO and since then, a lot of efforts have been dedicated to develop
different types of uncertainty set to obtain tractable robust models. Today, with the
growing complexity of supply chains, RO appears like a promising approach to reduce
the impact of uncertainties and to improve the reliability of industrial systems.

2 Problem description

We consider a production planning problem where an assembly line combines different
components into a set of final products over a finite planning horizon. We assume that
all component are available in a warehouse managed by a third party logistic provider
(3PL). The 3PL is in charge of delivering components to the assembly line according
to its orders as represented on Figure 1. For each picking operation, an operator

Components J

Warehouse

Final product I

Assembly line

Figure 1: Diagram of the problem

collects a given quantity of a single type of component, bounded by a maximum
batch size. Thus several picking operations of the same component j ∈ J may be
scheduled in the same period due to this limitation. We model the picking time of
a particular batch of component j as follows: 1. a fixed time pj, that corresponds
to the travel time between the shipping point and the zone where components j are
stored and 2. a picking time per unit denoted τj. The overall picking time of a given
period of the planning horizon is bounded by the maximum work capacity of the
3PL C. Any demand for product that is not satisfied immediately is backlogged
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and incurs a backlogging penalty cost in each period until the corresponding product
is assembled in a subsequent period. Whenever a component is available on the
assembly line but is not immediately used to manufacture an end product, it disturbs
the production process by interfering with people and other goods moving nearby.
We model this situation with a per-unit, per-period obstruction cost. The problem
consists in planning the quantity of each component delivered to the assembly line by
the TPL in each period such that the sum of the obstruction and backlogging costs
is minimized.

The main source of uncertainty in this application comes from the fact that the
assembly line has an incomplete or imprecise knowledge on the picking times at the
3PL. As a consequence, some combinations of orders may exceed the picking capacity
of the 3PL provider, forcing the latter to postpone some operations to subsequent pe-
riods. We assume that we are given a set of historical setup times D = {p(1), . . . ,p(N)}
which can be used to derive uncertainty sets.

3 Data-driven robust optimization approach

In the literature, several attempt have been proposed to construct uncertainty set
directly from historical data of optimization problems. By doing so, the produced
uncertainty set can integrate information about the distributions of uncertain param-
eters such as correlations or asymmetries and then improve the quality of the robust
solutions. In our work, we focus on the construction of Data-driven uncertainty sets
that can be used to obtain tractable robust formulations of the problem described
above. We present and compare the results obtained with three distinct uncertainty
sets: 1. The classic Budget based uncertainty set such as described in [5] 2. The SVC
based uncertainty set described in [6] 3. We propose an approximation of the SVC
based uncertainty set in order to improve the tractability of the induced robust model
Our approximation method aims at reducing the complexity of the SVC based un-
certainty set while maintaining the same representation of uncertain parameters. By
doing so, we are able to obtain robust solutions that are comparable to those obtained
with the SVC based uncertainty set with a significant reduction of the computation
time needed to solve the robust model.

4 Experimental results and conclusions

The different robust models have been evaluated on a set of instances generated to
represent realistic cases inspired by our industrial partner. The different uncertainty
sets are built with a data-set D of N = 1000 data-points and the obtained solutions
are evaluated on a larger test data-set of N ′ = 10000 data points following the same
distribution. Our experimental results can be summarized as:

3

67



1. The different robust models reduce the impact of picking time uncertainties on
the production system.

2. By accurately modeling correlations and asymmetries in the distribution of
picking times, the SVC based uncertainty set of [6] lead to a lower solution cost
than the classic budget based uncertainty set.

3. The application of the SVC based uncertainty set to large instances leads to
large robust models that are not tractable in practice.

4. Using our approximation of the SVC based uncertainty set lead to solutions
that are comparable to those of the SVC based uncertainty set with a significant
reduction of the computation time.

Future research directions are multiple and includes: 1. The extension of the
model to a multi-stage model to represent more accurately the problem faced by
our industrial partner. 2. Validate the models on industrial instances built from real
historical data.
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Abstract

Standard lot sizes that can be adapted to demand variations over time
can be a reasonable alternative to dynamic lot sizing especially in discrete
manufacturing. This provides the possibility to consider the impact of lot sizes
on the relationship between flow time, work-in-process and output by means of
steady-state queueing or simulation models.

Lot sizing models of this type have been developed mainly for single-stage
production systems. We develop a model for a serial two-stage production-
inventory system and analyze how the flow time effects of lot sizes propagate
to the entire multi-stage system. Optimal lot sizes and inventory control pa-
rameters for both stages are derived by an analytical approximation and by
simulation-based optimization.

We show that mainly by altering the inventory control parameters the flow
time effects of lot sizes influence the mean total flow time. The results indicate
that the structural insights known from single-stage models seem to pertain in
a two-stage system. Insights further suggest adaptive lot sizing strategies when
system utilization varies over time.

Keywords: Lot sizing, queueing, inventory control, flow times.

1 Introduction

Motivated by a real-world lot sizing problem faced by a metal processing company
in Austria we analyze flow time oriented lot sizing for a serial two-stage production
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- inventory system using an approximate analytical model and simulation-based op-
timization. The paper builds on four streams of literature: (1) Queueing-theoretical
lot sizing models, (2) parameterization of (r, Q) policies, (3) lot streaming and (4)
traditional lot sizing models, primarily the MLCLSP.

2 The Two-stage Lot Sizing Model

We consider a serial two-stage production system depicted in Figure 1 that consists of
the single-server work centres MS1 and MS2 with their respective queues Q1 and Q2.
The system produces J products with identical setup and processing times, identical
demand (constant demand rate) and identical lot sizes. The products are different
from the beginning, that is, there is a 1:1 relation of the intermediate product pro-
duced by stage 1 and the final product produced by stage 2. For each product j an
intermediate inventory and a finished-goods inventory is held.

Figure 1: The serial two-stage production system

The production system faces a deterministic demand rate m (product units per
time unit) for each product j. Setup time per lot rn, processing time per unit an and
lot size xn for the stages n (n=1, 2) are identical for all products. E[Wn] denotes
the mean number of units at stage n, E[In] is the mean inventory after stage n.
E[Tn] and E[T] denote the mean flow time at stage n and mean total flow time,
respectively. h0, h1, h2 are the holding cost for raw material, intermediate and final
products, respectively, per unit and period, Rn the direct setup costs per period at
stage n. The lot sizes xn are the decision variables.

