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1 Introduction

In view of the volatile oil prices experienced over the past decades, understanding the

factors underlying oil price movements and the impact on economic activity has been

important.1 When oil prices fell by more than 70% between 2014 and 2016, a natural

question therefore quickly rose as to what extent the massive fall in oil prices would now

stimulate U.S. economic growth. After all, such a decline should be good news to both

consumers and producers in an oil importing country. Little evidence, however, has been

found to back up such claims. In fact, according to an IMF Survey (March 2016), cheap

oil doesn’t seem to have given a boost to U.S. real economic activity.

Why didn’t growth in the U.S. pick up following the lower oil price? One obvious

suggestion is that the U.S. has dramatically reduced its dependence on petroleum imports

as its own production of oil has surged. Throughout the 2000s, horizontal drilling and

hydraulic fracturing led to a massive boost in the production of oil from shale rock deep

underground. The U.S. eventually produced more oil than it imported, becoming by

2015 a net oil exporter. Thus, when oil prices fell, U.S. oil producers were instead hurt,

affecting the overall economy negatively.

Recent studies analyzing whether the shale boom has fundamentally changed the way

oil price shocks are being transmitted to the U.S. economy have, however, not found

any evidence of such effects. In particular, Baumeister and Kilian (2016) analyze the

effects of the massive oil price decrease on the U.S. economy using simple regressions,

and conclude that while real investments in the oil sector have declined, private real

consumption and non-oil related business investments have been positively stimulated by

the oil price decline, offsetting the negative drawback from the oil sector. Thus, according

to Baumeister and Kilian (2016), the U.S. still responds to the oil price shocks as a net

oil importer: when oil prices rise, GDP falls, and vice versa.

We challenge this claim on two grounds. First, we believe that transitioning from

a net oil importer to a significant net oil exporter does not happen by itself. Such a

transition requires capital, technology, labor, skills, and, most importantly, learning by

doing (LBD) over a prolonged period of time. In fact, the seed of the shale gas boom was

planted already in the 1970s when the U.S. government decided to fund R&D programs

and provide tax credits to enterprises interested in developing unconventional natural gas.

Still, it was not before the private entrepreneurship of Mitchell Energy, who experimented

with new techniques for drilling shale in the early 2000s, i.e., combining horizontal drilling

1A higher oil price will typically increase the cost of producing domestic output, while demand for other

goods and services declines as consumers have less money to spend, see Hamilton (1983) for a seminal

paper and e.g. Hamilton (2009), Kilian (2009), Edelstein and Kilian (2009), Peersman and Robays (2012),

Cashin et al. (2014), Aastveit (2014) and Aastveit et al. (2015) for more recent studies.
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with hydraulic fracturing, that the process escalated and the natural gas boom spread to

oil.2 Hence, when analysing the effects of the recent oil price drop on the U.S. economy,

allowing for changing dynamics related to the shale oil boom seems imperative.

Second, during such a transition process, there may be productivity spillovers between

the oil-related and non-oil related industries. To the extent that these spillovers are

important, it could imply wider benefits for the economy, cf. Bjørnland and Thorsrud

(2016) and Bjørnland et al. (2018) for applications to resource rich countries such as

Australia and Norway. Thus, allowing for spillovers between various industries seems

important when analyzing the wider impact of a resource boom such as that experienced

in the U.S.3 In fact, claims for local spillovers are already being backed up by a recent

branch of literature using primarily cross-section or panel data, see, e.g., Weber (2012),

Allcott and Keniston (2018), Feyrer et al. (2017), and Gilje et al. (2016) among others.

Applied to regional data in resource abundant U.S. states, these studies consistently find

that energy booms benefit local non-oil employment, wages and production.

Common to these recent (panel) data studies, however, is the fact that they focus on

activity at the local level in resource abundant U.S. states. Hence, while accounting for

instantaneous spillovers in certain geographical areas, little is known about the dynamic

effects on the aggregate macroeconomy. Our hypothesis is that the oil boom has had

positive spillovers to many different industries across the U.S., and that these spillovers

have changed over time. For this purpose, we need a time-series framework that also

allows for geographical dispersion. Previous times series studies addressing this issue, have

typically been aggregate and focus on only a few macroeconomic variables. Furthermore,

most often they rely on time-invariant regressions. Thus, their maintaining assumption

is that the effect of an oil price shock has not changed over time, and that the role of the

oil sector is of little importance when analysing the dynamic effects of oil prices on the

U.S. economy.

We address all of these shortcomings. In particular, we analyse the effect of an oil price

shock on the U.S. economy taking into account spillovers from oil to various industries and

employment across the U.S. states, while also allowing these dynamics to vary over time.

In so doing, we investigate whether the effects of oil price shocks on the U.S. economy

2Natural gas from shale could now be economically produced, which led to dramatic increase in natural gas

production, and consequently lower prices of natural gas in the U.S. In 2009, when oil prices were relatively

high, firms began to experiment with shale technology to extract oil. Several firms were successful in

adopting shale technology in oil basins and production of shale oil increased significantly (see Wang and

Krupnick (2013) for the review of history of shale gas development in the United States).
3In particular, technological developments in drilling and fracking have unlocked huge reserves that lie

trapped in shale rock, which again have had major implications for the economic development locally in

the resource abundant states in the U.S.
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have changed during the last two decades. For this purpose we specify and estimate a

time-varying parameter (TVP) factor-augmented VAR (FAVAR) model with stochastic

volatility, see e.g. Korobilis (2013), Bernanke et al. (2005), Primiceri (2005) for seminal

contributions.

We combine several approaches already developed in the literature, but in a separate

manner. First, we relate to a large literature that analyses the effect of oil price changes

on the U.S. economy, see e.g. Hamilton (2009), Kilian (2009), Edelstein and Kilian (2009),

Peersman and Robays (2012), Cashin et al. (2014), Aastveit (2014) and Aastveit et al.

(2015) among many others. However, in contrast to these papers which analyze the

effect of oil price shocks on the U.S. economy in the period when the country was a net

oil importer, we explicitly include the oil sector into the analysis to allow for changing

dynamics due to the shale oil boom. For this purpose, we use a FAVAR model with a

large data set and time varying changes.

Second, we relate to a branch of the literature that has documented important differ-

ences in the transmission channels of oil price shocks to disaggregate industries, see e.g.

Bresnahan and Ramey (1993), Davis and Haltiwanger (2001), Lee and Ni (2002) and Her-

rera (2018). However, while these papers have primarily studied how the negative effects

of an oil price shock are transmitted to industries when the U.S was an oil importer, our

focus is to unravel potential heterogeneous effects due to the shale oil boom, at both the

industry level and across U.S. states.

Third, we relate to the recent literature using panel data studies that have consistently

found that energy booms benefit non-oil employment at the local level in many resource

abundant U.S. states, c.f. Weber (2012), Allcott and Keniston (2018), Feyrer et al. (2017),

and Gilje et al. (2016) among others. In contrast to these papers, however, we focus on

the geographical dispersion of the oil price shocks across U.S. states, allowing also for

time varying changes.

The TVP FAVAR model is particularly useful when it comes to answering our research

questions. First, it allows us to distinguish between different types of shocks affecting the

oil market. Second, we are able to simultaneously estimate direct and indirect spillovers

between the different sectors of the economy. Third, we can estimate responses to a large

number of variables that is not possible with standard multivariate time series techniques

due to the curse of dimensionality. Lastly, we are able to take into account the time

variation and investigate how the effects of shocks have changed over time. To the best

of our knowledge this is the first paper that jointly models the interaction between the

oil market and the U.S. economy in a large data environment, allowing for time-varying

changes during the fracking revolution.

We find substantial changes in the way an oil price shock is transmitted to the U.S.
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economy. In contrast to previous studies, our analysis suggests that after the emergence

of the shale oil boom, an increase in the oil price has now positive spillovers to the

aggregate U.S. economy, effects that were not present before. In particular, we find non-oil

nonresidential business investments, as well as non-oil employment in both oil-producing

and manufacturing-intensive states to increase following an oil price rise. What’s more,

there are positive spillovers to real personal income, and, to some extent, to personal

consumption. Hence, the U.S. responses to an oil price shock now more resembles those

of an oil exporter rather than those of an oil importer. Assuming symmetric effects, our

results imply that an oil price decline will have negative effects on the U.S. economy. This

explains the puzzle that has preoccupied IMF recently: namely why the U.S. economy

did not experience a boom following the steep decline in oil prices between 2014 and 2016.

The answer is simply that the U.S. has increased its reliance of oil, not as a consumer,

but by becoming the world’s largest oil producer. Going forward, economic policy needs

to take into account that the transmission of an oil price shock has changed with the

shale oil boom. An oil price increase may now actually be good news for U.S. economic

activity.

The remainder of the paper is structured as follows. Section 2 describes a frame-

work for analysing spillovers of oil in an resource rich economy while Section 3 describes

the TVP FAVAR model and the dataset. Empirical results are discussed in Section 4,

focusing on, among others, the effects of an oil price shock on various industries, the

general macroeconomy and geographical dispersion of shocks to state level employment.

In Section 5 we analyse robustness while Section 6 concludes.

2 The shale oil boom - A blessing or a curse?

The history of the petroleum industry in the United States goes back to the early 19th

century. Petroleum became a major industry following the discovery of oil at Oil Creek,

Pennsylvania in 1859, and for much of the 19th and 20th centuries, the U.S. was the

largest oil producing country in the world. However, after production peaked in 1970,

the U.S. has experienced decades of production decline. Over time, the country has

become increasingly dependent on oil, and in 1973, the U.S. government banned firms

from exporting oil.