The two-stage lot sizing Model LGR can be formulated as follows:

Minimize Z = h0E[W1] + h1E[I1] + h1E[W2] + h2E[I2] +R1 +R2 (1)
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Subject to:

x1 = kx2 if x2 ≤ x1 (2)

x1 =
1

k
x2 if x2 > x1 (3)

xn >
Jmrn

1− Janm
for n = 1, 2 (4)

E[Tn] = gn(xn) for n = 1, 2 (5)

xn, k ∈ N (6)

The WIP levels within the production stages and in the SKU inventories depend on
the inventory control policy. We assume an independent reorder point system for each
product at stage 2 with a reorder point s2 that is identical for all products. For stage
1 we apply an echelon stock reorder point system with echelon stock reorder point
se1. This results in the task of minimizing (1) over the decision variables x1, x2, s

e
1, s2.

3 Deriving solutions to Model LGR

The model can be solved by analytically approximating the inventory levels for a given
solution vector and solving the resulting model, or by simulation-based optimization.
The analytical approximation links the inventory control policy to the arrival process
at the severs and applies an M/M/1 model to both servers. Parameter setting of
the inventory control system is based on [2]. The simulation-based optimization is
developed using FlexSim 16 and performed by OptQuestTM that uses elements from
scatter search, taboo search and neural networks.

4 Results

Theorem 1 (from analytical approximation)
For given parameters of the inventory control system at both stages (stockout proba-
bility at stage 2 and se1 ) the total flow time through the system E[T] (from entering
the queue at stage 1 to outflow from FGI) is independent of the mean flow times at
both stages. The mean flow times at the servers influence the mean total flow time
only via the inventory control parameters.
Theorem 2 (from analytical approximation)
We assume a lot sizing policy that imposes the constraint x2 ≤ x1, e.g., according to
the MRP logic. Furthermore, there is no value added by stage 2, that is, h1 = h2.
x1 (and hence E[T1] ) are exogenous parameters. In this case the optimal lot size at
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stage 2 is equal to the lot size at stage 1.

Corollary 1
x1 = x2 means that in lot sizing both stages can be combined. This corresponds to
the result in [1] and is realistic if we interpret stage 1 as raw parts manufacturing
with high setup times and stage 2 as component manufacturing with highly auto-
mated technology.

Theorem 3
If minimization of mean total flow time is the objective: For fixed x1, x1 = kx2 with
k ≥ 1 , integrality constraint on k relaxed, the optimal x2 is only weakly dependent of
x1 and at least close to the value of x2 that minimizes E[T2] (in contrast to Theorem
2!). Note that the analytical model does not approximate the intermediate inven-
tory accurately for non-integer k. For integer k the optimal x2 oscillates around this
value. In the simulation-based optimization (that correctly models the intermediate
inventory over time) the optimal values for k were integer in all experiments (fixed
x1, x1 = kx2 with k ≥ 1 ).

Theorem 4
As productive bottleneck utilization increases, the optimal solution can shift between
the two lot sizing policies x1 ≥ x2 and x1 < x2 .

Observation:
If the optimum is characterized by x1 = x2

k
with k ≥ 1, the simulation-based op-

timization can lead to non-integer optimum values for k. Note the contrast to the
result for the opposite case x1 ≥ x2. Note, however, that in our case all lot sizes of
a product at stage 1 are equal, which means that the (larger) lot at stage 2 does not
define a complete cycle. The remaining intermediate inventory is outweighed by the
reduced flow time at the servers.
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1 Introduction

Lot sizing is one of the core decisions to be made in production planning and inventory
management. One of the basic concepts of lot sizing considering multiple items com-
peting for the same production resource and a deterministic but dynamic demand
is the capacitated lot sizing problem (CLSP). The CLSP is known to be NP-hard
and finding optimal solutions for even small instances is time-consuming and usually
out-of-range in a practical setting. Therefore, heuristic solution approaches are the
preferred methods. Although, they have several disadvantages such as that they are
tailored to a specific problem and small changes in the problem setting make them
unusable, or that the solution quality is sometimes poor and not predictable. Simple
and fast construction heuristics are rare, usually inflexible, and providing insufficient
solution quality.

We propose a novel two-step construction heuristic (2-SCH) that overcomes these
downsides and provides considerable more flexibility and high solution quality.

The CLSP is an extension of the classical Wagner-Within (WW) model, where
multiple items are competing for the same limited resource. It is a single-level, multi-
item big-bucket model and serves as one of the basic models in production planning.
There are many variants and extensions of the model depending on the specific ap-
plication used for.

We consider the CLSP with and without setup times. The mathematical formu-
lation of CLSP with overtime and setup times is presented in (1) - (5).
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minZ =
P∑

i=1

T∑

t=1

(sci · Yit + hci · Iit) +
T∑

t=1

oc ·Ot (1)

subject to

Iit = Ii(t−1) + Xit − dit ∀i, t (2)

P∑

i=1

(Xit + sti · Yit) ≤ Ct + Ot ∀t (3)

Xit ≤ (
T∑

τ=1

diτ ) · Yit ∀i, t (4)

Yit ∈ {0, 1}, Iit, Xit, Ot ≥ 0 ∀i, t (5)

The decision variables are lot sizes Xit for item i in period t, setups Yit, inventory
Iit, and overtime Ot. Objective function (1) minimizes the sum of setup, holding
and overtime costs. It is subject to the inventory balance constraint (2), capacity
constraint (3) and setup state constraint (4).

Two well-known construction heuristics for single-level CLSP without setup time
are: Dixon-Silver-Heuristic [1] and ABC-Heuristic [2]. Recently a new extension
of the Dixon-Silver-Heuristic has been proposed where the local decision criterion is
optimized using genetic programming (GP) [3].

A simple heuristic was presented in [4] for the single-level CLSP with setup times.
All mentioned methods are based on (modified) Silver-Meal criterion and create a
production plan stepwise from the first to the last period. They are rather inflexible
because they can hardly be adapted to other lot-sizing problems.

Recently, [5] proposed a simple construction heuristic embedded in a metaheuris-
tic for the practical lot-sizing problem of a pharmaceutical company. This construc-
tion heuristic is a simple, rule-based method to add new demand to an existing
production plan. The order in which demand is added to the plan is optimized by a
genetic algorithm. We used that idea to develop a new 2-step construction heuristics.