The empirical oil-macroeconomic literature, which took off after the seminal contribu-

tion of Hamilton (1983), has typically analyzed the effect of oil price shocks on the U.S.

economy in the period when the country was a net oil importer. In line with this, scholars

have also found that the U.S. economy responds negatively to an oil price shock that

increases oil prices, as both consumers and producers have to pay more for the imported
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Figure 1: US: Net import of petroleum and crude oil vs. crude oil production

energy products and for the complementary products to energy; again, see, for instance,

Hamilton (2009) and Kilian (2009) among many others.

The shale oil boom may have changed this relationship. By 2013 the U.S. was produc-

ing more oil than it imported for the first time in two decades, and by 2015 had surpassed

Russia and Saudi Arabia to become the worlds biggest producer of oil and gas. By the

end of that year, the export ban was lifted, and the U.S. became a net oil exporter. Figure

1 illustrates the transition. It shows how net imports of crude oil have plummeted from

2005/06 as the shale oil boom sparked a strong recovery in the production of crude oil.

In line with this increased production, the oil-producing industry has also grown, with

potential spillovers to other industries. The spillovers can, of course, be of any form,

crowding in or crowding out other industries. In particular, traditional theories suggest

that energy booms often lead to a ‘crowding out’ of other tradable industries, such as

manufacturing. The idea is that gains from the boom largely accrue to the profitable

sectors servicing the resource industry, while the rest of the country, including traditional

manufacturing, suffers adverse effects from increased wage costs, an appreciated exchange

rate, and a lack of competitiveness as a result of the boom. In the literature, such a

phenomenon is commonly referred to as Dutch disease, based on similar experiences in

the Netherlands in the 1960s, see e.g. Corden and Neary (1982) and Corden (1984) for

influential early contributions.

Traditional theories of Dutch disease, however, do not account for productivity spillovers

and learning by doing (LBD) between the booming resource sector and other non-resource

sectors. Instead, they emphasise that labour would be transferred from strong to weak
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LBD sectors, and therefore reduce overall growth, see e.g. van Wijnbergen (1984), Krug-

man (1987) and Sachs and Warner (1995), Gylfason et al. (1999) and Torvik (2001) among

others. Recently, some studies have shown that oil endowment may not necessary be a

curse, but can instead be an engine for growth. For instance, Bjørnland et al. (2018) have

shown that by developing a dynamic three sector model that incorporates the productiv-

ity dynamics from the spending as well as the resource movement effect, the conclusions

proffered by earlier models of LBD and the Dutch disease are altered dramatically. In par-

ticular, the resource movement effect implies that the growth effects of natural resources

are likely to be positive, reversing previous growth results in the literature. The wider

benefits for the economy are particularly evident when taking account of productivity

‘spillovers’ and ‘learning-by-doing’ between industries, as has also been shown empirically

for the resource rich countries Australia and Norway, see Bjørnland and Thorsrud (2016)

and Bjørnland et al. (2018).

That the shale oil boom has had implications for economic growth at the local level in

the oil rich U.S. states has, as mentioned in the introduction, been documented in some

recent papers. In particular, Allcott and Keniston (2018) examine county-level data to

investigate the local spillover effects of boom-bust cycles in natural resource production,

Weber (2012) examines county level direct effect of drilling, Maniloff and Mastromonaco

(2015) study the effect of the number of wells on local economies, Fetzer (2014) estimates

the effect of any drilling activity after 2007 on economic outcomes at the local level,

while Feyrer et al. (2017) measure the effect of new oil and gas production on income

and employment at the county and regional level. Despite different methods, measures of

oil and gas activity, areas of study, and time frames, these studies consistently find that

energy booms benefit local or regional employment in the resource rich states in the U.S.4

However, little, if anything, is known about the spillovers of the shale boom to em-

ployment outside the oil rich states, and ultimately, to the aggregate U.S. economy. In

particular, to what extent will a resource boom5 stimulate investment, production, em-

ployment, and wages beyond those at the local level in the energy rich states? If there is

LBD between industries, one should expect some positive spillovers for the wider econ-

omy. However, are these positive spillovers sufficiently strong so as to offset any negative

effects from the reduced purchasing power off the consumers? According to Baumeister

and Kilian (2016), the answer to this question is no. They find no spillovers from oil-

4In addition, Gilje et al. (2016) analyze in a recent study the effect of shale oil development on asset

prices. Using the shale oil discovery announcement as their measure of technology innovation the authors

find that in the period from 2012 to 2014 these technology shocks explain a significant component of

cross-sectional and time series variation in both asset prices and employment growth.
5A resource boom takes the form of either a new oil discovery, a more productive oil field or higher real

oil prices, see Corden (1984).
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related investment to non-oil related investment. In fact, they argue that the recent U.S.

economy’s response to oil price changes has not been fundamentally different from that

observed after the oil price decline in 1986.

We re-address this question, focusing in particular on the potential spillovers from the

oil industry to other industries, and the extent to which these spillovers have changed the

transmission of oil price shocks to the U.S. economy. To do so, we specify a model that

can account for (i) heterogeneous responses in employment to the oil price shocks across

U.S. states; (ii) spillovers between industries; and (iii) time-varying responses. We now

turn to describe the econometric model in detail.

3 Modeling Framework

Many recent papers, including those cited above, have used SVAR models to study the

effects of oil price shocks on the aggregate U.S. economy. As we want to consider the role

of the oil industry for the dispersion of oil price shocks to economic activity, we augment

the standard VAR model with estimated factors that reflect information from both oil

and non-oil variables. To that end, we specify a factor-augmented vector autoregressive

(FAVAR) model that includes four factors. The factors will be driven by shocks that have

the potential to affect all sectors of the U.S. economy. First, we include a measure of global

activity and the real price of oil as two separate factors in the model. These are included

to capture, respectively, international business cycle conditions and developments in the

oil market that are relevant for the U.S. economy. This allows us in turn to identify two

global shocks: a global activity shock and an oil price shock, both of which can affect the

real oil price, though with potentially very different macroeconomic implications.

Second, to take into account the fact that there may be heterogeneous responses to

the oil price across U.S. industries, we estimate two separate latent factors for the U.S.

economy. The inclusion of latent factors also enables us to simultaneously estimate direct

and indirect spillovers between different industries and states in the U.S. The simultaneous

spillovers between different sectors at different geographical levels can not be captured

by including only observable variables in a small panel of data and have therefore not

been taken into account in previous studies.6 While we do not impose any identifying

restrictions on these factors, we do see that the four factors capture different aspects of

the U.S. economy related to oil and non-oil, see Section 3.4.

Finally, the factors are used in a time-varying parameter (TVP) Vector Autoregressive

model with both time-varying coefficients and time-varying variance covariance matrix of

6As was shown by Aastveit (2014), the response of macroeconomic variables to different oil price shocks

can be considerably different when one jointly models the interaction among endogenous variables.
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innovations. By allowing coefficients in the VAR augmented with factors to vary over

time we account for possible non-linearities or time variations between the oil price and

the U.S. economy. To account for possible heteroscedasticity of the structural shocks

and nonlinearities in the simultaneous relations among the variables we allow for multi-

variate stochastic volatility.7 All together, this framework allows us to investigate if the

transmissions of oil price shocks have changed over time.

On a final note, we have chosen to use a TVP approach to capture smooth changes in

the transmission of shocks, which are important for our setting. In particular, we believe

that going from a net oil importer to net oil exporter takes time and is therefore well

approximated with the TVP approach, rather than a model framework that allows for

discrete breaks.

3.1 Data

To accommodate the effects of oil price shocks on the U.S. economy, we include a broad

range of domestic macroeconomic indicators as observable variables (reported in Appendix

A - Table 2). Among others, we include consumer and producer prices, investment series,

stock prices, personal income, various IP series, consumption, and the short term interest

rates. To account for local effects we also include employment series in 50 states of the

U.S, and distinguish between oil-related and non-oil employment series.

For the two observable global factors, we use a factor that captures global demand

proposed by Chiaie et al. (2017). The global factor is strongly related to the measure

of economic activity and has homogeneous effects on all commodity markets. Hence,

we believe it is well suited as a proxy for global demand. Still, we analyse extensive

robustness to our choice of variable in Section 5 by, among others, using an estimate of

industrial production for the OECD - plus other major emerging countries - published

by OECD Main Economic Indicators and extended from November 2011 by Baumeister

and Hamilton (2018). See also Hamilton (2018a) for justification. For the real oil price,

we follow Lee and Ni (2002) and Herrera (2018), among many others, and use the U.S.

Refineries Acquisition Cost deflated by CPI. Again we analyze robustness to our choice

of the real oil price in Section 5, using among other the WTI.

In sum, this gives us a panel of 107 domestic and international quarterly series, covering

a sample period from 1990Q1 to 2016Q4. All the series were initially transformed to induce

stationarity and demeaned, while the series used to extract factors was also standardized.

7As was documented by Baumeister and Peersman (2013a) and Baumeister and Peersman (2013b), there

have been changes in elasticities in the oil market in recent decades.
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3.2 The time-varying FAVAR Model

Our framework builds on the FAVAR model, first proposed by Stock and Watson (2005)

and Bernanke et al. (2005). Technically, the developed and employed model is most closely

related to the set-up used in Korobilis (2013). In particular, we use a two-step estimator

and replace the factors by the first principal components obtained from the singular value

decomposition of the data matrix, and consequently treat them as observables. These

factors are then used in a time-varying VAR model with both time-varying coefficients

and time-varying variance covariance matrix of innovations, see Primiceri (2005).

Still, we deviate from Korobilis (2013) in several important ways. First, while Korobilis

(2013) uses a framework based on Bernanke et al. (2005) and Belviso and Milani (2006)

to identify the factors, we follow Boivin and Giannoni (2007) since it is well suited to use

with quarterly data.8 Second, to keep our model as parsimonious as possible, we do not

allow for stochastic volatility in the factor analysis regression. Finally, we stick to the

standard convention in the literature and model the random walk evolution of the VAR

parameters as in Primiceri (2005).

Now, let Ft be a m×1 vector of common factors assumed to drive the dynamics of the

economy. In our application, Ft contains both observable factors yt of dimension l×1 and

unobservable latent factors, ft of dimension k × 1, such that Ft =

(
yt

ft

)
and l + k = m.

The latent factors are extracted from a larger dataset Xt of dimension n×1, and assumed

to summarize additional information not captured by the observable factors. We assume

that Xt can be described by an approximate dynamic factor model given by

Xt = ΛFt + et, (1)

where Λ is n × m matrix of factor loadings and et ∼ N (0, R), is n × 1 vector of errors

assumed to be uncorrelated with the factors Ft and mutually uncorrelated. The joint

dynamics of the factors Ft are given by the following transition equation:

Ft = ct + b1tFt−1 + ...+ bptFt−p + ut, (2)

where ct is an m×1 vector of time-varying intercepts; bjt are m×m matrices for j = 1, .., p

of time-varying coefficients; ut is an unconditionally heteroskedastic disturbance term that

is normally distributed with zero mean and time-varying covariance matrix Ωt. According

to the literature on efficiently parametrizing large covariance matrices, Primiceri (2005),

8While Bernanke et al. (2005) and Belviso and Milani (2006) perform a transformation of the principal

components exploiting the different behavior of “slow moving” and “fast moving” variables, the same

identification scheme would be not be suitable for quarterly data series as most of these series would

respond as “fast moving” to oil price shocks within a quarter.
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we decompose Ωt in the following way:

Ωt = A−1
t ΣtΣ

′

t(A
−1
t ), (3)

where Σt is a diagonal matrix that contains the stochastic volatilities and At is a unit

lower triangular matrix with ones on the main diagonal that models the contemporaneous

interactions among the variables in (2):

At =


1 0 · · · 0

a21,t 1
. . .

...
...

. . . . . . 0

am1,t · · · am(m−1),t 1

Σt =


σ1,t 0 · · · 0

0 σ2,t
. . . 0

...
. . . . . . 0

0 · · · 0 σm,t

 (4)

It follows that

Ft = b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt. (5)

We follow the standard convention and assume that model’s time-varying parameters

and stochastic volatilities follow random walk processes. LetBt = (vec(ct)
′
, vec(b1t)

′
, ..., vec(bpt)

′
)
′

be the vector of all R.H.S. coefficients in (5), αt = (a
′
j1,t, ..., a

′

j(j−1))
′

for j = 1, ...,m be

the vector of nonzero and nonone elements of the matrix At, and σt = (σ
′
1,t, ..., σ

′
m,t)

′
be

the vector containing the diagonal elements of Σt .The dynamics of the three processes

are specified as follows:

Bt = Bt−1 + ηBt

αt = αt−1 + ηαt

logσt = logσt−1 + ησt

(6)

We assume that innovations in the model are jointly normally distributed with the

following assumptions on the variance covariance matrices:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(7)

where Im is an m-dimensional identity matrix.

Following Primiceri (2005), we postulate a block-diagonal structure for S, with blocks

corresponding to parameters belonging to separate equations. Thus, the shocks to the

coefficients of the contemporaneous relations among variables in (5) are assumed to be

correlated within equations, but uncorrelated across equations.
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3.3 Identification

As motivated above, we estimate a model with four factors, m = 4, and with associated

shocks that have the potential to affect all sectors of the U.S. economy. The first two

’foreign’ factors represent global activity and the real price of oil, and are treated as

observables. The two latent factors capture different parts og the domestic activity in the

U.S. and are inferred from data.

Starting with the foreign factors, we can identify two structural shocks: a global

demand shock and an oil price shock. Specifically, we identify a global activity shock and

an oil price shock in a recursive manner, ordering oil prices after global activity in the

VAR. Thus we follow the usual assumption from the models of commodity markets, and

restrict global activity to respond to oil price disturbances with a lag, see e.g., Hamilton

(2009). In turn, any unexpected news regarding global activity is assumed to affect oil

price contemporaneously, see e.g., Kilian (2009) and Aastveit et al. (2015).9

Turning to the domestic economy, we assume domestic structural shocks can have no

contemporaneous effects on global variables (i.e., within the quarter), including the oil

price. Hence, the oil price is predetermined with respect to the domestic U.S. variables,

in line with findings of Kilian and Vega (2011). Still, one could argue that as the U.S. has

gained in importance as an oil producer, news about the U.S. oil activity may have an

immediate impact on oil prices. However, we believe the assumption is reasonable, as the

cost to the U.S. refiners has closely followed, with few exceptions, the prices of WTI and

the Brent Blend crude oil, both of which are traded globally. Furthermore, during most

of the period we are analysing, the U.S. oil producers have not been able to export their

crude oil export. Still, as the U.S. is a part of the global activity measure (being a large

open economy), a shock that originates in the U.S. can therefore affect the real price of

oil contemporaneously via the global activity measure.

Finally, note that all observable variables in the vector Xt may respond to all shocks

on impact inasmuch as they are contemporaneously related to the factors through the

loading matrix, Λ.

9In contrast to these papers, and to keep our empirical model as parsimonious as possible, we do not

explicitly identify a global oil supply shock, but assume the oil price shock captures all supply side

developments as well as speculation etc. However, we believe this is reasonable. As shown in Kilian

(2009) and a range of subsequent papers, supply shocks explain a trivial fraction of the total variance in

the price of oil, and do not account for a large fraction of the variation in real activity either (at least in

the sample used here).
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3.4 Estimation and interpretations of the factors

Our model is estimated using a computationally simple two-step estimation method, see

Korobilis (2013) and Stock and Watson (2005). In the first step, we estimate the space

spanned by the factors using the approach advocated by Boivin and Giannoni (2007),

to ensure that the estimated latent factors, ft, will recover dimensions of the common

dynamics not already captured by the observable variables, yt. Once we have estimated

the factors, we treat them as observables, before moving to the second step in which we

estimate the time-varying parameters in (5).

In the estimation, we use 4 lags (p = 4) for the VAR.10 A more detailed description of

the estimation strategy and prior specification is provided in Appendix B. In Appendix

C we provide justification of convergence of the Markov Chain Monte Carlo Algorithm.

The system is estimated using two observable and two latent factors in the vector Ft

(l = 2, k = 2). These four factors explain roughly 60 percent of the variation in Xt.

Adding one additional factor increases the variance explained by a modest 5 percent.

Even using 8 factors, the variance has only increased to 70 percent.

Before going into the details of the empirical results, we interpret the factors somewhat.

As discussed above, the four factors are included to capture different aspects of relevance

to the U.S. economy. While the two observable factors are easily interpretable insofar

as they capture global activity and the oil price, the two latent factors are unobservable,

estimated using the whole dataset for the U.S.

Tables 3 and 4 in Appendix A shed some light on the latent factors by displaying

correlations between each factor and some of the series. We focus here on the series that

display a correlation coefficient above 0.5 with either of the factors. We note from Table

3 that the first factor turns out to be a good proxy for real non-oil activity in the U.S, as

it captures most of the movements in non-farm employment in non-oil states and some

key macroeconomic aggregates. Still, the factor has also a small positive correlation with

some oil related series. The second factor can be interpreted as an oil activity factor as

it follows very closely the movements in oil-related employment and oil investments, and

has a small negative correlation with employment in non-oil states, see Table 4. Finally,

as we can see from Figure 10 in Appendix A, the factors seem to fit data quite well, even

though all the series in our dataset load on these factors.

10Hamilton and Herrera (2004) show that a too restrictive lag length can produce misleading results re-

garding the effects of oil market shocks on the macro economy, while increasing the lag length to over

one year has negligible effects.
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4 Empirical Results

The aim of this paper is to analyze if the transmission of oil price shocks on the U.S.

economy has changed as a result of the shale oil boom. To that end, we focus on the effects

of an oil price shock that is normalized to increase oil prices, using impulse responses and

variance decompositions. As we will allow for time-varying changes, we report two types

of impulse responses. We report median impulse responses at different dates: 2001:Q1,

2004:Q1, 2007:Q1, 2011:Q1, 2013:Q1, 2014:Q1, and 2015:Q1. These dates are chosen

arbitrarily and are not crucial for our conclusion. In addition, we also report the impulse

responses after 4 quarters over all periods. In so doing we emphasize the maximum effect

of an oil price shock, which typically occurs after about three to four quarters according to

Hamilton (2008), Herrera and Pesavento (2009), Clark and Terry (2010), Peersman and

Robays (2012) and Herrera (2018), at various points in time. However, our conclusions

are robust for alternative horizons.

Finally, note that all estimated responses have been accumulated and are shown in

levels. To ensure that we compare an equal sized shock over time, we normalize the

dynamic effects of exogenous oil price shock to a 1 percent increase in the oil price on

impact (for all the calculated responses).11

4.1 Oil price shocks and resource boom

We start by examining the impact of the oil price shock on aggregate activity in the

oil-producing sector, see Figure 2. To the extent that higher oil prices also generate a

resource boom in the U.S. economy, we should expect to see investment and production

in the oil sector increase. And we do, cf. Figure 2. The figure reports impulse responses

of oil investment and mining to an oil price shock. In the left column, we focus on median

responses at different time intervals, while the right column displays responses after four

quarters.

Clearly, an oil price increase creates a boom in the oil sector, by gradually increasing

investment and mining activity. These effects are in line with our expectations: a higher

oil price makes it more profitable for firms operating in the oil sector to produce, and

stimulates their investments and activity.12 We also note that the (maximum) effect

has drifted slightly up over time. That is, for an equally sized increase in oil prices, oil

investment and mining activity increase slightly more now than before.