2 2-step construction heuristic (2-SCH)

In the first step of the 2-SCH, demand information is sorted and in the second step
a production plan is built up by including the previously sorted demand informa-
tion step-by-step. Hence, our approach splits the general problem of constructing a
production plan into two subproblems:

Extension of partial production plan: How to add a demand element to the cur-
rent partial production plan?
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Sort demand: How to sort the demand elements in the demand list?

To solve the first subproblem and add a demand element dit to a partial production
plan we consider four cases in the given order:

Case I: Use inventory. The available inventory is used to satisfy dit and a new
demand element di(t+1) is created to be added immediately and ensure the fea-
sibility of the plan.

Case II: Enough capacity in t. Three options are considered - add dit to t (NOW ),
extend existing lot(s) in previous period(s) (EXT ), create a new lot and extend
existing lot(s) in previous period(s) (NEW ) - and the cheapest one is executed.

Case III: Not enough capacity in t. Four options are considered - EXT, NEW,
add possible amount to t and apply Option EXT for the remaining amount,
add possible amount to t and apply Option NEW for the remaining amount -
and the cheapest one is executed.

Case IV: Overtime. If the available capacity in periods up to t is insufficient to
produce the whole demand, we add as much production as possible within
regular capacity in periods 1, ...t − 1 and add the remaining part to t, so that
overtime Ot is created.

We introduce the shift of production routine, which consists of a right-shift
and a left-shift operation. It is included in the cost calculations of the above men-
tioned options and is performed every time when a new production lot is (potentially)
created.

To solve the second subproblem we consider different sorting rules, based on pe-
riod, cost or capacity utilization. Better results are observed if we allow to alter the
sorting of demand list on the fly and use the postponement routine. If the relative
difference between additional cost of option EXT and additional cost of option NEW
is smaller than threshold TH, we will not add the considered demand element until
there is a change in the plan for the considered item. As soon as another demand
element for the considered item is added to the partial production plan, we try to
add the postponed demand element again.

3 Computational experiments and conclusions

The preliminary tests on the CLSP without setup times allowed to identify the re-
duced set of sorting rules and threshold values that provide the good solution quality.

Results of the experiments on 1471 instances of CLSP without setup times report
the average gap to MIP-solutions as 2.46%, whereas ABC-Heuristic leads to 3.71%
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average gap and Dixon-Silver-Heuristic to 4.77%. 2-SCH performance is comparable
to the best result of GP method (in both cases the reported average gap is 2.82% on
540 instances from the validation set).

Using the same parameters as for the CLSP without setup times, we obtained
solutions without overtime for 720 instances out of 751. The average gap is 7.06%
for 2-SCH and 8.91% for Trigeiro’s simple heuristic (reported for 713 instances, for
which feasible solutions were found by both methods). We were able to found feasible
solution for all instances when we either applied 2-SCH with other sorting rules and
threshold values than the ones used for CLSP without setup times or performed
simple local search on the demand lists for some instances.

2-SCH has a number of advantages apart from delivering better results in terms of
the average relative gap to the best MIP-solutions. First, this is a flexible method that
can be applied to different problem extensions. Second, the problem representation as
a sequence of demand elements with item and period indices, which is used by 2-SCH,
is handy to use with metaheuristics and naturally allows the proposed method to be
used as a part of a more complex algorithm. Finally, 2-SCH follows the rule-based
concept that easily allows to create and adapt a production plan on the fly, which
has known benefits in the practical setting. This also opens a perspective to use
2-SCH for stochastic problems as, for instance, a fast tool to compute many different
scenarios.
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1 Introduction

In this work, we consider a problem of ordering multiple items from a single source
by a downstream supply chain member, such as a retailer in a distribution environ-
ment or a manufacturer in a production environment. The downstream supply chain
member makes replenishment decisions for items with deterministic demand over a
finite planning horizon. The costs include holding and ordering costs for each item,
along with the transportation cost for shipping the items from the vendor. In each
period, the lots of various items that are ordered are transported directly from the
supplier to the customer using the selected transportation modes. The objective is to
minimise the total cost while fully satisfying the customer demand from the current
shipments and inventory.

When explicitly considering transportation capacities, one of the possible exten-
sions of the inventory models highlighted in [1] is the integration of more operational
decisions related to the container loading configurations. Such extension is common
for other supply chain related decisions such as vehicle routing problems. In case
of inventory models, this extension is relevant when dealing with several products
having different configurations and container utilization rates. In this work, we as-
sume that the items are palletized in standard euro-pallets without any geometrical
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or weight differences. The only attributes of the items determining the loading con-
figuration are the lot sizes expressed as the number of items/pallets. However, the
container loading is explicitly modeled to indirectly include the handling operations
in the optimization scope. This integration is based on the assumption that avoiding
the splitting of the ordered items among several containers, termed fragmentation,
leads to simplification of loading and unloading operations, i.e., packing one product
separately into two trucks is preferred over packing the product into three trucks.

2 Problem Motivations and Modelling

The ordering, transportation, and good receiving costs grow with the variety of prod-
ucts ([2]). Reducing the number of products loaded in a container positively impacts
warehousing costs as this leads to less effort in the receiving, inventory update, and
put away processes. As described in [3], some customers handle items separately for
every truck. This means that, for every truck, the processing effort depends on the
number of different items (but also on other factors, such as the number of pallets).
Given a fixed number of items to transport, it is possible to reduce the number of
items loaded on a container by reducing the number of fragmentations. However,
limiting fragmentation possibility impacts the utilization of transportation resources
negatively. Figure 1 illustrates the conflict between the efficiency of transportation
operations and the efficiency of handling operations under the prism of fragmenta-
tion. Considering the example of a supplier shipping three products, each with an
order of 20 pallets, Figure 1 compares the loading of the containers with a capacity
of 30 pallets under the fragmentation-allowed policy and the fragmentation-forbidden
policy.