11A common way to report impulse responses is to examine one standard deviation shock. However, in the

models where volatility changes over time, one standard deviation shock corresponds to a different-sized

shock at each point in time. Therefore, we normalize the impact effects of the shock over time.
12This is consistent with Bjørnland et al. (2017) that shows shale (unconventional) oil producers to be more

price responsive than conventional oil producers following an oil price increase.
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(a) Oil Investment (median) (b) Oil investment (4 quarters)

(c) Mining (median) (d) Mining (4 quarters)

Figure 2: The effect of an oil price shock: Impulse responses for the resource sector:

oil-investment and mining. Left column: Posterior median of impulse responses. Right

column: Impulse responses after 4 quarters with 16-th and 84-th percentiles

Hence, we conclude that higher oil prices generate a resource boom in the U.S. econ-

omy, and even more so now, than prior to the shale boom.

4.2 Aggregate macro effects

Having established that an oil price shock leads to a resource boom, we turn to examine

the effects on the aggregate macroeconomy. In particular, Figure 3 presents the responses

of an oil price shock after four quarters to some key nominal macro variables: CPI, interest

rates, dollar exchange rates, and SP500, while in Figure 4 we examine the responses in

some key real variables; investment, income, and consumption.

We first note that an oil price increase is strongly associated with an increase in

consumer prices (CPI). This effect is significant during the whole sample and is in line
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(a) CPI (b) Interest rate

(c) Exchange rate (d) Stock prices (S&P 500)

Figure 3: The effect of an oil price shock: Impulse responses for selected nominal variables

in the U.S. economy with 16-th and 84-th percentiles. All responses are reported after 4

quarters, except the response in the stock price that is displayed after 1 quarter

with our expectations and previous findings in the literature (c.f., Hamilton and Herrera

(2004)): higher oil prices lead to higher cost for firms, hence prices rise. We also note

that the effect on consumer prices shows little time variation. Second, we find that the

interest rate also increases after an oil price shock, but the response is only significant

at the end of the sample. Hence, with higher oil prices and higher activity in the oil

sector, the central bank responds by tightening policy, and significantly more so now than

before. The fact that monetary policy has responded more contractionary to increased

oil prices over time could also have contributed the more stable responses in prices noted

above. Third, the exchange rate depreciates following an oil price shock. This is consistent

with many previous studies where it is noted that, since 2000, there has been a negative

relationship between the oil price and U.S. dollar, see e.g. Fratzscher et al. (2014). Still,

we find that the negative relationship has declined somewhat over time. Finally, we find
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(a) Investment (median) (b) Investment (4 quarters)

(c) Income (median) (d) Income (4 quarters)

(e) Consumption (median) (f) Consumption (4 quarters)

Figure 4: The effect of an oil price shock: Impulse responses for selected real variables of

the U.S. economy. Left column: posterior median of impulse responses. Right column:

impulse responses after 4 quarters with 16-th and 84-th percentiles

that stock prices increase on impact13 following an oil price shock. This is very different

from the findings in Kilian and Park (2000) using a sample ending in 2006, but well in

13Note that the responses for stock prices are reported on impact, as the effect dies quickly out, as expected.
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line with more recent studies such as Fratzscher et al. (2014) and Mohaddes and Pesaran

(2017).

As for the (non-oil) real macro variables, Figure 4 presents the median impulse re-

sponses (left column) and the responses after four quarters (right column) to non-residential

investment, real personal income, and real private consumption. In contrast to the nom-

inal variables, that did not show much evidence of time-variation, we now observe large

time variation for the real variables. First, we find that non-residential (non-oil related)

investment has responded systematically more positively to an oil price shock throughout

the 2000s, and the effect is significantly positive from 2012/2013, cf. Figure 4. Hence,

while non-oil investment in the U.S. economy previously fell when oil prices rose, it is now

picking up. This is a new finding in the literature.

Second, for an oil importing country, higher oil prices typically mean lower purchasing

power and potentially also lower demand for goods and services, as prices increase, c.f. the

results above. This is manifested in lower income and consumption throughout the first

part of the sample, see Figure 4. However, from 2012 and onward, real personal income

starts to drift upward following an oil price shock. The response in consumption has

also gradually changed, and consumption is no longer responding significantly negatively

following an oil price shock.

Taken together, these results are consistent with U.S. now behaving more like a net

oil exporter. Following an oil price increase, activity in the oil sector increases, and then

there are spillovers to non-oil aggregate investment and income, which also now increase

with the U.S. resource boom. While these results may be consistent with what has been

documented at the local level in oil rich states recently, c.f., Feyrer et al. (2017) and Allcott

and Keniston (2018), these are new results for the aggregate U.S. economy. Importantly,

it means that higher oil prices are no longer bad news for the U.S. economy. Hence, and

oil price decline such as that experienced between 2014 and 2016, may not be beneficial

either.

4.3 Disaggregate industry effects

Having seen that there are positive effects on the aggregate U.S. economy arising from an

oil price shock that increases oil prices, Figure 5 examines in more detail the response in

various industry groups. Not surprisingly, we find that the effect of higher oil prices on

energy materials is significantly positive, and shows little time variation over the sample.

Hence, production of energy materials increases with the oil boom. More interestingly,

however, we observe a strong upward drift in the impulse responses for business supplies

and manufacturing, which respond significantly positively to an oil price shock, from

approximately 2010. Hence, there are now some positive spillovers from the increased
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(a) Energy materials (Median) (b) Energy materials (4 quarters)

(c) Business supplies (Median) (d) Business supplies (4 quarters)

(e) Manufacturing (Median) (f) Manufacturing (4 quarters)

Figure 5: The effect of an oil price shock: Impulse responses for Industrial Production

series divided according to Market Groups. Responses are reported after 4 quarters with

16-th and 84-th percentiles

activity in the oil industry to manufacturing production and business supplies, effects
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(a) Food and beverage (b) Chemical (c) Motor vehicles

(d) Machinery (e) Fabricated metal (f) Computer and electron

Figure 6: The effect of an oil price shock: Impulse responses for Manufacturing series

at a disaggregate level. Responses are reported after 4 quarters with 16-th and 84-th

percentiles

that were not present before.

Still, we observe some heterogeneity among manufacturing industries when we dig

deeper. Investigating subgroups of manufacturing production in Figure 6, we find that

some industry groups do still respond negatively, or insignificantly, to the higher oil price.

These are typically energy-intensive in production, i.e., food, beverage and tobacco prod-

ucts, motor vehicles, and chemical products. Increased energy prices imply higher con-

sumer prices and therefore reduced demand and production of consumer goods (such as

food, beverage, and tobacco products).14 Several other studies have found similar results,

see e.g. Bresnahan and Ramey (1993), Davis and Haltiwanger (2001), Lee and Ni (2002),

Herrera (2018). Yet, there are industry groups that respond gradually more positively

throughout the period. These are, in particular: machinery, fabricated metal products

and computer and electronic products, again see Figure 6. These industries are more

closely related to the shale boom and may have benefited from increased demand and

spillovers from the resource boom as oil prices increased.

Thus, we suggest that a gradual shift has taken place. More industries are now re-

14We also find that petroleum and coal production declines temporarily with the oil boom, which could

relate to the fact that downstream oil and gas industries, such as refining and petrochemicals, typically

benefit from falling energy prices, not vice versa, see e.g. Herrera (2018) and Brown and Yücel (2013)

for further discussions.
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sponding by increasing investment and activity when oil prices increase. This suggests

why, on average, manufacturing has benefited from higher oil prices during the shale

boom, cf. Figure 5. That is, allowing for spillovers between industries, we have found

that the oil industry can be an engine for growth.

4.4 State level effects - employment

So far we have focused on aggregate macro responses and disaggregate industry responses

for the U.S. taken as a whole. We now turn to investigate the response in employment

at the state level. We focus on employment as an important part of a resource boom is

the movement of labour into the energy producing sector, see Corden (1984) for theory.

Furthermore, there is some recent empirical evidence of local spillovers to employment in

the oil rich states, see Allcott and Keniston (2018) and Feyrer et al. (2017) using cross

section data.

We first investigate the responses in oil related employment and non-farm employment

in the oil rich states in Figure 7. Thereafter we investigate non-farm employment in non-

oil states in Figure 8. We display in the upper row responses to non-oil employment in

states with large manufacturing sectors, and in the lower row, responses to employment

in states where manufacturing is small, and not among the main industries. Detailed

responses for all other states can be found in Appendix D.

For all the oil-rich states, we find oil-related employment to respond significantly

positively during the whole period, and there is little evidence of time variation. Hence,

as expected, employment in mining and oil-related industries rise with higher oil prices,

and has done so over the whole sample. More interestingly, turning to non-oil employment,

there is now clear evidence of time variation. In particular, for some oil rich states, non-

oil employment is now increasing with the higher oil prices, see for instance Texas and

Oklahoma. In fact, we find significant positive effects on non-oil employment for the

9 biggest oil-producing states. For California, however, the response is not significant

positive. These results are consistent with the literature using cross-section data and

which suggests the existence of positive spillovers from oil activity on local employment

see e.g., Feyrer et al. (2017). The findings are also consistent with the results we have

seen at the aggregate level, indicating a geographical dispersion of oil related shocks to

non-oil sectors within resource abundant states.