Fragmentation-allowed policy

Container 1

Item 2
10

Item 1
20

Container 2

Item 3
20

Item 2
10

Fragmentation-forbidden policy

Container 1

Item 1
20

Container 2

Item 2
20

Container 3

Item 3
20

Figure 1: Best truck loading with fragmentation-allowed policy and fragmentation-
forbidden policy

The primary motivation of our work is that taking both transport and handling
operations into account in lot-sizing models can tackle the conflict highlighted above.
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This argument is based on the insight that lot sizes play a critical role in the efficient
usage of transportation resources and the benefit of fragmentation. To illustrate this
point, let us consider a lot-sizing problem with three items and a planning horizon
of two periods. Table 1 presents the demand for the three items and two feasible
replenishment plans. Assuming the availability of one Full-truckload (FTL) mode
with a capacity of 30 pallets, Figure 2 shows the best container loading with the
fragmentation-forbidden policy. The quantities ordered in the second period fit in
one container for both plans. The quantities ordered in the first period of Plan I
correspond to the bin packing problem illustrated in Figure 1. As shown above,
the ordered quantities induce either a single fragmentation or require one additional
container, depending on the fragmentation-acceptance policy. However, the quan-
tities ordered in the first period in Plan II can fit in two containers without any
fragmentation. In other words, the conflict between the efficiency of transportation
operations and the efficiency of handling operations can be avoided or mitigated by
an appropriate choice of lot sizes.

Demand Plan I Plan II

Item t = 1 t = 2 t = 1 t = 2 t = 1 t = 2
1 20 20 20 20 20 20
2 15 15 20 10 30 0
3 10 10 20 0 10 10

Table 1: Lot sizing problem and two optimal replenishment plans

Plan I: t = 1

Container 1

Item 1
20

Container 2

Item 2
20

Container 3

Item 3
20

Plan I: t = 2

Container 1

Item 2
10

Item 1
20

Plan II: t = 1

Container 1

Item 3
10

Item 1
20

Container 2

Item 2
30

Plan II: t = 2

Container 1

Item 3
10

Item 1
20

Figure 2: Plans I and II with fragmentation-forbidden policy

As it is difficult to estimate the cost related to fragmentation accurately, we con-
sider a hard constraint on the maximum allowed number of possible fragmentations
for all items in each period. The resulting optimization model is a dynamic multi-
item lot-sizing model with multiple transportation modes with various capacities and
fragmentation constraints.

Based on realistic data, this work analyzes the impact of various fragmentation
strategies on the costs and computational times of mathematical models solved with a

3

81



standard solver. Due to the complexity of the problem, several Mixed Integer Linear
Programming models are tested and analyzed numerically. The different formulations
of the problem are obtained by combining different formulations of the lot sizing sub-
problem and the variable cost and size bin packing sub-problem.

3 Computational Results

Based on real data from a Scandinavian distribution company for fast-moving con-
sumer goods, we generated problem instances and compared the different mathemati-
cal formulations in terms of computational time and number of solved instances using
a standard solver. The numerical results showed that the best formulation relies on
the model for the variable cost and size bin packing sub-problem proposed in [4].
We also analyzed the effect of varying some problem parameters and fragmentation
constraints on the computational times.

Some managerial insights are also drawn. First, we are interested in identifying
the cases where the integrated model may lead to significant cost savings compared to
the sequential approach, where the decisions related to transportation are taken in a
second stage using the lot sizes determined in the first stage, where the transportation
costs and capacities are ignored. We are also interested in the impact on the total
cost of the tightness of the constraint on the number of fragmentations. The results
show that the costs of fully forbidding fragmentation can be significant, while a very
small cost increase can be expected when allowing a small number of fragmentations
per period.
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Abstract

In this study, we investigate two-period relaxations for lot-sizing problems with
big bucket capacities and zero setup times. More particularly, we identify an
important mixed integer set representing relaxation of these subproblems and
then present various families of strong valid inequalities for such relaxation. We
then extend these inequalities in a novel fashion to the original space of two-
period subproblems, and also propose a new family of valid inequalities in the
original space. We then present and discuss the separation problems associated
with these valid inequalities. Finally, we present the computational experiments
indicating that the proposed inequalities can be indeed very effective improving
lower bounds substantially.

1 Introduction

Production planning problems have been interesting for both researchers and prac-
titioners for more than 50 years. The problem aims to determine a plan for how
much to produce and stock in each time period during a time interval called planning
horizon. It is an important challenge for manufacturing companies because it has a
strong impact on their performance in terms of customer service quality and oper-
ating costs. In this study, we focus on multi-level, multi-item production planning
problems with big bucket capacities, i.e., each resource is shared by multiple items
and hence different items can be produced in a specific time period. These real-world
problems remain challenging to solve to optimality as well as to obtain strong bounds.

Let NT , NI and NK be the number of periods, items, and machine types, re-
spectively. We assume that each machine type operates only on one level, and each
level can employ a number of machine types. The set endp indicates all end-items,
i.e. items with external demand; the other items are assumed to have only internal
demand. Let xit, y

i
t, and sit represent production, setup, and inventory variables for

1

83



item i in period t, respectively. The setup and inventory cost coefficients are indicated
by f it and hit for each period t and item i. The parameter δ(i) represents the set of
immediate successors of item i, and the parameter rij represents the number of items
required of i to produce one unit of item j. The parameter dit denotes the demand for
end-product i in period t, and dit,t′ is the total demand between t and t′. The param-
eter aik represents the time necessary to produce one unit of i on machine k, and ST ik
is the setup time for item i on machine k, which has a capacity of Ck

t in period t. Let
M i

t represent the maximum number of item i that can be produced in period t. Fol-
lowing the notation of [2], the multi-level, multi-item production planning problems
with big bucket capacities can then be formulated:

min
NT∑

t=1

NI∑

i=1

f ity
i
t +

NT∑

t=1

NI∑

i=1

hits
i
t

s.t. sit−1 + xit = sit + dit, t ∈ [1, NT ], i ∈ endp, (1)

sit−1 + xit = sit +
∑

j∈δ(i)
rijxjt , t ∈ [1, NT ], i ∈ [1, NI] \ endp, (2)

NI∑

i=1

(aikx
i
t + ST iky

i
t) ≤ Ck

t , t ∈ [1, NT ], k ∈ [1, NK], (3)

xit ≤M i
ty
i
t, t ∈ [1, NT ], i ∈ [1, NI], (4)

y ∈ {0, 1}NT×NI , x ≥ 0, s ≥ 0. (5)

Here, (1) and (2) are flow conservation constraints for end-items and intermediate
items respectively. The constraints (3) are the big bucket capacity constraints, and
(4) guarantee that the setup variable is equal to 1 if production occurs. Finally, (5)
give the integrality and non-negativity constraints.

We note that uncapacitated relaxation and single-item relaxation have been stud-
ied previously by [5]. In addition, [4] introduced and studied the single-period re-
laxation with preceding inventory, where they also derived cover and reverse cover
inequalities for this relaxation. Finally, we also remark the work of [3] on a single-
period relaxation as a relevant study.