Turning to the states that do not produce oil, there is evidence that also here non-farm

employment has gradually responded more positively to an oil shock over the period, see

Figure 8. As it turns out, we find significant positive effects on employment in states

where a high proportion of their manufacturing sector relates to the oil industry, see for

instance Iowa, Illinois and Pennsylvania. These are states where the main industries are
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(a) Texas: Oil employment (b) Texas: Non-oil employment

(c) North Dakota: Oil employment (d) North Dakota: Non-oil employment

(e) Oklahoma: Oil employment (f) Oklahoma: Non-oil employment

(g) Alaska: Oil employment (h) Alaska: Non-oil employment

Figure 7: The effect of an oil price shock: Posterior median of impulse responses for

employment series in oil-producing states 22



(a) Iowa (b) Illinois (c) Pennsylvania

(d) Tennessee (e) South Carolina (f) Florida

Figure 8: The effect of an oil price shock: Posterior median of impulse responses for

employment in some (non-oil) U.S. states. Upper row: states with a high Manufacturing

share in employment, Lower row: states with a low manufacturing share in employment

machinery, fabricated metal products, computer and electronic products, and primary

metals. On the other hand, in states with energy-intensive manufacturing production,

i.e., the motor vehicle industry, as well as states which have important production of

chemical products, petroleum and coal products and production of food, beverages, and

tobacco, the effect is still negative or insignificant, see for instance Tennessee, South

Carolina, and Florida.

Our results may seem surprising. As alluded to above, the manufacturing sector is a

traded goods sector, and, according to the standard Dutch disease literature (e.g. Corden

(1984)), we would expect to see a contraction of the traded goods sector and expansion

of the non-traded sectors (due to a spending effect). Instead, we find opposite results:

The higher oil price generates a resource boom, which again leads to increased demand

for output from the manufacturing sector and increased demand for labour. There is

also learning by doing spillovers during the shale oil boom, affecting all sectors of the

U.S. economy. For instance, as the development of new technology for drilling shale and

hydraulic fracturing demands complicated technical solutions, this could in itself generate

positive knowledge externalities that benefit many sectors. This is consistent with recent

theoretical contributions such as Allcott and Keniston (2018) and Bjørnland et al. (2018).

How important are these effects? The variance decomposition in Table 1 confirms that

the oil price shocks explain an important share of the variation in non-oil employment
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Table 1: Employment variance decomposition

State 2001Q1 2011Q1 2015Q1

O
il

st
a
te
s

Alaska 0.50 0.43 0.60

North Dakota 0.50 0.43 0.58

Wyoming 0.44 0.38 0.53

Oklahoma 0.23 0.27 0.47

Texas 0.16 0.21 0.42

California 0.12 0.11 0.21

N
o
n
-o
il

st
a
te
s

Iowa 0.13 0.17 0.40

Pennsylvania 0.13 0.17 0.39

Illinois 0.11 0.13 0.32

South Carolina 0.14 0.13 0.23

Tennessee 0.11 0.10 0.19

Florida 0.15 0.11 0.16

Note: Variance decomposition of (no-oil) non-farm employment after 4 quarters explained by oil price

shocks

in most oil rich states and in many non-oil states, and the effect has also increased over

time. For instance, by 2015, oil price shocks explained 50 - 60 percent of the variation

in non-oil employment after four quarters in oil-producing Alaska, North Dakota and

Wyoming. The effect is somewhat smaller in the other oil-producing states, and lowest

in California, where oil price shocks explain around 20 percent of the variation in non-oil

employment. For the non-oil states, the effect is largest in Iowa, Pennsylvania and Illinois,

where oil price shocks explain 30-40 percent of the variation in non-oil employment, while

for Florida, oil price shocks explain around 15 percent of the variation in employment.

4.5 Geographical dispersion

So far we have seen that there are positive spillovers from the resource boom to employ-

ment across the U.S. states. How does this tally with the location of various industries?

To discuss this issue we illustrate geographical dispersion of shocks in Figure 9. That

is, each U.S. state is colored according to (i) the significance of the oil price shocks on

non-oil employment in that state, see Section 4.4, and (ii) the main types of industries

in the relevant state, c.f. NAM (2015) for source. To that end, we let grey refer to the

oil-rich states where employment responds significantly positively to an oil price shock;
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Figure 9: U.S. States and geographical dispersion of oil price shocks. Grey and blue

refer, respectively, to oil-rich states and states with a large manufacturing base, and

where employment responds significantly positively to an oil price shock; orange represents

states with a large manufacturing base and where employment responds negatively or

insignificantly to the same shock, while green reflects states with a small manufacturing

base and where the effect on employment from an oil price shock is small/insignificant.

See the main text for additional explanations.

blue refers to non-oil states with a large manufacturing base (more than 6 percent of the

total output in the state) and where employment also responds significantly positive to

an oil price shock; orange represents states with an equally large manufacturing base but

where employment responds negatively or insignificantly, while green reflects states with

a small manufacturing base, and where the effect on employment is small/insignificant.

We have four main findings. First, Figure 9 shows that the positive and significant

effects of an oil price shock on non-oil employment in the nine biggest oil producing states

(coloured grey) are located in the middle of the U.S., all part of the shale oil boom. Second,

the non-oil states that observe an important positive effect on employment (coloured blue)

have industries that includes some of machinery, fabricated metal products, aerospace

equipment, computer and electronic products, and primary metals as the three most

important industries. These industries are typically closely connected to the energy boom

and are also primarily located close to the oil producing states or in the north east. Third,

the negative/insignificant effects are found in states that have an important manufacturing
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base that is typically energy-intensive in production, i.e., the motor vehicle industry

(coloured orange with stripes), chemical products, petroleum and coal products, food,

beverages and tobacco products, and wood products industries (orange colour). These

states are either located to the far west, or to the far east, as well as within the ’Rust

Belt’ (mainly motor vehicle industries). Finally, there are a few states with insignificant

but small effects, randomly spread out across the U.S. These are the states with a small

manufacturing base (smaller than 6 percent).

We conclude that while there are heterogeneous effects to an oil price shock across the

U.S. states, the majority of the U.S. states are now behaving more procyclically with the

U.S. oil boom (states coloured grey, blue and green).

5 Robustness

To account for changes in the transmission of an oil price shock to the U.S. economy, we

use a time-varying parameters FAVAR model with stochastic volatility. Here we analyze

robustness of our choices along several dimensions. First, to what extent are the results

driven by the use of time-varying parameters? To illustrate this we estimate a constant

parameter parameter model over two different samples, 1990-2006 and 2000-2016. Doing

so we still find evidence of changing coefficients, see Figures 13 and 14 in Appendix E.

Hence, the results of changing responses are not driven by our choice of model. Having

said that, using a simple split sample framework is sensitive to the subjectively chosen

break date, and may under or overestimate the true coefficients if there is variation within

each sub-sample, as the analysis in Section 4 clearly suggests. To capture such behavior,

one needs a flexible model allowing for time-variation, as the one we have applied here.

Second, one concern about our framework is whether the changes in the impulse re-

sponses relate to the changes in the size of shock rather than to changes in the propagation

mechanisms. To address this issue, we estimate our model with constant coefficients and

a drifting variance covariance matrix, suggesting that the time variation comes only from

the size of the shocks. Doing so, one can no longer find any evidence for significant

changes in the way U.S. economy responded to an oil price shock over the last 16 years,

see Appendix F. We therefore conclude that it is the change in mechanisms that is driving

the changes in the impulse responses, although the size of oil price shocks also matters.15

Third, we justify our prior specification in Appendix G. There, we also report a sen-

sitivity analysis showing that our results are robust to a set of alternative prior choices.

Finally, as is well known in the literature, the choice of data included in the FAVAR

15We also estimate a model with time varying factor loadings. However we do not gain any additional

information from this extension and the main results (not shown here) remain unchanged.
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model may be crucial for the results. In our benchmark model we are using a relative large

dataset that includes, among other items, employment for all U.S. states in addition to a

bunch of industrial production series. Many of these series could be seen as more of the

same type of data, which could have perverse effects, as shown by Boivin and Ng (2006).

Furthermore, there are alternative global variables we could include. To deal with this

we do a series of changes: (i) We replace our two global variables with alternative data

series. In particular, we use GDP for OECD countries instead of our original measure of

global activity and the West Texas Intermediate (WTI) deflated by CPI instead of the

real oil price. Results are robust to these changes. (ii) We exclude all the employment

series at the state level, but include instead a few aggregate employment series divided by

industry type. This does not change our main results. (iii) We also test for robustness by

excluding the Manufacturing sub-industries series, and we try adding the shadow Federal

Funds rate, see Wu and Xia (2016). This latter change is motivated by a concern that the

focusing on the Federal rate underestimates the stimulative effect of the unconventional

monetary policies conducted in this period. Results are robust to these changes as well.

Appendix H illustrates robustness to a combination of all these changes to the data for

some selected variables.

6 Conclusion

It is widely accepted that the unprecedented expansion of the U.S. shale oil sector has

been a major contributor to oil investment since 2010. In this paper, we demonstrate that

the shale oil boom has not only impacted oil investment, but has also changed the way oil

price shocks are transmitted to aggregate investment, employment and various industries

across the U.S. To capture these effects, we have estimated a factor-augmented vector

autoregression (FAVAR) model with time-varying coefficients and stochastic volatility.

Our framework allows us to study the effects of oil price shocks on a large number of U.S.

macroeconomic variables and analyze the time variation in these effects. To the best of

our knowledge this is the first paper that jointly models the interaction between the oil

market and the U.S. economy in a large data environment.

In contrast to previous studies, we find substantial changes in the way an oil price

shock is transmitted to the U.S. economy. In particular, we find both oil and the non-

oil nonresidential business investments, as well as production and employment in oil-

producing and manufacturing-intensive states to pick up following an oil price increase.

What’s more, there are positive spillovers to real personal income. Hence, this explains

why the U.S. did not experience a boom following the steep decline in oil prices between

2014 and 2016. The answer is simply that the country has increased its reliance of oil,
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not as a consumer, but by becoming the world’s largest oil producer. Going forward,

economic policy needs to take into account that the transmission of an oil price shock has

changed with the shale oil boom. An oil price increase may now actually be good news

for economic activity in the U.S.
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Appendices

Appendix A Data Description

Global Variables

fred id Description

1 Source: Chiaie et al.

(2017)

Global Activity The Global Factor

2 Source: EIA Oil price US Refineries Acquisition Cost of domestic

and imported crude oil deflated by CPI

Macro aggregates

fred id Description

3 E318RC1Q027SBEA+

USIEOX..B (Datastream

Oil Investment Private fixed investment: Nonresidential:

Mining exploration, shafts, and wells + Equip-

ment, mining, and oilfield machinery

4 RPI Personal Income Real Personal Income

5 FEDFUNDS Interest Rate Effective Federal Funds Rate

6 INDPRO IP Index Industrial Production Index

7 PPIACO PPI Producer Price Index for All Commodities

8 CPIAUCSL CPI CPI : All Items

9 SP500 S&P500 S&Ps Common Stock Price Index: Composite

10 PRFI Residential Investment Private Residential Fixed Investment

11 PNFI Nonresidential Investment: **Private Nonresidential Fixed Investment:

12 PCEPI Private Consumption Real Private Consumption Expenditure

(chain-type quantity index)

13 DTWEXM Trade Weighted U.S. FX

Rate

Trade Weighted U.S. Dollar Index: Major Cur-

rencies

14 Source: EIA Net Petroleum Imports
U.S. Net Imports of Crude Oil and Petroleum Products

(Thousand Barrels per Day)

15 Source: Census Net Trade in Goods Trade in goods: Net trade

Disaggregate Industrial

Production

fred id Description

16 IPMANSICS Manufacturing IP: Manufacturing (SIC)

17 IPMINE Mining IP: Mining

18 IPUTIL Utilities IP: Electric and Gas Utilities

19 IPCONGD Consumer Goods IP: Consumer Goods

20 IPBUSEQ Business Equipment IP: Business Equipment

21 IPB52300S Defense and space equipment IP: Defense and space equipment

22 IPB54100S Construction supplies IP: Construction supplies

23 IPB54200S Business supplies IP: Business supplies

24 IPZ53010S Materials excluding energy

materials

IP: Materials excluding energy materials

25 IPB53300S Energy materials IP: Energy materials

26 IPG321S Wood product IP: Durable manufacturing: Wood product

Continued on next page
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27 IPG327S Nonmetallic mineral product IP: Durable manufacturing: Nonmetallic min-

eral product

28 IPG331S Primary metal IP: Durable manufacturing: Primary metal

29 IPG332S Fabricated metal product IP: Durable manufacturing: Fabricated metal

product

30 IPG333S Machinery IP: Durable manufacturing: Machinery

31 IPG334S Computer and electronic prod-

uct

IP: Durable manufacturing: Computer and

electronic product

32 IPG335S Electrical equipment, appli-

ance, and component

IP: Durable manufacturing: Electrical equip-

ment, appliance, and component

33 IPG3361T3S Motor vehicles and parts IP: Durable manufacturing: Motor vehicles

and parts

34 IPG3364T9S Aerospace and miscellaneous

transportation equipment

IP: Durable manufacturing: Aerospace and

miscellaneous transportation equipment

35 IPG337S Furniture and related product IP: Durable manufacturing: Furniture and re-

lated product

36 IPG339S Miscellaneous IP: Durable manufacturing: Miscellaneous

37 IPG311A2S Food, beverage, and tobacco IP: Nondurable manufacturing: Food, bever-

age, and tobacco

38 IPG313A4S Textiles and products IP: Nondurable manufacturing: Textiles and

products

39 IPG315A6S Apparel and leather goods IP: Nondurable manufacturing: Apparel and

leather goods

40 IPG322S Paper IP: Nondurable manufacturing: Paper

41 IPG323S Printing and related support

activities

IP: Nondurable manufacturing: Printing and

related support activities

42 IPG324S Petroleum and coal products IP: Nondurable manufacturing: Petroleum

and coal products

43 IPG325S Chemical IP: Nondurable manufacturing: Chemical

44 IPG326S Plastics and rubber products IP: Nondurable manufacturing: Plastics and

rubber products

Nonfarm Employment -

States

fred id Description

45 ALNA Alabama All Employees: Total Nonfarm in Alabama

46 AKNA Alaska *All Employees: Total Nonfarm in Alaska

47 AZNA Arizona All Employees: Total Nonfarm in Arizona

48 ARNA Arkansas All Employees: Total Nonfarm in Arkansas

49 CANA California *All Employees: Total Nonfarm in California

50 CONA Colorado *All Employees: Total Nonfarm in Colorado

51 CTNA Connecticut All Employees: Total Nonfarm in Connecticut

52 DENA Delaware All Employees: Total Nonfarm in Delaware

53 FLNA Florida All Employees: Total Nonfarm in Florida

54 GANA Georgia All Employees: Total Nonfarm in Georgia

55 HINA Hawaii All Employees: Total Nonfarm in Hawaii

56 IDNA Idaho All Employees: Total Nonfarm in Idaho

57 ILNA Illinois All Employees: Total Nonfarm in Illinois

58 INNA Indiana All Employees: Total Nonfarm in Indiana

59 IANA Iowa All Employees: Total Nonfarm in Iowa

60 KSNA Kansas *All Employees: Total Nonfarm in Kansas

61 KYNA Kentucky All Employees: Total Nonfarm in Kentucky

62 LANA Louisiana *All Employees: Total Nonfarm in Louisiana

63 MENA Maine All Employees: Total Nonfarm in Maine

Continued on next page
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64 MDNA Maryland All Employees: Total Nonfarm in Maryland

65 MANA Massachusetts All Employees: Total Nonfarm in Mas-

sachusetts

66 MINA Michigan All Employees: Total Nonfarm in Michigan

67 MNNA Minnesota All Employees: Total Nonfarm in Minnesota

68 MSNA Mississippi All Employees: Total Nonfarm in Mississippi

69 MONA Missouri All Employees: Total Nonfarm in Missouri

70 MTNA Montana *All Employees: Total Nonfarm in Montana

71 NENA Nebraska All Employees: Total Nonfarm in Nebraska

72 NVNA Nevada All Employees: Total Nonfarm in Nevada

73 NHNA New Hampshire All Employees: Total Nonfarm in New Hamp-

shire

74 NJNA New Jersey All Employees: Total Nonfarm in New Jersey

75 NMNA New Mexico *All Employees: Total Nonfarm in New Mex-

ico

76 NYNA New York All Employees: Total Nonfarm in New York

77 NCNA North Carolina All Employees: Total Nonfarm in North Car-

olina

78 NDNA North Dakota *All Employees: Total Nonfarm in North

Dakota

79 OHNA Ohio All Employees: Total Nonfarm in Ohio

80 OKNA Oklahoma *All Employees: Total Nonfarm in Oklahoma

81 ORNA Oregon All Employees: Total Nonfarm in Oregon

82 PANA Pennsylvania All Employees: Total Nonfarm in Pennsylva-

nia

83 RINA Rhode Island All Employees: Total Nonfarm in Rhode Is-

land

84 SCNA South Carolina All Employees: Total Nonfarm in South Car-

olina

85 SDNA South Dakota All Employees: Total Nonfarm in South

Dakota

86 TNNA Tennessee All Employees: Total Nonfarm in Tennessee

87 TXNA Texas *All Employees: Total Nonfarm in Texas

88 DCNA District of Columbia All Employees: Total Nonfarm in the District

of Columbia

89 UTNA Utah All Employees: Total Nonfarm in Utah

90 VTNA Vermont All Employees: Total Nonfarm in Vermont

91 VANA Virginia All Employees: Total Nonfarm in Virginia

92 WANA Washington All Employees: Total Nonfarm in Washington

93 WVNA West Virginia All Employees: Total Nonfarm in West Vir-

ginia

94 WINA Wisconsin All Employees: Total Nonfarm in Wisconsin

95 WYNA Wyoming *All Employees: Total Nonfarm in Wyoming

Mining Employment -

Oil States

fred id Description

96 CONRMN Mining in Colorado All Employees: Mining and Logging in Col-

orado

97 KSNRMN Mining in Kansas All Employees: Mining and Logging in Kansas

99 SMU22000001021100001SA +

SMU22000001021300001SA

Mining in Louisiana All Employees: Mining: Oil and Gas Ex-

traction + Support Activities for Mining in

Louisiana

Continued on next page
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100 SMU30000001000000001A Mining in Montana All Employees: Mining and Logging in Mon-

tana

101 SMU35000001000000001A Mining in New Mexico All Employees: Mining and Logging in New

Mexico

102 SMU38000001000000001A Mining in North Dakota All Employees: Mining and Logging in North

Dakota

103 SMU40000001000000001A Mining in Oklahoma All Employees: Mining and Logging in Okla-

homa

104 SMU02000001021001301 Mining in Alaska All Employees: Mining: Oil and Gas Extrac-

tion, Well Drilling, and Support Activities in

Alaska

105 SMU06000001021100001SA +

SMU06000001021300001

Mining in California All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Mining in Cali-

fornia

106 SMU48000001021100001SA +

SMU48000001021300001

Mining in Texas All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Mining in Texas

107 SMU56000001021100001SA

+SMU56000001021311201SA

Mining in Wyoming All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Oil and Gas Op-

erations in Wyoming

Additional Variables

fred id Description

108 Sources: Board of Governors

of the Federal Reserve System

and Wu and Xia (2016)

Shadow Rate Wu-Xia Shadow Federal Funds Rate

109 MCOILWTICO WTI Crude Oil Prices: West Texas Intermediate -

Cushing, Oklahoma

110 Source: OECD.Stat OECD Gross domestic product for OECD countries

(expenditure approach)

111 Baumeister and Hamilton

(2018)

World Industrial Production Index

112 CES1021000001 All Employees: Mining and Logging

113 USCONS All Employees: Construction

114 MANEMP All Employees: Manufacturing

115 DMANEMP All Employees: Durable goods

116 NDMANEMP All Employees: Nondurable goods

117 SRVPRD All Employees: Service Industries

118 USTPU All Employees: TT&U

119 USWTRADE All Employees: Wholesale Trade

120 USTRADE All Employees: Retail Trade

121 USFIRE All Employees: Financial Activities

122 USGOVT All Employees: Government

Table 2: Data description. * Oil related employment is subtracted , ** Oil related

investment is subtracted
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Factor 1 Factor 2

Empl Tennessee 0.90 -0.15

Empl Illinois 0.89 0.05

Empl South Carolina 0.87 -0.08

Manufacturing 0.87 -0.06

Empl Pennsylvania 0.86 0.05

Empl Florida 0.85 -0.17

Business supplies 0.84 -0.11

Empl Texas 0.84 0.17

Empl Iowa 0.80 0.06

Nonresidential Investment 0.77 0.02

Empl California 0.77 -0.01

Machinery 0.72 0.31

Empl Oklahoma 0.71 0.23

Computer and electronic products 0.66 0.01

Real Private Consumption 0.61 -0.21

Interest Rate 0.54 -0.07

Real Personal Income 0.52 0.03

Table 3: Examples of data series with correlation above 0.5 with factor 1.