2 Two-Period Relaxation

Now, we present the feasible region of a two-period, single-machine relaxation of
the multi-level, multi-item production planning problems with big bucket capacities,
denoted by X2PL (see [1] for details).

xit′ ≤ M̃ i
t′y

i
t′ , i ∈ {1, . . . , NI}, t′ = 1, 2,
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xit′ ≤ d̃it′y
i
t′ + si, i ∈ {1, . . . , NI}, t′ = 1, 2,

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si, i ∈ {1, . . . , NI},

xi1 + xi2 ≤ d̃i1 + si, i ∈ {1, . . . , NI},
NI∑

i=1

(aixit′ + ST iyit′) ≤ C̃t′ , t′ = 1, 2,

x ≥ 0, s ≥ 0, y ∈ {0, 1}2×NI .

Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. Observe that for a
given time period t, the obvious choice for the “horizon” of this two-period relaxation
would be t+ 1, i.e., t′ = 1, 2 relate to the periods of t, t+α with α ∈ {1, . . . , NT − t}.
The parameters can be associated with the original problem parameters using the
relations M̃ i

t′ = M i
t+(t′−1)α, C̃t′ = Ck

t+(t′−1)α, and d̃it′ = dit+(t′−1)α,t+α for all i and
t′ = 1, 2.

Next, we remark the following polyhedral result for X2PL (see [1] for details).

Proposition 2.1 Assume that M̃ i
t > 0, ∀t ∈ {1, . . . , NT}, ∀i ∈ {1, . . . , NI} and

ST i < C̃t,∀t ∈ {1, . . . , NT},∀i ∈ {1, . . . , NI}. Then conv(X2PL) is full-dimensional.

In this study, we investigate the case of setup times ST i = 0,∀i ∈ {1, . . . , NI}.
Under this assumption, we establish a promising relaxation of X2PL and then study its
polyhedral structure. We derive several families of strong valid inequalities for such
relaxation and establish their facet-defining conditions. We then map and extend
these valid inequalities to the original space of two-period subproblems. Septation
problems associated with these valid inequalities are then presented and discussed. We
finally conduct a computational experiment to measure the effectiveness of proposed
inequalities in closing the integrality gap and present the results.
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1 Introduction

This paper relies on the work presented in [1]. We consider the so-called Capacitated
Lot-Sizing Problem (CLSP) with setup times, where several items have to be produced
over a discrete planning horizon subject to capacity restrictions, as introduced in [2].
In addition to these classical capacity constraints, inventory bounds are added that
limit the products that can be kept in inventory ([3], [4] and [5]). These bounds
are relevant in various industrial applications. Moreover, the increasing research
considering stochastic demands emphasizes the need to have a minimum stock level
on the inventory at each period. Some works consider production and demand rates
to model the evolution of the production and the inventory in production planning
([6]). It is also considered in the Economic Lot-Scheduling literature ([7]). However,
in the lot-sizing literature, inventory bounds are always set on discrete periods, not
taking into account the dynamic nature of the inventory evolution within each period.

We discuss different CLSP models to capture the inventory evolution within peri-
ods. The paper is organized as follows. Section 2 introduces the problem formulation.
Section 3 proposes a first model with a uniform production rate and a bounded de-
mand, while Section 4 presents a second model where the production occurs at maxi-
mum rate and the demand is instantaneous. Numerical results will be presented and
discussed in the workshop. Some conclusions and perspectives are given in Section 5.
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2 Problem formulation

We consider the CLSP with minimum and maximum ending inventories introduced
in [8], where N items have to be produced over a planning horizon of T periods. The
quantity of item i ∈ J1, NK produced at period t ∈ J1, T K is given by variable Xit ≥ 0.
The binary variable Yit indicates whether a setup for item i occurs at period t or not.
Variable Iit ≥ 0 is the inventory variable for item i at the end of period t. Finally,
variable Lit ≥ 0 defines the quantity of lost sales for item i at the end of period t.
We extend the definition of Iit with t = 0 to describe the initial inventory of item i.
The objective function consists in minimizing the total production, setup, inventory
and lost sales costs of all items over the planning horizon. The inventory bounds are
modeled as follows:

Iit ≤ Iit ≤ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (1)

Each item i at period t has a fixed setup time sit ≥ 0 and a demand dit ≥ 0. The
available capacity for each period t is denoted cmax

t ≥ 0.

3 Uniform production and bounded demand

For sake of clarity, only the single-item case is analyzed in this section. The obtained
constraints will then be translated to the multi-item CLSP. We assume in this first
model that the production occurs at a uniform rate immediately after a setup time.
We propose an approximation of the demand within a cone of uncertainty and new
linear constraints to guarantee that the inventory satisfies lower and upper bounds
at each period under this demand and production scenario. Each demand is approx-
imated by two slopes and two offsets. The first slope corresponds to the demand at
its earliest time, the second to the demand at its latest time. The offsets allow for
these slopes to be adjusted as tightly as possible. We define four new parameters for
each time period: oet (resp. olt) is the offset before the start of the early (resp. late)
demand, ret (resp. rlt) is the early (resp. late) demand rate.

To handle the minimum (resp. maximum) intermediate inventory levels, we only
need to consider the slope for the approximation of the early (resp. late) demand.
Based on the analysis of the inventory evolution within each period, we get the

2

88



following set of additional constraints for each period t:

if st ≤ oet +
dt
ret

: It−1 − dt + Lt +
Xt

cmax
t −st

(oet +
dt
ret
− st) ≥ It (2)

if oet ≤ st ≤ oet +
dt
ret

: It−1 − αt(1− Lt

dt
)(st − ret ) ≥ It (3)

if st > oet +
dt
ret

: It−1 − dt + Lt ≥ It (4)

if st ≤ olt : It−1 +
Xt

cmax
t −st

(olt − st) ≤ It (5)

4 Production at maximum rate and instantaneous

demand

In the model described in this section, demand for item i at period t is supposed to
be instantaneous and is due at time tdit ≤ cmax

t . It is a reasonable assumption for long
periods (for instance when periods are aggregated at the end of the time horizon).
Production occurs at maximum rate 1

bit
, where bit > 0 is the unitary production time.

Each production decision variable Xit is split into two decision variables Xb
it and

Xa
it that respectively represents the production before and after the demand occurs.