Factor 1 Factor 2

Empl Texas: Oil 0.23 0.93

Empl Oklahoma: Oil 0.26 0.87

Empl New Mexico: Oil 0.36 0.82

Empl Colorado: Oil 0.29 0.82

Empl Wyoming: Oil 0.19 0.81

Empl North Dakota: Oil 0.06 0.81

Oil Investment 0.26 0.75

Empl Kansas: Oil 0.32 0.73

Empl California: Oil 0.13 0.70

Empl Louisiana: Oil 0.17 0.64

Mining 0.30 0.64

Empl Montana: Oil 0.29 0.60

Empl Alaska: Oil 0.03 0.56

Energy Materials 0.25 0.51

Table 4: Data series with correlation above 0.5 with factor 2.
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(a) Nonfarm in Illinois (b) Mining in Texas

(c) Nonresidential Investment (d) Manufacturing

Figure 10: Graphs of the estimated factors compared to data series. Frame (a) and (b)

plots factor 1 and factor 2 respectively compared to real data; frame (c) and (d) plot the

estimated values of macroeconomic series from Equation 1 compared to real data
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Appendix B Estimation of a FAVAR model

B.1 Two Step Estimator Approach

In Section 3 of the main paper we described the benchmark model. Here we provide a

more detailed overview of how the model is estimated. We start by repeating the main

system equations.

The main two equations in our model are the factor equation (8) and the VAR equation

(9):

Xt = ΛFt + et, (8)

Ft = b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt. (9)

where the common factors Ft contain both the unobservables latent factors,ft and the

observables factors yt: Ft =

(
yt

ft

)
The time-varying parameters and covariances of the model follow random walk pro-

cesses given by (10):

Bt = Bt−1 + ηBt

αt = αt−1 + ηαt

logσt = logσt−1 + ησt

(10)

where Bt is the vector of all R.H.S. coefficients in (9), αt is the vector of non-zero and

no-none elements of the matrix At, and σt is the vector containing the diagonal elements

of Σt .

The innovations in the model are assumed to be normally distributed with the following

assumptions on the variance covariance matrix:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(11)

The system is then estimated in two steps. In the first step we estimate the unob-

servable factors ft, while in the second step we estimate model parameters, conditional

on the factors. Below we describe each step in greater detail.
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B.1.1 Step1: Latent Factor Estimation

We start by extracting k principal components from Xt and obtain estimates of the latent

factors, ft. In doing so, we do not impose a constraint whereby the observable factors

yt are the common component. So if the variables in yt are common components, they

should be captured by the principal components. To remove yt from the space covered

by the principal components, we follow the approach advocated by Boivin and Giannoni

(2007), and impose the constraint that observable variables are two of the factors in the

first-step estimation. We denote the initial estimate of ft by f 0
t , and iterate through the

following steps:

1. RegressXt on f 0
t and the observed factors yt and obtain λ̂0

y

2. Compute X̂0
t = Xt − λ̂0

yyt

3. Estimate f 1
t as the k principal components of X̂0

t

4. Repeat the procedure multiple times

This procedure guarantees that the estimated latent factors will recover dimensions

of the common dynamics not already captured by the observable variables, yt. Given the

factors, Ft, we can estimate parameters in (8) and (9) independently of each other.

B.1.2 Step 2: The Gibbs Sampling Approach - Estimation of model param-

eters

Estimation of parameters in Factor Equation

Since the covariance matrix of the error terms in (8) is diagonal, we can estimate all the

parameters equation-by-equation. The parameters are sampled using standard arguments

for linear regression models (see Koop (2003)).

Block 1: Λpost, V ar(Λ)post|X,F,Λprior, V ar(Λ)prior, R

Conditional on the priors specified in B.2, the posterior draws of factor loadings of equation

i ,λi, and its variance V ar(λi) are:

λposti = (V ar(λi)
post)−1((V ar(λi)

prior)−1λpriori +R−1
i,i F

′
Xi)

V ar(λi)
post =

(
(V ar(λi)

prior)−1 +R−1
i,i X

′

iXi

)−1

for i = 1, ..., N .

41



Block 2: R|X,F,Λpost, ν0, δ0

We draw the conditional posterior for R from inverse Gamma distribution:

Ri,i|... ∼ IG(
ν1

2
,
δ

(i)
1

2
) (12)

ν1 = ν0 + T and δ
(i)
1 = δ0 + (Xi − λposti F )2

Estimation of parameters in TVP VAR

The TVP VAR model in (9) is estimated by simulating the distribution of the parameters

of interest, given the data and the priors specified in B.2. Following Primiceri (2005),

Gibbs sampling is carried out in four steps, drawing in turn on time-varying coefficients

(Bt), simultaneous relations (At), volatilities (Σt), and hyper parameters (Q,W, S), condi-

tional on the observed data, estimated factors and the rest of the parameters. For further

details we refer to Primiceri (2005).

B.2 Prior specification

We use an informative prior based on the training sample (from 1990:Q2 to 1999:Q4).

Following Primiceri (2005) the mean and the variance of B0 and αo are chosen to be

OLS point estimates and four times their variance of their estimates on initial subsample.

For log σ0, the mean of the distribution is chosen to be the logarithm of the OLS point

estimates of the standard errors of the same time invariant VAR, while the variance

covariance matrix is arbitrarily assumed to be identity matrix. Similarly, the mean and

the variance of factor loadings from (8), Λ, are chosen to be OLS point estimates and four

times their variance of their estimates from the training sample.

B0 ∼ N (B̂OLS, 4V ar(B̂OLS))

α0 ∼ N (α̂OLS, 4V ar(α̂OLS))

logσ0 ∼ N (logσ̂OLS, In)

Λ ∼ N (Λ̂OLS, 4V ar(Λ̂OLS))

We use prior from Inverted Gamma distribution for variance-covariance matrix R .

R ∼ IG(
ν1

2
,
δ1

2
)

where ν1 = ν0 + T and δ1 = δ0 + (X − Λ̂postF ). The priors for the remaining hyper-

parameters are all from the Inverse-Wishart distribution:
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Q ∼ IW (k2
Q(1 + dimB)V ar(B̂OLS), 1 + dimB)

W ∼ IW (k2
W (1 + dimW )Ip, 1 + dimW )

Si ∼ IW (k2
S(1 + dimSi

)V ar(Âi,OLS), 1 + dimSi
)

Following Korobilis (2013) the degrees of freedom are set to dimB = m × m × p,

dimW = m and dimSi
= 1, ..,m−1, and are larger than the dimension of the corresponding

matrices, required to achieve a proper Inverse-Wishart distribution.

The benchmark results in this paper are obtained using the following values: kQ =

0.01, kS = 0.1, kW = 0.1 and ν0 = 10 , δ0 = 10. We refer to Appendix G for a discussion

of this choice and of the robustness of the results to alternative prior specifications.
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Appendix C Convergence of the Markov Chain Monte

Carlo Algorithm

We perform 30,000 iterations of the Gibbs sampler. The first 15,000 draws are discarded

and only every tenth of the remaining iterations is used for inference. The produced

results are not sensitive to the number of discarded draws or the number of passes used

for inferences. Following Primiceri (2005) and Baumeister and Peersman (2013b), we

ascertain that our Markov chain has converged based on the inefficiency factors (IFs) for

the posterior estimates of the parameters, that is the inverse of the relative numerical

efficiency (RNE) measure proposed by Geweke (1992). Here the estimates are performed

by employing a 4 percent tapered window used in computation of the RNE. As was noticed

by Primiceri (2005), values of the IFs below or around 20 are regarded as satisfactory. As

can be seen from the summary of the distribution of the inefficiency factors for different

set of parameters, reported in Table 5, the sample seems to have converged. That is, all

mean IF values are below 13 and 90 percent of the IFs are below 18., indicating modest

autocorrelation for all elements.