Assuming that production occurs either before or after the demand, we split each
setup decision variable into two setup variables Y b

it and Y a
it . Under these assumptions,

the maximum inventory level is reached right before tdit and Xb
it units have been

produced. The minimum inventory level is reached either at the beginning of the
period or right after tdit. In this case, Xb

it units were produced and dit − Lit units
supplied. We get the following set of additional constraints for each period t and for
each item i:

∑

j, tdjt≤tdit

(bjtX
b
jt + sjtY

b
jt) ≤ tdit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (6)

∑

j, tdjt≥tdit

(bjtX
a
jt + sjtY

a
jt) ≤ cmax

t − tdit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (7)

Ii,t−1 +Xb
it ≤ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (8)

Ii,t−1 +Xb
it − dit + Lit ≥ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (9)

5 Conclusions

We have introduced two ways to model intermediate inventory constraints under
assumptions regarding demand and production in capacitated lot-sizing problems.
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Computational experiments, that will presented in the workshop, show that these
models allow for production plans that better respect inventory constraints to be
reconstructed.

A first perspective would be to design solution methods that are specific to the
proposed models as well as a detailed complexity analysis for these new problems.
We also believe that other assumptions could be considered to derive other inventory
constraints than the ones derived in this work, or other original problems.
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Abstract

The economic order quantity (EOQ) depends on supply uncertainties that
may be generated by random transportation losses or imperfect quality. Assum-
ing that increasing the order size provides a first-order stochastically dominant
shift in the distribution of on-spec items received, we derive the correspond-
ing stochastic EOQ in terms of elasticities and characterize its dependence on
all problem parameters, which may not be monotone as it would be in the
standard deterministic model. In addition, we show that uncertainty in supply
may lead to larger or smaller optimal order quantities, and that while the opti-
mal cost may increase or decrease following small improvements of the supply
distribution, it can never be less than the optimal deterministic cost. We dis-
cuss various applications, including increasing resilience and diversification of
supplies, delivery targets, supply-quality updating, as well as quality control.

1 Introduction

A key reason for holding inventory is to spread a fixed ordering cost over time. This
is accomplished optimally only when the weekly expense of keeping an extra item in
stock is equal to the additional capital savings from allocating the ordering cost to
a longer interval. This logic was formulated by Harris [1] resulting in the “economic
order quantity” (EOQ) as solution to the deterministic problem of minimizing the
average cost of serving a constant flow of demand. The underlying dynamic optimiza-
tion problem can be solved in a quasi-static manner because at the end of an order
cycle, when all the initial inventory is used up, the system returns to its initial state.
The renewal logic carries over to situations with (stationary) uncertainty. Indeed,
shipments from suppliers may get lost resulting in a complete write-off; alternatively,
they may be partially spoiled or contain defective parts (or both), so that in practice
supply uncertainty may be substantial. This paper deals with such supply uncer-
tainty under the basic premise that the distribution of on-spec deliveries “increases”
(in the sense of first-order stochastic dominance) when a larger order quantity is cho-
sen. We first introduce the “stochastic EOQ problem” aimed at determining an order
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quantity which minimizes long-run average cost in the presence of supply uncertainty.
The solution to this problem is described using three types of elasticities, related to
the sensitivities of write-offs, average on-spec deliveries, and the dispersion of these
deliveries, to changes in the ordered amounts. Second, we show that the stochastic
economic order quantity may well be smaller than the deterministic EOQ solution
whenever average on-spec deliveries are sufficiently insensitive to changes in the or-
der quantity, as would be the case for a supplier with capacity constraints. Third,
we characterize the comparative statics for all standard parameters of the stochastic
EOQ problem, including ordering cost, holding cost, input cost, and demand, and
show that for all but one of them the standard monotonicity of the solution can be
reversed, in addition to a generic dependence of the solution on the input cost, much
unlike the deterministic EOQ solution which does not depend on the price of the or-
dered parts. We then turn our attention to comparing the absolute cost and show that
a first-order stochastically dominant improvement of supply uncertainty may have an
ambiguous impact on cost. Yet, the latter is (under mild conditions) minorized by
the optimal cost in the presence of a loss-free perfect-quality supply. Finally, we dis-
cuss various applications of the model, including resilience, diversification, delivery
targets, learning about performance, as well as quality testing.

2 Main Results

With the pioneering study by Silver [3] lying dormant, Salameh and Jaber [2] started
an avalanche of research contributions when introducing a natural extension of the
EOQ model to a situation where supply is in fact uncertain. Our model, which
requires only supply distributions that are stochastically ordered in the chosen lot
size, should be viewed in this vein. It provides a fairly simple solution to a more
realistic version of the underlying dynamic inventory control problem, going beyond
models of (random) proportional loss while also allowing for write-off events. This
solution is conveniently described using three distinct elasticities of supply, related
to the variation of write-off probabilities, expected deliveries, and the coefficient of
variation, respectively, in the order quantity. The comparative statics of the stochastic
EOQ solution, that is, the change of the optimal order quantity in the problem
parameters such as per-unit input cost (c), demand rate (D), per-unit inventory
holding cost (h), and ordering cost (K), can be characterized precisely in terms of
the aforementioned supply elasticities. The changes compared to the standard EOQ
solution are striking. For example, the stochastic EOQ goes up in h if ordering more
can strongly reduce supply uncertainty, or equivalently, when the delivery-dispersion
elasticity is sufficiently negative. It is also possible that the stochastic EOQ decreases
in demand, provided that the deliveries are very inelastic (so the sum of write-off
elasticity and fulfilment elasticity are less than the fraction of input cost in the overall
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procurement cost). At that point a higher demand leads to an incentive to turn
inventories faster so as to save on input cost given that ordering less has only a small
impact on deliveries. Finally, the stochastic EOQ increases in per-unit input cost if
and only if delivery is elastic, whereas the standard deterministic lot size does not
depend on c at all. It comes therefore no longer as a surprise that the stochastic
EOQ can well be smaller than the classical deterministic EOQ solution, notably
for suppliers with capacity constraints, while the optimized expected cost must still
increase when supply is uncertain relative to the deterministic base case.

3 Conclusion

The findings have immediate practical consequences, as it is now possible to use gen-
eral (semi-)parametric families of distributions to characterize supply behavior, e.g.,
in terms of resilience or supply diversification. Further applications include delivery
targets, the updating of supply distributions within the family of beta-distributions,
as well as quality control using a (possibly correlated) binomial distribution of in-
spection outcomes.
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Abstract

The (R, s, S) is a stochastic inventory control policy widely used by practi-
tioners. In an inventory system managed according to this policy, the inventory
is reviewed at instant R; if the inventory is lower than the reorder level s an or-
der is placed. The order’s quantity is set to raise the inventory level to the order-
up-to-level S. This paper introduces a new stochastic dynamic program (SDP)
algorithm to compute the (R, s, S) policy parameters for the non-stationary
stochastic lot-sizing problem. In recent work, [1] present an approach to com-
pute optimal policy parameters under such assumptions. We present the first
formulation of the (R, s, S) problem as a functional equation of an SDP model.
This model is an extension of Scarf’s (s, S). A simple implementation of the
model requires a prohibitive computational effort to compute the parameters.
However, we can speed up the computations by using K-convexity property
and memoisation techniques. The resulting algorithm is considerably faster
than the state-of-the-art, extending its adoptability by practitioners.

1 Problem description

This work considers the single-item, single-stocking location, stochastic inventory
control problem over a T -period planning horizon. The demand’s stochasticity and
non-stationarity of period t are modelled through the random variable dt. Cumulative
demand of periods t to the beginning of period j takes the form of dt,j with j > t. If
the demand in a given period exceeds the on-hand inventory, the excess is backlogged
and carried to the next period. Under these assumptions, the (R, s, S) policy takes
the vectorial form form (R, s,S), with R = (R1, . . . , RT ); where Rt , st and St denote
respectively the length, the reorder-level and order-up-to-level associated with the
t-th inventory review.

Policies are compared based on their expected cost. Stocktaking has a fixed cost
of W . We denote by Qt the quantity of the order placed in period t. Ordering costs
are represented by a fixed value K and a linear cost, but we shall assume that the
variable cost is zero without loss of generality. At the end of each period, a holding
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cost h is charged for every unit carried from one period to the next. In case of a
stockout, a penalty cost b is charged for each item and period. We denote with It
the closing inventory level for period t, making I0 the initial inventory. The order
quantity Qt is fixed at every review moment before the demand realisation to raise
the inventory level to St. The order is placed only if t is a review period and the open
inventory is below the order level st.

We consider the problem of computing the optimal (R, s,S) can be formulated as
follow:

C1(I0) ≜ min
(R,s,S)

f1(I0, Q1, R1) + E[C1+R1(I0 +Q1 − d1,1+R1)] (1)

Where C1(I0) is the expected cost of the optimal policy parameters starting at
period 1 with the initial inventory I0. In general, Ct(It−1) represent the expected
inventory cost of starting at period t with open inventory It−1. While, ft(It−1, Qt, Rt)
is the expected cost of a review cycle starting in period t and ending up in period t+Rt;
it comprises review, ordering, holding and penalty cost for the review cycle. Ct(It−1)
values can be computed recursively when all the policy parameters are computed
using the following formula:

Ct(It−1) ≜ ft(It−1, Qt, Rt) + E[Ct+Rt(It−1 +Qt − dt,t+Rt)]) (2)

with CT+1(IT ) ≜ 0. For a given (R, s,S) parameters set, this formulation allows to
compute the expected policy cost. However, the number of combinations of param-
eters is exponential, making this approach unusable for the computation of optimal
ones.

2 Heuristic technique

The heuristic introduced in this work aims to compute locally optimal Rt values to
produce a near-optimal (R, s,S) policy. The main idea is to move the assignment of
the decision variable Rt at period t and do not fix all of them at the beginning of the
time horizon. This can be done by transforming the recursive Equation 2 into:

Ĉt(It−1) = min
Rt

ft(It−1, Qt, Rt) + E[Ct+Rt(It−1 +Qt − dt,t+Rt)]) (3)

Solving this recursion could lead to different optimal Rt for different opening inventory
levels It−1.

Our heuristics consists of choosing a locally optimal Rt assuming that an order
is placed in period t and the possibility of placing a negative order. We define these
locally optimal replenishment cycles as Ra

t . Knowing the expected cost of future

periods Ĉj with j > t, it is possible to compute the optimal st and St for that specific
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replenishment cycle Rt using SDP. The best St is the value that minimizes Ĉt(St),
since we place an order to reach the point with the lowest future expected cost.

St = argmin
It−1

Ĉt(It−1) (4)

So, assuming that an order is placed, the best replenishment cycle is the one that has
the lowest cost after the inventory level is topped up to St:

Ra
t ≜ argmin

Rt

Ĉt(St) (5)

The computation of Ĉt requires the expected costs of future periods Ĉj with j > t,
which are dependent on the optimal Rj. We relaxed the cost function by defining
Ca

t as the expected cost of using local optimal Ra
j for all periods j after t. Given

Ca
T+1(IT ) = 0, it is possible to compute the relaxed cost function in a backward way

using the following approximate SDP functional equation:

Ca
t (It−1) ≜ ft(It−1, Qt, R

a
t ) + E[Ca

t+Ra
t
(It−1 +Qt − dt,t+Ra

t
)] (6)

This formula computes a near-optimal replenishment schedule Ra, and the set of
order and order-up-to levels optimal for that given schedule. Due to the relaxation,
Ra can differ from the optimal R; however this event is rare.

The resulting approximate SDP formulation is more complex than the (s, S) one,
making the computational effort required to solve it prohibitive. This is mainly due to
the computation of the expected cycle cost; its computation involves three variables in
each period: current inventory, order size and length of the replenishment cycle. This
computational effort can be considerably reduced applying the K-convexity property.
The deployment of search reduction and memoisation techniques further improve the
performances, and it has a crucial impact on the applicability of this model.

3 Experimental Results

We aim to evaluate the policies computed by the heuristic and the computational
effort required. We assess the computational effort required to compute a policy and
under an increasing time horizon. We used the same testbed presented in [1].

For the experiments, we use as a comparison the branch-and-bound (BnB) tech-
nique presented in [1]. This is the only (R, s, S) solver for this problem configuration
available in the literature. The solvers used are:BnB-Guided the branch-and-bound
approach presented in [1], SDP the basic implementation of the SDP heuristic model,
and SDP-Opt, the heuristic implementation deployed using the K-convexity prop-
erty and the immediate cost memoisation.