Median Mean Min Max 10-th Percentile 90-th Percentile

B 6.26 5.54 0.96 21.04 3.02 10.45

Λ 0.96 0.94 0.40 1.80 0.70 1.27

Σ 3.94 3.44 0.78 9.85 1.59 6.70

A 4.00 3.32 1.65 11.47 2.12 7.10

V 13.47 13.32 3.77 25.08 8.91 18.24

R 0.97 0.96 0.56 1.68 0.73 1.27

Table 5: Summery of the distribution of the IFs for different sets of parameters, where V

is the set of hyperparameters {Q,S,W}

.
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Appendix D Impulse Responses: Effect of oil price

shocks on employment in the U.S. states

D.1 Oil Related Employment

(1) Oil and Gas Extrac-

tion in Alaska

(2) Oil and Gas Extrac-

tion in California

(3) Oil and Gas Extrac-

tion in Louisiana

(4) Mining and Logging

in Oklahoma

(5) Mining and Logging

in Montana

(6) Mining and Logging

in New Mexico

(7) Mining and Logging

in North Dakota

(8) Oil and Gas Extrac-

tion in Texas

(9) Oil and Gas Extrac-

tion in Wyoming

(10) Mining in Kansas (11) Mining in Colorado

Figure 11: Impulse responses for Oil Related Employment after 4 quarters with 16-th and

84-th percentiles
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D.2 Nonfarm (non-oil) Employment

(1) Alabama (2) Alaska (3) Arizona

(4) Arkansas (5) California (6) Colorado

(7) Connecticut (8) Delaware (9) District Columbia

(10) Florida (11) Georgia (12) Hawaii

(13) Idaho (14) Illinois (15) Indiana

Continued on next page
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(16) Iowa (17) Kansas (18) Kentucky

(19) Louisiana (20) Maine (21) Maryland

(22) Massachusetts (23) Michigan (24) Minnesota

(25) Mississippi (26) Missouri (27) Montana

(28) Nebraska (29) Nevada (30) New Hampshire

Continued on next page
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(31) New Jersey (32) New Mexico (33) New York

(34) North Carolina (35) North Dakota (36) Ohio

(37) Oklahoma (38) Oregon (39) Pennsylvania

(40) Rhode Island (41) South Carolina (42) South Dakota

(43) Tennessee (44) Texas (45) Utah

Continued on next page
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(46) Vermont (47) Virginia (48) Washington

(49) West Virginia (50) Wisconsin (51) Wyoming

Figure 12: Impulse responses for Nonfarm Employment after 4 quarters with 16-th and

84-th percentiles
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Appendix E Split Sample

Below we present the impulse responses to an oil price shock for some key macroeconomic

indicators. We obtain these results by estimating the model presented in Section 3.2 with

constant coefficients and constant variance-covariance matrix: Bt = B and Ωt = Ω, for

two subsamples: 1990:Q2-2006:Q4 and 2000:Q1-2016:Q4.

As Figures 13 and 14 illustrates, while oil-related investments increase in both sub-

periods following an oil price shock, cf.cf. Figure 13 frame (a) and (b), non-residential

investments, personal real income, and manufacturing show important differences in the

two sub-samples. In the first period, they all contract as oil prices increase, cf.cf. Figure

13 frame (c) and Figure 14 frame (a) and (c) respectively. However, throughout the 2000s,

the picture changes somewhat. Following a similar sized oil price shock, all three series

increase temporally as oil prices increase, cf. Figure 13 frame (d) and Figure 14 frame (b)

and (d) respectively.
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Oil Investment

(a) 1990-2006 (b) 2000-2016

Nonresidential Investment

(c) 1990-2006 (d) 2000-2016

Figure 13: The effect of an oil price shock on Oil and Nonresidential (non-oil) Investment:

Posterior median of impulse responses with 16-th and 84-th percentiles; Left column:

estimated over subsample 1990:Q2-2006:Q4. Right column: estimated over subsample

2000:Q1-2016:Q4

51



Real Personal Income

(a) 1990-2006 (b) 2000-2016

Manufacturing

(c) 1990-2006 (d) 2000-2016

Figure 14: The effect of an oil price shock on Real Personal Income and Manufacturing:

Posterior median of impulse responses with 16-th and 84-th percentiles; Left column:

estimated over subsample 1990:Q2-2006:Q4. Right column: estimated over subsample

2000:Q1-2016:Q4
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Appendix F Where does the time variation come from?

Results presented in Section 4 and in Appendix E show a clear evidence of time-varying

effects. However, this time variation in impulse responses could either be driven by

heteroskedastic shocks 16 or the evolution of impulse responses over time due to drifting

coefficients and other nonlinearities. Figure 15 presents plots of the posterior mean of the

time-varying standard deviation of shocks in equation 5. From this figure we can see that

the variance of oil price shocks increased substantially after the financial crisis of 2007/08

as well as after 2014. One concern is then whether the change in responses that we found

is driven by high volatility shocks.

Figure 15: Posterior mean of standard deviation of residuals

To address this issue, we estimate the model presented in Section 3.2 with constant

coefficients, Bt = B, and drifting variance covariance matrix, Ωt = A−1
t ΣtΣ

′
t(A

−1
t ), which

is the right model if we believe that time variation comes only from the size of the shocks.

In doing so, we find that for those series for which in the benchmark model we found an

upward shift in responses during the last part of the sample, we now obtain an upward

shift in responses during the whole sample period, as coefficients are no longer allowed

to vary over time (see Figure 16 that reports impulse responses for some of the main

macroeconomic indicators to an oil price shock). Using a constant coefficient model we

do not find that any changes in the way the U.S. economy has responded to an oil price

shock during the last 16 years; in fact, the responses after 2014 seem to be at the same

level as those of 2004/05. This confirms that it is the change in mechanisms that explains

16In a recent study by Loria (2017), the author shows that the responses in firms’ investments depends on

the size of oil price shock
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why we obtain changes in the impulse responses.

(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 16: The effect of an oil price shock: Impulse responses from a constant coefficients

model for selected indicators of the U.S. economy after 4 quarters with 16-th and 84-th

percentiles
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Appendix G Prior sensitivity

The results presented in this paper are based on particular prior specifications described

in Appendix B. In the following we justify this choice and demonstrate the robustness of

our conclusions to alternative prior specifications. We focus on alternative specifications

of kQ, kS, and kW , since the choice for other priors seems to be of minor importance (see

e.g. Primiceri (2005)).

As it was noted by Primiceri (2005), the values for kQ, kS, and kW , defined in Appendix

B.2, do not parameterize time variation, but just define our prior beliefs about the amount

of time variation in parameters. The setting of kQ defines our beliefs about the amount

of time variation in time-varying coefficients in Equation 5, while setting of kW and kS

defines beliefs about the amount of time variation in stochastic volatility part of the same

equation. It is worth noting that there is a trade-off between setting, for example, kQ

very high, but kW and kS very low: this will force most of the models fit to be picked up

though time-varying coefficients, Bt. In the reverse case, setting kS and kW very high,

but kQ very low, the variation in Bt will almost be removed. Since we are interested in

both allowing for variation due to changes in the responses of domestic factors to global

shocks and due to changes in volatility of global variables, we will not consider any of the

two extreme cases mentioned above. However, in Appendix F we consider a case with

constant coefficients and stochastic volatility.

In order to be consistent with the literature 17 we set kQ = 0.01. However, the results

obtained with higher kQ are very similar to the baseline model.

Similar to Primiceri (2005), we set kS = 0.1. The motivation for setting kW = 0.1

is the fact that the volatility of oil price and other international business cycle shocks

has changed a great deal during last decade (see e.g. Baumeister and Peersman (2013a),

Baumeister and Peersman (2013b)). Estimating the model with lower values of kS and

kW we obtain a similar results to the benchmark case, however, if we set kW to 0.01 and

lower, we seem to miss high volatility of the oil price during the last downturn. Below

we report impulse responses for macroeconomic aggregates for kQ = 0.1, kW = 0.01, and

kS = 0.01 changing each of these values one at a time.

17Korobilis (2013), Primiceri (2005), Cogley and Sargent (2001), and Stock and Watson (1996)
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(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 17: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles. Prior for kQ = 0.1
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(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 18: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles. Prior for kS = 0.01
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(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 19: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles. Prior for kW = 0.01
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Appendix H Robustness to choice of variables

We estimate the model described in the main part of the paper using three different

datasets. First, in Section H.1 we change the global activity measure to an estimate of

industrial production for the OECD plus other major countries (Brazil, China, India,

Indonesia, Russia, and South Africa) published by OECD Main Economic Indicators and

extended from 2011:11 by Baumeister and Hamilton (2018).18 In Section H.2 we use West

Texas Intermediate (WTI) deflated by CPI as a measure of real oil prices. Section H.3

replaces both the observable factors in the VAR part with GDP for OECD countries as

a measure of global economic activity and West Texas Intermediate (WTI) deflated by

CPI as a measure of real oil prices. We also replace all employment series at state level

with employment series divided by industries. In addition we remove all subcategories of

durable and nondurable manufacturing, while we also add a shadow rate to our dataset.

All new data series are described in Appendix A under subcategory ”Additional Data.”

It turns out that our main results are robust to the implemented changes.

18Following suggestions by Hamilton (2018b) we isolate a cyclical component of this series by calculating

the two-year change in the log.
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H.1 Robustness to the choice of global activity variable

(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 20: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles from a model with

alternative dataset, using a different global variable (see the main text for details).
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H.2 Robustness to the choice of oil price variable

(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Illinois (f) Texas

Figure 21: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles from a model with an

alternative dataset that uses a different oil price measure (see the main text for details).

61



H.3 Robustness to the choice of various series

(a) Nonresidential Investment (b) Real Personal Income

(c) Manufacturing (d) Business supplies

(e) Employment Manufacturing (f) Employment Wholesale Trade

Continued on next page
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(g) Employment Durable goods (h) Employment Nondurable goods

(i) Employment Mining and Logging (j) Employment Retail Trade

(k) Employment Construction (l) Employment Financial Activities

Continued on next page
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(m) Employment Government (n) Employment Service Industries

(o) Employment Trade, Transportation and

Utilities

Figure 22: The effect of an oil price shock: Impulse responses for selected indicators of

the U.S. economy after 4 quarters with 16-th and 84-th percentiles from a model with

an alternative dataset: we add new measures for both the observable factors, replace all

employment series at the state level with employment series divided by industries. In

addition we remove subcategories of durable and nondurable manufacturing. We also add

a shadow rate to our dataset (see the main text for details).
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