Figure 1 shows the logarithm of the average computational timee. The simple
implementation of the heuristic can barely solve tiny instances before the time limit,
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Figure 1: Computational time of the (R, s, S) SDP over the number of periods.

making it useless for every practical use. The reduction of computational effort pro-
vided by K-convexity and memoisation is massive. The guided BnB slightly outper-
forms the optimised SDP for small instances up to 8 periods, then the gap between
the two strongly increases, making it able to solve instances more than twice as big
in the same amount of time. The memoisation offers a great speed up in the com-
putational times, which is more significant in bigger instances. For bigger instances,
the physical memory needed grows to require the usage of memory swap and a slow
down in performances.

In this testbed, the heuristic always computes the optimal replenishment plan.

4 Conclusions

This paper presented a heuristic for the non-stationary stochastic lot-sizing problem
with ordering, review, holding and penalty cost, a well-known and widely used inven-
tory control problem. Computing (R, s, S) policy parameters is computationally hard
due to the three sets of parameters that must be jointly optimised. We presented the
first pure SDP formulation for such a problem. The algorithm introduced solves to
optimality a relaxation of the original problem, in which review cycles are considered
independently, and items can be returned/discarded at no additional cost.
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1 Introduction

In this paper, we study the problem of managing inventories where a firm must
match supply to non-stationary and stochastic demands over a finite planning horizon,
subject to a limit on the number of replenishment orders that can be placed. The
firm must decide in each period whether and how much to order while considering
the effect of this decision on what can be ordered in future periods. The problem
stands apart from classical inventory control problems in how economies of scale
in replenishment is embedded into the inventory system. In traditional inventory
systems, economies of scale is due to fixed ordering costs. These are imposed on
each replenishment independently. In the system under consideration, economies of
scale is due to the upper bound on the number of replenishments. This necessitates
allocating replenishments dynamically over time which creates an interdependency
among replenishment periods.

We are motivated by practical settings where firms face limits on the number
of replenishments over some compliance period due to contractual agreements. In
particular, our study emanates from a contractual agreement between a university
hospital and its supplier. The hospital establishes a procurement contract with a
supplier using a tendering procedure and the supplier who wins the tender supplies
the hospital by contract for a fixed period of time. The contract places all logistics
costs on the supplier and specifies the number of replenishment orders that can be
placed over the contract period. The hospital is then faced with the challenge of
matching supply to demand, while rationing the specified number of contract-based
replenishments over time. To do this optimally, one needs to employ a dynamic
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policy where replenishment decisions are made considering the number of remaining
contract-based replenishments and the time until the end of the contract period. This
approach may lead to significant cost savings as compared to rudimentary approaches
such as issuing replenishment orders over equally-sized intervals within the contract
period—which is indeed the hospital’s practice.

Contractual agreements with fixed number of replenishments are also relevant in
industries where products have short selling seasons. This is particularly the case in
the apparel industry. The majority of apparel companies make their procurements
ahead of the selling season as apparel suppliers favor producing in large quantities.
However, it is well-known that in-season orders significantly reduce inventory costs.
This provides an incentive to establish agreements that allow for a few replenishment
orders across the selling season as a middle ground (see e.g. Li et al. 2009, Chen et al.
2016). The problem also reflects on systems with self-imposed limits on the number
of replenishments, rather than contractual agreements. This is particularly relevant
in the context of managing carbon emissions. It is well-known that a considerable
share of carbon emissions is due to transportation, wherein the amount of emissions
is largely determined by the frequency of shipments (Marklund and Berling 2017).
Therefore, firms can effectively reduce their emissions by imposing limits on the num-
ber of replenishments which is a less-costly operational adjustment in comparison to
conventional capital intensive initiatives (Tang et al. 2015).

2 Related literature

The literature on inventory systems with limitations on the number of replenishments
is fairly limited and mainly concentrates on products with short selling seasons. The
majority of the contributions in this line of research consider the case where the buyer
has two procurement opportunities: an initial order before and another one within the
selling season. The associated problem is to decide upon the replenishment quantities
for these two procurement opportunities. This can be regarded as an extension of
the classical newsvendor model where the buyer can capitalize the information that
becomes available after the initial order through a second order opportunity. Dif-
ferent variants of the problem have been addressed in the literature. These involve
models where the timing of the second order is known in advance (see e.g. Eppen
and Iyer 1997, Donohue 2000, Jones et al. 2001, Fisher et al. 2001) and determined
dynamically within the selling season (see e.g. Milner and Kouvelis 2002, 2005, Li
et al. 2009). The main focus of these studies is the effect of information updates and
supplier flexibility on the system performance. Li et al. (2009) is an exception in this
regard as they also provide conditions under which the optimal ordering policy is well-
behaved. Chen et al. (2016) considered a model which allows for multiple shipments
over the selling season and developed mechanisms to facilitate supply chain coordina-
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tion. However, they assume that replenishment periods and associated replenishment
quantities are all fixed in advance of the selling season. In this study, we extend the
aforementioned models by allowing multiple replenishment opportunities that can be
exercised any time over a planning horizon, yet we focus on the characterization of
the optimal inventory policy and do not focus on industry-specific considerations such
as information updates and supply chain coordination.

3 Contributions

The contributions of our study can be summarized as follows. We model the problem
as a two-dimensional stochastic dynamic program analyze its structural properties.
Because the functional properties often used in the inventory control literature are not
sufficient to capture the behaviour of the cost function associated with this stochastic
dynamic program, we introduce a new concept which we refer to as “convex dom-
inance”. In contrast to existing functional properties, convex dominance defines a
relationship between two real-valued functions, and, when applied to the same func-
tion, generalizes well-known properties such as convexity and K-convexity. While
convex dominance is tailored for the purposes of the current study, it is a valuable
concept for its own sake and has the potential to be useful in establishing structural
results on a larger set of problems. We make use of convex dominance to establish
a structural relationship between cost functions associated with different numbers of
replenishments. This allows us to characterize the optimal replenishment decision
for any period, provided that cost functions admit convex dominance. Then, we
inductively prove that convex dominance is preserved over the periods in the plan-
ning horizon. Our analysis reveals that the optimal inventory policy is specified by
dynamic re-order and order-up-to levels that depend on the remaining number of
replenishments. We also provide bounds on optimal re-order and order-up-to levels,
building on two specific cases of the problem.

Even though we fully characterize the structure of the optimal policy, finding
the optimal policy parameters remains a computational challenge. To that end, we
develop a simple method to approximate the cost functions associated with different
numbers of replenishments. The approximate cost function immediately translates
into an efficient computational approach by which policy parameters can be computed
heuristically. We assess the performance of the heuristic against the optimal policy
and show that it performs close to optimal.
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